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Abstract

I present a framework for the e�cient and stable estimation of matrix a�ne

jump di↵usion (MAJD) volatility models using transform methods. Due to its

matrix nature, there are several computational challenges for evaluating the

Laplace transform of MAJD models: (i) it contains a multivalued complex loga-

rithm, causing a potentially large bias in option prices, (ii) it is computationally

more costly by two orders of magnitude compared to similar scalar models, and

(iii) it contains a numerically unstable matrix inversion. To solve these prob-

lems, I formulate the matrix rotation count algorithm for the complex logarithm

and I propose a volatility-independent approximation of the integration limits

for the Cosine Fourier inversion. The latter forms the basis of a fast estima-

tion scheme via a separation of the state- and parameter-dependent parts of the

Laplace transform. The results can also be applied to scalar multivariate a�ne

models, as they are nested in the MAJD class.

⇤ peter.gruber@usi.ch



1 Introduction

The a�ne jump di↵usion (MAJD) process, introduced in Leippold and Trojani (2008),

represents a promising class of multivariate stochastic volatility models. It allows for

mutually-exciting risk factors, unspanned skewness e↵ects and a realistic modeling of

variance risk, all without compromising on tractability. So far, the literature has fo-

cused on the theoretical properties of these processes (Muhle-Karb, Pfa↵el and Stelzer

(2010), Mayerhofer (2014)), on applications in option pricing (da Fonseca, Grasselli

and Tebaldi (2008), Gruber, Tebaldi and Trojani (2010)), and on approximations of

the resulting volatility smile (Benabid, Bensusan and El Karoui (2009)). Numeri-

cal aspects of estimation and evaluation of these models in the context of transform

methods have not yet been considered. This paper aims at filling this gap.

In doing so, I build on a vast literature on the numerical aspects of option pric-

ing. The use of Fourier integrals for option pricing has been pioneered by Chen and

Scott (1992), Heston (1993) and Bates (1996). Carr and Madan (1999) introduce the

Fast Fourier Transform (FFT) method to finance, which allows for the pricing of an

entire option chain with a fixed number (typically 212) of evaluations of the Laplace

transform. Fang and Oosterlee (2008) improve on the work of Carr and Madan by

choosing a new set of basis functions and by introducing an e�cient truncation of the

probability density function. Their Fourier-Cosine method (COS) is typically 20 times

faster than the FFT, without compromising precision.

Numerical problems related to the implementation of transform methods, especially

with a complex logarithm, were first emphasized by Schöbel and Zhu (1999). Kahl and

Jäckel (2005) take this topic up and formulate the rotation count algorithm for scalar

stochastic volatility models. Lord and Kahl (2010) build on their insights, but advocate

a re-formulation of the Laplace transform to avoid rather than remedy the problem

of the complex logarithm. Cont and Hamida (2005) use evolutionary algorithms to

estimate a low-dimensional volatility model.

The matrix nature of the MAJD class introduces several new challenges in the

fields of computational e�ciency, numerical stability, parameter identification and

optimization:

First, matrix models are by definition high-dimensional models. In particular, the

large number of state components increases the computational complexity of jointly

estimating model parameters and the latent state. The smallest MAJD model, which

is based on a symmetric 2 ⇥ 2 matrix and serves as an illustration throughout this

paper, has three state components and 16 risk-neutral parameters.

Second, the Laplace transform has several matrix components, some of which dou-

ble the dimensionality of the problem. At its core, it contains a complex matrix
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exponential of double dimension, i.e. of a 4⇥4 matrix in the smallest case. Matrix ex-

ponentials have a computational cost which is roughly two orders of magnitude larger

than scalar exponentials.

Third, the Laplace transform contains a complex matrix logarithm, which is a

multivalued function. Using the principal branch of the complex logarithm, as im-

plemented by default in nearly every programming language, causes potentially large

biases in the option price.

Fourth, the Laplace transform contains an inverse matrix, which is numerically

unstable if the matrix is close to rank deficiency. This is the case for large arguments

of the Laplace transform, i. e. for long horizons and/or if the integration limits are set

conservatively (i. e. very widely).

