An unknown bequest of the blessed Francesco Faà di Bruno (1825-1888)
"Miracolous analytical solutions for Merton inter-temporal portfolio choice problem"

Fabio Trojani<br>University of St. Gallen

E-mail: Fabio.Trojani@unisg.ch
(C) 2005 (Fabio Trojani, University of St. Gallen)

## Contents

(i) Faà di Bruno's life
(ii) Faà di Bruno's formula
(iii) Merton problem
(iv) Miracolous solutions

## Faà di Bruno's life (1825-1888)



## Faà di Bruno's earlier life

1841-1853: study at the Royal Military Academy of Turin, with the aim of making a career in the army.
$\Rightarrow$ In 1853 he leaves the army and takes up the study of mathematics.
1853-1861: he travels to Paris where he studies at the Sorbonne under Cauchy who-:
... "he admired, not only for his genius, but also for his religious fervour and his philanthropy"-
$\Rightarrow$ At the Sorbonne he was in the same classes as Hermite and Leverrier, who shared in the discovery of the planet Neptune.
$\Rightarrow$ After graduating, he returns to Turin, where he studies for his doctorate, which he obtains in 1861 from both the universities of Paris and Turin.

1871- Professor at the University of Turin, where he is appointed to the Chair of Higher Analysis in 1876.

## Faà di Bruno's later life

Return to Turin: Faà di Bruno comes in contact with Giovanni Bosco.
Giovanni Bosco: was ordained a Roman Catholic priest in 1841 in Turin and began to work there, helping boys looking for work in the city.
$\Rightarrow$ He provided boys with education, religious instruction, and recreation, and founded, with others, the Society of St Francis de Sales in 1859.

October 1876: Faà di Bruno is ordained a Roman Catholic priest in Rome.
$\Rightarrow$ He founds the religious order "Suore Minime di Nostra Signora del Suffragio" in order to direct and work for girls gathered in a house.
$\Rightarrow$ There, a number of mathematics books were published including one by Faà di Bruno himself on elliptic functions.

1898: The printing press was purchased by Peano for 407 lire, and he printed the Rivista di Matematica on it for several years.

1988: Faà di Bruno was declared a Blessed by John Paul II in St. Peter's Square in Rome, about 50 years after Giovanni Bosco's canonisation.

## Faà di Bruno's formula



## Faà di Bruno's formula (I)

Setting: For differentiable functions $f, g$ consider the composite function:

$$
f(g(\gamma))
$$

Problem: how to compute the derivative of order $k$ :

$$
f(g(\gamma))^{(k)}:=\frac{d^{k}}{d \gamma^{k}} f(g(\gamma))
$$

Leading example: $f(g(\gamma))=\exp (g(\gamma))$.
$k=1$ : Easy!

$$
f(g(\gamma))^{\prime}=f^{\prime}(g(\gamma)) g^{\prime}(\gamma)=\exp (g(\gamma)) g^{\prime}(\gamma)
$$

$k=2$ : Easy, but a bit annoying!

$$
f(g(\gamma))^{\prime \prime}=\left(\exp (g(\gamma)) g^{\prime}(\gamma)\right)^{\prime}=\exp (g(\gamma))\left(g^{\prime \prime}(\gamma)+g^{\prime}(\gamma)^{2}\right)
$$

$k=7$ : definitely too annoying, it's better to use our time in a different way:

$$
f(g(\gamma))^{(k)}=\ldots \ldots \ldots . . ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
$$

## Faà di Bruno's formula (II)

Proposition: Given differentiable functions $f$ and $g$, it follows for an arbitrary derivative of order $k$ :

$$
f(g(\gamma))^{(k)}=\sum \frac{n!}{n_{1}!n_{2}!\cdot . \cdot n_{k}!} f^{(n)}(g(\gamma)) \prod_{j=1}^{k}\left(\frac{g^{(j)}(\gamma)}{j!}\right)^{n_{j}}
$$

where $n=n_{1}+n_{2}+\ldots+n_{k}$ and the sum is over all non negative integers $n_{1}, . ., n_{k}$ such that $n_{1}+2 n_{2}+3 n_{3} \ldots+k n_{k}=k$

Check; $k=2$ : The only possible $n_{1}, n_{2}$ are $n_{1}, n_{2}=0,1$ and $n_{1}, n_{2}=2,0$ :

$$
f(g(\gamma))^{(2)}=f^{(1)}(g(\gamma)) g^{(2)}(\gamma)+f^{(2)}(g(\gamma))\left(g^{(1)}(\gamma)\right)^{2}
$$

For $f(x)=\exp (x)$, it follows:

$$
\exp (g(\gamma))^{(2)}=\exp (g(\gamma))\left(g^{(2)}(\gamma)+\left(g^{(1)}(\gamma)\right)^{2}\right)
$$

First miracle: Faà di Bruno formula works indeed!

