Discussion of "VIX Dynamics with Stochastic Volatility of Volatility" by Andreas Kaeck and Carol Alexander

Peter H. Gruber*

*University of Lugano, Switzerland

MFA Annual Meeting - Chicago, March 3, 2011

In a nutshell

- Describe physical dynamics of VIX in reduced form. Try
 - Affine and non-affine one-factor models
 - Affine two-factor model
 - With and without jumps
- Perform specification analysis
- Discuss implications on risk management and VIX derivatives

Contribution:

- Use more data (20 years)
- Add stochastic volatility
- ▶ Add non-affine models ↔ MCMC framework
- ▶ Use posterior predictive p-values for specification analysis

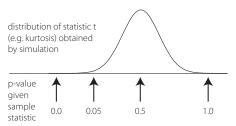
Related literature:

- Kaeck, Alexander (wp 2010). Stochastic volatility jump-diffusions for equity index dynamics.
- Psychoyios, Dotsis, Markellos (Rev Quant Fin Acc 2009). A jump diffusion model for VIX volatility options and futures.

Methods

Predictive p-values

- Draw parameter vector from posterior distribution (taking parameter uncertainty into account; independent draws)
- Simulate
- Calculate interesting statistics (moments, dispersion, extrema; almost all non-robust)
- ▶ **Compare** distribution of these statistics to observed value Good: $p \approx 0.5$ (i.e. model can reproduce observed statistics)



Results

Specification analysis

- Method of predictive p-values delivers valuable insights
- Modeling VIX returns (log model) beats VIX levels
- ▶ Non-affine models beat affine ones
- Jumps beat pure diffusive models
- ▶ Best: stochastic vol-of-VIX model

Scenario analysis

Crisis of 2008 within 99.9% percentile? Yes!

Derivatives

- ► Can we reproduce **average** term structure of VIX futures? Yes!
- But: variation in term structures and option prices cannot be reproduced

Praise

Paper

► A joy to read

Specification analysis

- Clear ranking of models
- Application of predictive p-values goes beyond pure model selection and provides valuable insights in the functioning and limits of each model

Scenario analysis

 Crisis scenario is beautiful illustration of different feasible regions of the models

Comments

Option pricing example

- Zero market price of risk debatable
- ▶ Level models: option prices driven by mean reversion (evidence?) Low VIX \rightarrow high option price; high VIX \rightarrow low option price
- ▶ OTM options capture mostly (bias in) kurtosis

Model	Call price	p-value of kurt
Level, b=0.5, expJ	0.00	0.997
Log, b=0, normJ	0.08	0.98
Level, b=2, expJ	0.03	0.90
Log, SVV, noJ	0.44	0.83
Log, SVV, normJ	0.43	0.79
log, b=1, expJ	0.55	0.52

- ▶ Represent prices as Black-Scholes implied volatilities?
- ▶ Show achievable ranges of prices/implied volatilities?

Simulation exercise (1)

Benefit of SV model is very indirect

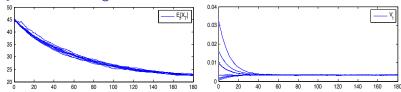
- Stochastic volatility allows to reduce jump intensity (possibly through leverage effect)
- ▶ But: ultra-fast mean reversion of V_t (10 days; $\kappa_v = 0.097$)
 - ightarrow cannot reproduce different term structures of VIX future
 - $\rightarrow \boldsymbol{could}$ reproduce different short-term option prices

Simulating the model

- SV-J model
- Point-estimates from paper
- $X_0 = 45\%$, vary V_0
- $V_0/\theta_v = \{0.5, 1.0, 3.0, 5.0\}$ (\approx observed range)

Simulation exercise (2)

V_0 cannot change VIX term structure



V_0 can change short-term option prices

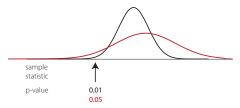
lacktriangle Example: european call au=30d and au=180d; $K/X_0=1.5$; $\mathbb{P}=\mathbb{Q}$

$V_0/ heta_{ m v}$	0.5	1.0	3.0	5.0	(paper)
$C(\cdot, V_0)_{\tau=30d}$					
$C(\cdot, V_0)_{\tau=180d}$	0.1609	0.1321	0.1525	0.1332	

- VIX-process is mean reverting → long option cheaper than short
- Most other option pricing problems: underlying is a martingale

Points that may need clarification:

Does the predictive p-value favor wide posterior distributions?



- Which distribution should we prefer?
- ► In the limit, an **uninformed** posterior distribution would have the "perfect" p-value of 0.5 **regardless of the parameter value**

Special role of the VIX as volatility gauge

- ▶ Is there such a thing as a "VIX process"?
- ▶ Joint analysis of SP500 and VIX?
 - SP500 options contain volatility risk premium
 - VIX options contain a vol-of-vol risk premium
 - How are they related?