Fifth, little is ex-ante known about the role of individual state components. We

know for example that the state in a one-factor volatility model basically corresponds

to short term variance, which makes the square of the short term implied volatility

a natural candidate as starting value in a convex optimization. The high dimension

of MAJD models makes it possible that di↵erent state components pick up distinct

second-order phenomena.1 It is therefore very di�cult to deduce starting values for

the state from economic considerations. The same applies to parameter estimation.

Sixth, although speed is nowadays rarely an issue in estimating an option pricing

model, MAJD models are an exception. On one side, the dimensionality of the problem

requires an unusually high number of evaluations of the Laplace transform, on the

other side, these evaluations are unusually costly. Pricing one option with standard

numerical integration takes about 9 seconds. Estimating the benchmark 2⇥ 2 model

on 7 years of weekly data using nonlinear least squares requires the calculation of some

1 billion option prices and would take 285 years.2

This paper proposes several independent speed improvements that total to a factor

of 106, reducing the estimation time to a few hours and thus rendering the model

estimation feasible. The biggest contribution to these improvements comes from the

matrix rotation count algorithm, with a factor of about 70. It enables the use of the

FFT method, which prices an entire chain of about 20 options in less than 3 seconds.

An additional factor of almost 20 is achieved by using the COS method, which requires

fewer evaluations of the Laplace transform. A further factor of 50 obtains from a novel

evaluation scheme of the likelihood function, that separates state- and parameter-

dependent parts of the Laplace transform. This evaluation scheme also improves the

1 See Gruber et al. (2010) for a detailed analysis of the role of the state components in the benchmark
case.

2 See Table 4 for the specification of the reference data set, and Table 5 for the benchmark model.
The reference computer system is a 2.8 GHz Intel Xeon 540 running MATLAB 2014b on one core.
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scaling of the computational cost with respect to the size of the data set, especially

the length of the time series. It requires a delicate choice of the integration bounds.

I present an approximation that limits the error in implied volatility to 10�3 implied

volatility percentage points (i.e. less than 0.1 implied volatility basis points). A final

factor of 20 obtains from parallelization.

Beyond speed improvements, this paper identifies a numerical instability of the

Laplace transform for large values of the imaginary part of its argument. This requires

a precise choice of the integration bounds and truncation parameters for the FFT and

COS series.

I furthermore present two useful reparametrizations of the state and parameter

matrices, which facilitate the constrained optimization with respect to admissibility

conditions of the stochastic process.

The rest of the paper is organized as follows. Section 2 gives a brief overview of

the MAJD process and the estimation strategies under consideration. Section 3 dis-

cusses issues arising from the complex logarithm and introduces the matrix rotation

count algorithm. Section 4 presents the fast evaluation scheme of the likelihood func-

tion based on the separation of state- and parameter-dependent parts of the Laplace

transform and an approximation of the integration limits. Section 5 discusses the nu-

merical instability of a matrix inverse in the Laplace transform. Section 6 discusses

problems of optimization and proposes alternative matrix representations. Section

7 concludes. The appendix specifies the 2 ⇥ 2 matrix process which is used as an

illustration throughout this paper.

2 The MAJD process for option pricing

2.1 The process

Variance states follow the a�ne di↵usion process:3

dX
t

= [�Q0Q+MX
t

+X
t

M 0]dt+
p

X
t

dB
t

Q+Q0dB0
t

p

X
t

, (1)

where the state matrix X
t

is an n⇥n symmetric, positive definite matrix, the param-

eters M and Q are n⇥n matrices and B is an n⇥n standard Brownian motion under

the risk-neutral martingale measure Q. X is the Wishart process introduced by Bru

(1991). The process is positive definite (semidefinite) if � > n + 1 (� > n � 1), such

3 Leippold and Trojani allow for jumps in variance and denote the Laplace transform of the respective
jump size distribution ⇥X . Jumps in variance are omitted here, as their presence has no impact on
the results presented in this paper.
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that the di↵usive variance tr(X
t

) cannot reach (cross) the zero bound.