## Why higher order derivatives?

Problem: for all $(x, \gamma)$ and for given functions $\mu(x, \gamma)$ and $\sigma(x, \gamma)$, we might want to find function $g(x, \gamma)$ solving a (differential) equation like:

$$
0=e^{\gamma g(x, \gamma)}+\mu(x, \gamma) g_{x}(x, \gamma)+\sigma(x, \gamma) g_{x x}(x, \gamma)=: H(x, \gamma, g(x, \gamma))
$$

Assumption: For $\gamma=0$ solution $g(x, 0)$ is known.
Power series approach: Write $H(x, \gamma, g)$ as a power series about $\gamma=0$ :

$$
H(x, \gamma, g)=H(x, 0, g)+\gamma H_{\gamma}(x, 0, g)+\frac{\gamma^{2}}{2} H_{\gamma \gamma}(x, 0, g)+\ldots
$$

and guess a solution of the form

$$
g(x, \gamma)=g(x, 0)+\gamma g_{\gamma}(x, 0)+\frac{\gamma^{2}}{2} g_{\gamma \gamma}(x, 0)+\ldots
$$

$\Rightarrow$ Collect all terms of the same power in $\gamma$ and solve term by term to determine $g_{\gamma}, g_{\gamma \gamma}, \ldots$ !

Key point: to apply this procedure we need to compute an arbitrary $\gamma$-derivative of $e^{g(\gamma, x)}$ !
$\Rightarrow$ Faà di Bruno's formula is perfect to achieve this goal!

## Merton problem



Robert C. Merton receiving his Prize from the hands of His Majesty the King.

## Merton problem (I)

Optimization problem: Given utility function $U$ of consumption $C$, where

$$
U(C)=\frac{C^{\gamma}-1}{\gamma}
$$

compute portfolio weights and consumption policy $\left\{\theta_{t}, C_{t}\right\}$ to solve

$$
J\left(X_{t}, W_{t}\right)=\sup _{\left\{\theta_{t}, C_{t}\right\}} E_{t}\left[\int_{t}^{\infty} e^{-\delta(s-t)} U\left(C_{s}\right) d s\right] \quad ; \quad \delta>0
$$

subjet to dynamic budget constraint for wealth process $\left\{W_{t}\right\}$ :

$$
\begin{aligned}
d W_{t} & =W_{t}\left[r\left(X_{t}\right)+\theta_{t}\left(\mu\left(X_{t}\right)-r\left(X_{t}\right)\right)-\frac{C_{t}}{W_{t}}\right] d t+W_{t} \theta_{t} \sigma\left(X_{t}\right) d Z_{t} \\
d X_{t} & =\mu_{X}\left(X_{t}\right) d t+\sigma_{X}\left(X_{t}\right) d Z_{t}^{X}
\end{aligned}
$$

where $r, \mu, \sigma, \mu_{X}, \sigma_{X}$ are given functions and $\left(Z, Z^{X}\right)$ is a bivariate Brownian motion process with correlation $\rho$.

## Merton problem (II)

Bellman equation: using the transformation

$$
J(X, W)=\frac{1}{\delta} \frac{\left(e^{g(X) W}\right)^{\gamma}-1}{\gamma}
$$

solving Merton problem is equivalent to solving the differential equation:

$$
\begin{aligned}
0= & r+\frac{1}{\gamma}\left((1-\gamma)\left(\frac{e^{\gamma g}}{\delta}\right)^{1 /(\gamma-1)}-\delta\right)+\mu_{X} g_{X} \\
& +\frac{1}{2} \frac{1}{1-\gamma}\left(\frac{\mu-r}{\sigma}+\gamma \rho \sigma_{X} g_{X}\right)^{2}+\frac{\sigma_{X}^{2}}{2}\left(g_{X X}+\gamma g_{X}^{2}\right) \\
= & H(\gamma, g)
\end{aligned}
$$

Remark: The solution for $\gamma=0$, i.e. $U(C)=\log C$, is known:

$$
C\left(W_{t}\right)=\delta W_{t} \quad, \quad \theta\left(X_{t}\right)=\frac{1}{1-\gamma} \frac{\mu\left(X_{t}\right)-r\left(X_{t}\right)}{\sigma\left(X_{t}\right)^{2}}
$$

