Discussion of "A small investor model for the limit order book and some applications" by Jörg Osterrieder

Peter H. Gruber

University of St. Gallen

NCCR Finrisk workshop, 2006-06-13

Peter H. Gruber (HSG)

Discussion Osterrieder

2006-06-13 1 / 12

INET AAPL Stats

refresh |

www.inetats.com |

back

Name Apple Comp Inc

Last Price 57.3000 Previous Close 59.2400

Market

NM

Net Change -1.9400

402,668

Shares Matched 6,603,448 Orders Entered Shares Entered 81,353,728

Percent Change

Open Orders 397

-3.27%

Last Match Time L 15:26:13.796

Last Order Time 15:26:14.663

BUY	ORDERS	SELL	ORDERS
SHARES	PRICE	SHARES	PRICE
1,329	57.3000	300	57.3100
4,129	57.2900	3,680	57.3200
4,130	57.2800	2,600	57.3300
3,100	57.2700	3,571	57.3400
1,300	57.2600	2,291	57.3500
1,200	57.2500	950	57.3600
750	57.2400	1,100	57.3700
340	57.2200	400	57.3800
200	57.2000	300	57.3900
171	57.1800	249	57.4300
133 Buy Orders		264 Sell Orders	

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

data.inetats.com |

help

Peter H. Gruber (HSG)

Discussion Osterrieder

A live order book II

As of: 15:24:12.833

Order Book Chart back refresh www.inetats.com data.inetats.com help

Average Price

(日) (同) (三) (三)

http://data.island.com

http://data.island.com

As of: 15:43:37.945

An order book entry consists of ... Type (buy/sell), limit price, size and time

This paper

- A general, dynamical model of the order book dynamics
- Derive statistical properties in different domains
- Applications:
 - Bid-ask spread
 - Execution probability

Why the order book?

- Because it contains a lot of information.
- Every order reveals an agent's preferences.
- In a perfect market, it is always optimal to reveal the true preferences.
- Limit orders are commitments \rightarrow high credibility.

Measures for the order book

Measures of the order book are cumulative numbers of orders.

Choose a suitable joint density f(T, R, S) for order arrival (and order cancellation).

Example (5.14): Orders arrive as a Poisson process at rate λ , size s = 1, order survival probability is exponential decay: $P_{surv}(t) = \exp\left(-\frac{t}{\mu}\right)$. \rightarrow some complicated expression

Example

Peter H. Gruber (HSG)

Discussion Osterrieder

2006-06-13 6 / 12

Results

Bid-Ask spead

- Can be reproduced from model.
- Liquidity effect (as expected).

Heavy-tailedness of order book

- Heavy tailed arrival price distributions survive in the order book.
- Power law for distribution of relative prices shown.

Execution probability

market order	limit order	
P=1	P < 1	
"bad" price	"better" price	
utility u _m	utility <i>u_l</i>	

• Optimal order submission schedule (type, size, limit, timing).

Very mathematical style.

- Simpler exposition possible? Not all symbols explained (and there are many!)
- No graphs.

Approximation for small investors. OK as a first step.

- Interesting to add large orders and impact on pice.
- (a) eat into the order book, (b) signaling effects.
- Applications:
 - Large funds (minimize impact)
 - Central banks (maximize impact)
 - Aim: order submission schedule

Do we really need the oder size s?

- Remember: $M_{\theta}([0, T] \times [0, p] \times [0, s])$
- Small investors ... s orders of size 1 just as good?

Order transmission delay and stochastic volatility.

- Volatility correctly reflected; increases order execution probability.
- What about prices change between limit decision and order placing?
- $\bullet~{\rm Large}~\sigma^2 \rightarrow$ larger fraction gets executed immediately.
- This implies: $\lambda_{agent} = c \Rightarrow \lambda_{exchange} \propto \sigma^2$
- Changed (truncated) distribution?
- Small effect? (See Fig.)

Order-placing delay

order book for AAPL, $\Delta t = 49s$

(日) (同) (三) (三)

Process for X_t explicitly modeled.

- The price process should be <u>result</u> of orders.
- Like to see:
 - endogenous X_t,
 - however <u>not</u> by explicitly modeling $f(\cdot)$,
 - but by starting from agents in a Lukas⁺ economy.
- Possible results
 - flat or non-real order book
 - "Puzzle"
 - Add (behavioral?) model elements

Economic intuition, empirics and calibration.

- Results depend on model of order arrival process $f(\cdot)$
 - How much of the answer is in the assumptions?
 - Leave $f(\cdot)$ flexible ightarrow very general results
 - Make assumptions on $f(\cdot)
 ightarrow$ possibly unrealistic results
- What does order arrival mean economically?
 - Someone places an order, given the circumstances ξ
 - Need to use $f(\cdot,\xi)$, with ξ including volatility
- Suggestion:
 - Use sufficiently flexible process for order arrival
 - 2 Calibrate using real world data
 - Is around (e.g. check for parameter instabilities ...)