Remark. The symmetric state matrix X
t

has n(n+1)/2 distinct components. The

n diagonal elements X
ii

are always positive (non-negative), if the process is positive

definite (positive semidefinite). The n(n�1)/2 out-of diagonal elements X
ij

with i 6= j

can take positive or negative values within the bounds of the (semi)definiteness prop-

erty. When M or Q are not diagonal matrices, all state components are dynamically

interconnected. With both M and Q diagonal, the process collapses to n independent

variance processes of the Heston-type. This model therefore naturally nests multivari-

ate stochastic volatility models with independent factors such as Heston (1993), Bates

(2000) or Christo↵ersen, Heston and Jacobs (2009).

Given the matrix state dynamics (1), the returns process under the risk neutral

probability measure Q is specified as

dS
t

S
t�

= (r � q � �
t

k)dt+ tr(
p

X
t

dZ
t

) + kdN
t

, (2)

where r and q denote interest rate and dividend yield, tr(·) denotes the trace of a

matrix and Z
t

= B
t

R+W
t

p
I
n

�RR0 . Matrix W is another n⇥n standard Brownian

motion, independent of B, and the correlation between variance and return shocks R

is an n⇥ n matrix such that I
n

�RR0 is positive semi-definite.

Jumps in returns follow a compound Poisson process kdN
t

with jump intensity

�
t

= �
0

+ tr(⇤X
t

), where �
0

� 0 and ⇤ is a positive definite n ⇥ n matrix. The

distribution of the return jump size k is specified by its Laplace transform ⇥Y .

2.2 Estimation strategies and computational cost

Estimating a latent factor model such as the MAJD class usually encompasses the

joint estimation of the parameters and the latent state. Before we can estimate the

parameter matrices, we need to rewrite them in form of a vector ✓, as all major

optimization algorithms work only for vectors, see Section 6.2. We can formulate the

optimization problem in a maximum likelihood context as:

(b✓, { bX
t

}) = argmax
✓,{Xt}

L(✓, {X
t

};O) (3)

where L(·) denotes the likelihood function, {X
t

} the whole time series of X
t

and O
stands for the panel of option data. This is a high-dimensional problem, which does

not lend itself well to optimization. For a time series of length T , we need to estimate
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n
✓

+ T · n(n+ 1)/2 quantities.4

In order to break the dimensionality of the joint problem, I opt for a nested esti-

mation:5

Inner problem: { bX
t

|✓} = argmax
{Xt}

L(✓, {X
t

};O) (4)

Outer problem: b✓ = argmax
✓

L(✓, { bX
t

|✓};O) (5)

i.e. for each parameter vector ✓ I find the optimal time series of the state bX
t

(inner

optimization) and the I optimize over ✓, evaluating the likelihood function at bX
t

|✓.
The point estimator for the parameter vector ✓ can be written as

b✓ = argmax
✓

L
⇣

✓, argmax
{Xt}

L(✓, {X
t

};O);O
⌘

. (6)

This reduces the dimension of the optimization problem, as we now have one

problem of dimension n
✓

and T problems of dimension n(n + 1)/2. The form of

the likelihood function (5) and the number of option prices required for one evaluation

depends on the estimation strategy:

Nonlinear least squares (NLLS). This optimization approach follows Bates (2000)

and Huang and Wu (2004) and minimizes the (weighted) relative pricing errors. The

first (inner) step computes the optimal state conditional on the parameter vector. This

is defined independently for each trading day t

bX
t

|✓ = argmin
Xt

Nt
X

i=1

h⇣

bO
it

(✓, X
t

)�O
it

⌘

/F
t

i

2

, (7)

where O
it

and bO
it

(✓;X
t

) denote the observed and model-implied prices of option i,

with 1  i  N
t

. We can now define the vector e
t

of relative option pricing errors at

the conditionally optimal state with elements e
i,t

=
�

bO
it

(✓, bX
t

|✓)�O
it

�

/F
t

. Note that

N
t

, the length of vector e
t

, varies from trading day to trading day.

Our point estimate for parameter ✓ is given by the following pseudo Maximum

4 In the benchmark case of the minimal 2⇥ 2 model, n
✓

= 16 and n(n+1)/2 = 3. In the benchmark
data set, T = 359, thus the overall dimension is 1093.