## Merton problem and Faà di Bruno's formula

Starting point: following Ferretti and Trojani (2004), we can apply a power series approach to solve the Bellman equation:

$$
0=H(\gamma, g)
$$

Power series approach: Write $H(\gamma, g)$ as a power series about $\gamma=0$ :

$$
H(\gamma, g)=H(0, g)+\gamma H_{\gamma}(0, g)+\frac{\gamma^{2}}{2} H_{\gamma \gamma}(0, g)+\ldots
$$

and guess a solution of the form

$$
\begin{equation*}
g(x, \gamma)=g(x, 0)+\gamma g_{\gamma}(x, 0)+\frac{\gamma^{2}}{2} g_{\gamma \gamma}(x, 0)+\ldots \tag{1}
\end{equation*}
$$

$\Rightarrow$ Collect all terms of the same power in $\gamma$ and solve term by term to determine $g_{\gamma}, g_{\gamma \gamma}, \ldots$ !

Faà di Bruno's formula: it makes possible to write as a power series the exponential term in $H(\gamma, g)$ !

Second miracle: we can characterize completely any term in power series (1) and solve Merton's problem in full generality.

## Miracolous solutions: an example (I)

Setting: $r, \sigma$ are constant and

$$
\mu=r+\sigma X
$$

where $X$ follows a mean reverting Ornstein Uhlembeck process. That is,

$$
\mu_{X}=\lambda(\theta-X), \sigma_{X}=\xi \quad ; \quad \lambda, \xi>0, \theta \in \mathbb{R}
$$

$\Rightarrow$ The model allows for mean reverting risk premia $\mu-r$ !
Complete market setting: For the very special case $\rho= \pm 1$, closed form solutions are known (Wachter (2001)).
$\Rightarrow$ In the general incomplete market case $\rho \neq \pm 1$ no solution is known!
$\Rightarrow$ We provide solutions for the latter case using our power series approach!

## Miracolous solutions: an example (II)

Setting: To convince you that these are really miracolous solutions, just consider the simplest first order term in the power series for $g$ :

$$
g_{\gamma}(X)=\alpha_{0}+\alpha_{1} X_{2}+\alpha_{2} X_{2}^{2}+\alpha_{3} X_{2}^{3}+\alpha_{4} X_{2}^{4}
$$

where, for constants $\alpha_{0, i}, i=0,4$, dependent on the known solution for $\gamma=0$ :

$$
\begin{aligned}
\alpha_{4}= & \frac{\delta \alpha_{0,4}^{2}}{2(\delta+4 \lambda)} \\
\alpha_{3}= & \frac{1}{\delta+3 \lambda}\left(\alpha_{0,3} \alpha_{0,4} \delta+4 \alpha_{4} \lambda \vartheta\right) \\
\alpha_{2}= & \frac{1}{\delta+2 \lambda}\left[\frac{1}{2}+\frac{1}{2} \alpha_{0,3}^{2} \delta+\alpha_{0,0} \alpha_{0,4} \delta+2 \alpha_{0,4} \rho \sigma+2 \alpha_{0,4}^{2} \sigma^{2}+6 \alpha_{4} \sigma^{2}+3 \alpha_{3} \lambda \vartheta\right. \\
& \left.-\alpha_{0,4} \rho \log \delta\right]
\end{aligned}
$$

$$
\alpha_{1}=\frac{1}{\delta+\lambda}\left[\alpha_{0,0} \alpha_{0,3} \delta+\alpha_{0,3} \rho \sigma+2 \alpha_{0,3} \alpha_{0,4} \sigma^{2}+3 \alpha_{3} \sigma^{2}+2 \alpha_{2} \lambda \vartheta-\alpha_{0,3} \rho \log \delta\right]
$$

$$
\alpha_{0}=\frac{1}{\delta}\left[\frac{1}{2} \alpha_{0,0}^{2} \delta+\frac{1}{2} \alpha_{0,3}^{2} \sigma^{2}+\alpha_{2} \sigma^{2}+\alpha_{1} \lambda \vartheta-\alpha_{0,0} \rho \log \delta+\frac{1}{2} \delta(\log \delta)^{2}\right]
$$

## Miracolous solutions: illustration (I)



Figure 1: First, second and third order portfolio policies (dashed, dasheddotted and dotted curves, respectively) as functions of $X \in[-0.3,0.3]$ and for $\gamma=-4, \rho=-1$.

## Miracolous solutions: illustration (II)



Figure 2: First, second and third order portfolio policies (straight, dashed and dashed-dotted curves, respectively) as functions of $\rho \in[-1,0]$ and for $\gamma=-4$. All plots are for $X=0.3$.

## Summary

Summary: we could suggest at least two "miracles" by the blessed Francesco Faà di Bruno.
$\Rightarrow$ As you know, three miracles are necessary, in order to become a saint..........