5 In the context of NLLS estimation, Huang and Wu (2004) successfully iterate between an opti-
mization over the state given a parameter vector and an optimization over the parameters, given
the (previous) state estimate. This approach does not produce stable results for the MAJD class
and is furthermore not compatible with stochastic optimization algorithms. Furthermore, extended
Kalman Filter (EKF) estimation is only conceivable as nested optimization.
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Likelihood estimator:

b✓ = argmax
✓

� 1

2

T

X

t=1

⇣

ln |⌦
t

|+ e0
t

⌦�1

t

e
t

⌘

. (8)

where the N
t

⇥N
t

matrix ⌦
t

is the conditional covariance matrix of these errors which

is obtained from calculating group-specific error covariances in three maturity and

three moneyness groups, similar to Bates (2000).

In this optimization strategy, the outer optimization problem has a dimension of

n
✓

= 16. The T inner optimizations of dimension n(n + 1)/2 are independent and

can therefore be parallelized. We furthermore note that ✓ does not change during

the inner optimization step, a fact that will be used in Section 4. A drawback of the

nested NLLS approach is that MXopt

NLLS

, the number of optimization steps for (each)

inner optimization, is quite large.6 The total number of option prices that need to be

calculated for one evaluation of the NLLS-likelihood function (8) is

ML
NLLS

= T n
⌧

n
k

MXopt

NLLS

(9)

where n
⌧

denotes the average number of maturities per trading day and n
k

the average

number of strikes per option chain. In the benchmark example, ML
NLLS

is roughly 2

million.7

Extended Kalman Filter (EKF). This optimization approach follows, among

others, Carr and Wu (2007) and Carr and Wu (2009). The inner optimization is

replaced by an extended Kalman Filter, which produces bX
t

|✓. Apart from obvious

advantages such as consistency of the estimate with the assumed form of the process

and the possibility to estimate the physical dynamics of the latent state, the EKF

strategy usually requires the calculation of fewer option prices: one evaluation of the

option price plus n(n + 1)/2 + 1 evaluations to numerically calculate the Jacobian

matrix, i. e. MJ

EKF

= 2 + n(n+ 1)/2.

The point estimate for the parameter vector ✓ is now

b✓ = argmax
✓

�
T

X

t=1

e0
t

e
t

. (10)

where we define e
t

analogously to the NLLS case. The total number of option prices

6 For the 2⇥ 2 benchmark model, MXopt

NLLS

is typically about 40.
7 For the benchmark data set T = 359, n

⌧

= 6.09 and n
k

=23.
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that need to be calculated for one evaluation of the likelihood function (10) is

ML
EKF

= T n
⌧

n
k

MJ

EKF

(11)

which is ca. 200 000 for the benchmark example, i.e. ten times fewer than the NLLS

approach. We note that during one evaluation of the filter, ✓ does not change, a fact

that we will use in Section 4. A drawback of the EKF approach is that, unlike the

NLLS case, the calculation of the state cannot be parallelized, as the estimate of X
t

depends on bX
t�1

|✓.

2.3 The Laplace Transform

In the canonical form, the Laplace transform of the log-return process is written as

(see Leippold and Trojani (2008))8:

 
�,t

(⌧) = exp{�Y
t

+ Tr [A(⌧ ; �)X
t

] + B(⌧ ; �)} (12)

Where the n ⇥ n matrix A(⌧) and the scalar B(⌧) are solutions to the following

Riccati di↵erential equations:

@A(⌧)

@⌧
= A(⌧)M +M 0A(⌧) + 2�RQA(⌧) + 2A(⌧)Q0QA(⌧) +

+
�(� � 1)

2
Id

n

+ ⇤
h

⇥Y (�)� 1 + �
�

⇥Y (1)� 1
�

i

(13)

@B(⌧)

@⌧
= tr[⌦⌦0A(⌧)] + (� � 1)r + �

0

h

⇥Y (�)� 1 + �
�

⇥Y (1)� 1
�

i

(14)

where A(0) = B(0) = 0. Note: tr[⌦⌦0A] = tr[A⌦⌦0] = tr[AQ0Q�].

8 We follow the notation of Leippold and Trojani (2008), where X denotes the variance factors and
Y the returns. Jumps in the volatility factors are omitted, as they do not impact the results in this
paper.
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Equations (13) and (14) have the following solutions:

A(⌧) = C�1

22

(⌧)C
21

(⌧) (15)

B(⌧) =

Z

⌧

0

tr[⌦⌦0A(s)] + �r + �
0

h

⇥Y (�)� 1 + �
�

⇥Y (1)� 1
�

i

ds

= ⌧
n

(� � 1)r + �
0

h

⇥Y (�)� 1 + �
�

⇥Y (1)� 1
�

io

+

Z

⌧

0

tr[⌦⌦0A(s)]ds (16)

= ⌧
n

(� � 1)r + �
0

⇥

⇥Y (�)� 1� �⇥Y (1)
⇤

o

��
2
tr[log(C

22

(⌧)) + ⌧(M 0 + �R0Q)] (17)

with the 2n⇥ 2n matrix

 

C
11

(⌧) C
12

(⌧)

C
21

(⌧) C
22

(⌧)

!

= exp

"

⌧

 

M + �Q0R �2Q0Q

C
0

(�) �(M 0 + �R0Q)

!#

:= exp(E) (18)

and the n⇥ n matrix C
0

:

C
0

(�) =
�(� � 1)

2
Id

n

+ ⇤
h

⇥Y (�)� 1 + �
�

⇥Y (1)� 1
�

i

. (19)

The univariate Laplace transform of the return jump size distribution is for the

lognormal case

⇥Y

LN

(�) = (1 + k)� exp

✓

�(� � 1)
�2

2

◆

(20)

and for the double exponential case

⇥Y

DX

(�) =
�+��

�+�� + �(�+ � ��)� �2
. (21)

Option prices obtain via the transform methods, i.e. the FFT of Carr and Madan

(1999), or the COS method of Fang and Oosterlee (2008) or the quadrature method

of Attari (2004).

3 The Matrix Rotation Count Algorithm

3.1 Multivalued complex logarithms

Ambiguity is a rare phenomenon in computational finance, but one such example is the

complex logarithm embedded in the Laplace transform of most a�ne volatility models,
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Figure 1: Imaginary part of B(⌧, �
k

) in the benchmark model as a function of k in the
COS inversion. Full lines depict the result for a direct evaluation of (17), dashed lines
the result when using (16) or applying the rotation count algorithm. Left panel: ⌧ =
9 months, right panel: ⌧ = 2 years. The values for �

k

are given in Table 1.

such as the models of Heston (1993), Bates (2000), Du�e, Pan and Singleton (2000)

or Leippold and Trojani (2008). To illustrate the problem, consider a complex scalar

z = a+ib with exponential ez = ea ·eib. The complex exponential eib = cos(b)+i sin(b)

is a periodic function of b, therefore for any integer k

eib = ei(b+k 2⇡) .

If we observe only ez, we cannot know the value of k in z = a + i(b + k 2⇡). The

inverse function log(ez) is multivalued and it is a convention to limit b to (�⇡, ⇡].
This interval is called the “principal branch”. If the imaginary part of a continuous

function b passes (2k + 1)⇡, the logarithm “rotates”, resulting in a discontinuity of

the principal branch of the imaginary part of the logarithm. As Lord and Kahl (2010)

observe, this may be “leading to completely wrong option prices if options are priced

by Fourier inversion.” Figure 4 provides a quantitative illustration for magnitude of

the problem.

The characteristic function in formulation (17) involves a matrix logarithm in

B(�, ⌧), and indeed we observe a discontinuity of B as function of �, as illustrated in

Figure 1. All discontinuities of B are jumps by ⇡. They seem to follow no distinct

⌧ �
0

�
1

�
199

1 month 0 1.06 212.4
3 months 0 0.70 139.8
9 months 0 0.41 80.7

⌧ �
0

�
1

�
199

12 months 0 0.35 69.9
24 months 0 0.25 49.4
60 months 0 0.16 31.3

Table 1: Typical values for �
k

(⌧)
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Figure 2: Complex eigenvalues of the matrix C
22

of the benchmark model as a function
of �

k

in the COS method for ⌧ = 1yr. Red dots denote transitions from the second
to the third quadrant, where the discontinuity in the principal branch of the complex
logarithm occurs. Left: first eigenvalue, right: second eigenvalue. The dashed lines
illustrate the fact that each plot is composed of four log-log plots, omitting very small
positive and negative values along both axes.

pattern except that there are more jumps if the duration ⌧ is longer. If we apply the

(computationally much slower) formulation (16), no jumps occur.

In order to better understand the phenomenon, we rewrite the matrix logarithm

in (17) in terms of a PDP decomposition.

PDP�1 = C
22

log(C
22

) = P logDP�1 (22)

Note that the matrix D is a diagonal matrix containing the eigenvalues of C
22

,

which means that the matrix logarithm of D is simply the diagonal matrix of the

logarithms of the diagonal elements: (log(D)
ii

= log(D
ii

). Figure 2 illustrates the two

eigenvalues of the 2 ⇥ 2 benchmark model each of these eigenvalues as a function of

�
k

. Both eigenvalues start in the first quadrant and rotate counter-clockwise. When

an eigenvalue passes from the second to the third quadrant, a “rotation” occurs and

the imaginary part of the logarithm jumps. The fact that the two eigenvalues rotate

independently is the reason why we did not see a regular pattern in Figure 1.
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3.2 The algorithm

The only practical solution is to count the number of rotations, preferably separately

for each eigenvalue, and to correct for it. This is what the following algorithm does:

Algorithm 1 (Matrix Rotation Count Algorithm). The following algorithm solves

the problem of the discontinuous logarithm of C
22

in (17) and produces a continuous

B-function. This algorithm must be run separately for every ⌧ .

1. Initialize the number of rotations at r
1,i

:= 0 with 1  i  n.

2. For every �
k

, with 1  k  N do

3. Calculate C
22

(⌧, �
k

)

4. Perform a PDP decomposition P
k

D
k

P�1

k

= C
22

(⌧, �
k

), where D
k

is a

diagonal matrix containing the eigenvalues of C
22

.

5. For every eigenvalue D
k,ii

with 1  i  n do

6. Calculate the complex logarithm d
k,i

= log(D
k,ii

).

7. Produce the sawtooth-like function m
k,i

= =(d
k,i

) mod ⇡.

8. Verify whether a rotation has occurred. Increase r
k,i

by 1 for every

positive rotation, i.e. when m
k,i

�m
k�1,i

> ⇡/2 and decreased by

1 for every negative rotation, i.e. when m
k,i

�m
k�1,i

< �⇡/2.
9. The correct branch of the imaginary part of log(D

k,ii

) obtains as

=(d
k,i

) := m
k,i

+ ⇡ · r
k,i

. The real part <(d
k,i

) is not changed.

We obtain the diagonal matrix Dlog

k,ii

= <(d
k,i

) + i (m
k,i

+ ⇡r
k,i

) =

log(D
k

).

enddo

10. Use log(C
22

(⌧, �
k

)) = PDlog

k

P�1 to calculate B(⌧, �
k

) in (17).

enddo

where k = 1 . . . N counts the arguments of the Laplace transform �
k

and i =

1 . . . n counts the eigenvalues of C
22

. The symbols <(x) and =(x) denote the real and
imaginary parts of x. See Figure 3 for an illustration.

Remark 1. The rotations of the individual eigenvalues as illustrated in Figure 2 are

counted in step 8 by calcualting m
k,i

� m
k�1,i

. The algorithm therefore requires the

sequential evaluation of the characteristic function for increasing values of �, starting

form �
1

= 0. Thus it is only suitable for inversion methods that sequentially evaluate

the characteristic function on a uniform grid like FFT, COS or Attari’s method and a

12



0 50 100 150 200 250 300
-4

-3

-2

-1

0

1

2

3

4

0 50 100 150 200 250 300
-4

-3

-2

-1

0

1

2

3

4

0 50 100 150 200 250 300

0

2

4

6

8

10

12

0 50 100 150 200 250 300

0

2

4

6

8

10

12

0 50 100 150 200 250 300

0

2

4

6

8

10

12

0 50 100 150 200 250 300

0

2

4

6

8

10

12

Figure 3: Illustration of the Matrix Rotation Count (MRC) algorithm. Top: sawtooth-
function from step 6. Middle: step function from step 7. Bottom: continuous eigen-
values from step 8. Left: first eigenvalue, right: second eigenvalue. Illustration for the
benchmark model and ⌧ = 1yr.

straight forward application to adaptive algorithms such as Gauss-Lobatto integration

is not possible.

Remark 2. Some authors, e.g. Benabid et al. (2009) reformulate (17) using the

identity log(det(C
22

)) = tr(log(C
22

)). In this formulation, knowledge of the individual

eigenvalues D
k,ii

is lost, which makes it more di�cult to count the individual rotations.

Remark 3. If the gradient of the imaginary part of the eigenvalues of C
22

(�) is too

steep, the algorithm will fail, as it would identify a rotation at every k. This can be

avoided by choosing a more sophisticated identification of the rotations.

Algorithm 2 (Modified Matrix Rotation Count Algorithm). This algorithm can be

used if the =(C
22

(�
k

))�=(C
22

(�
k�1

)) is typically larger than ⇡.
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Figure 4: Typical corrections generated by the Matrix Rotation Count algorithm for
call options in COS-inversions, as a function of the Black-Scholes delta. The values are
shown here are for calls, for puts simply set �

put

= 1��
call

. Left panel: dollar pricing
correction in percent of the price of the underlying. Right panel: implied volatility
correction in volatility percentage points. Dotted lines denote a maturity of 0.75 years,
full lines 1 year and dashed lines 1.25 years.

1–7. Perform steps 1� 7 like in algorithm 1.

8. Verify whether a rotation has occurred. The value of r
k,i

is increased

(decreased) by 1 for every positive (negative) rotation, i.e. when (m
k,i

�
m

k�1,i

)� (m
k�1,i

�m
k�2,i

) > (<)⇡/2 and (m
k,i+1

�m
k,i

)� (m
k,i

�m
k1,i

) <

(>)⇡/2.

9–10. Perform steps 9� 10 like in algorithm 1.

The actual counting of rotations in this algorithm cannot be avoided. Lord and

Kahl (2010) propose an algorithm for the scalar case which allows for the direct cal-

culation of the number of rotations for �
k

without knowledge of �
k�1

. In the matrix

case, this is not possible, as the following example for the 2⇥ 2 case shows. We start

from (18) which states C = exp(E(⌧, �)). We can still calculate PDP�1 = ⌧E(�)

and anticipate any rotation in C = P exp(D)P�1, but the argument of the matrix

logarithm is now

C
22

=

 

P

i

exp(D
ii

)P̄
i3

P
3i

P

i

exp(D
ii

)P̄
i4

P
3i

P

i

exp(D
ii

)P̄
i3

P
4i

P

i

exp(D
ii

)P̄
i4

P
4i

!

with P̄ = P�1. The elements of C
22

are now weighted sums of the four eigenvalues of

E(⌧, �). Thus the eigenvalues of C
22

may pass a 2⇡-threshold even when no eigenvalue

of E(⌧, �) does and the number of rotations for a single value of � cannot be known.
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3.3 Impact of the Matrix Rotation Count Algorithm

Choosing the principal branch of the complex matrix logarithm causes a bias in the

option price which is potentially large. For a horizon of one year, the maximal dollar

error is 0.3% of the price of the underlying, which makes it already impossible to

calculate an implied volatility for a call with � = 0.05 (viz. a put with � = �0.95).

A numerical analysis reveals that in general, the bias is larger for longer maturities,

for higher volatilities and for extreme structures of the state matrix, with the largest

error obtained for singular state matrices.9 The error is present in all Fourier inversion

methods. Figure 4 provides an illustration of the magnitude of the correction for the

COS method as function of the Black-Scholes delta. The sine-shaped form of the

error derives from the central term in the COS inversion formula (36), which reads

Re
�

�
Levy

�

k⇡

b�a

�

exp
�

ik⇡ y�a

b�a

� 

. The bias in B(⌧, �) causes a shift of the imaginary part

of �
Levy

(·), which is multiplied by the periodic function exp(ik⇡ y�a

b�a

) = cos(ik⇡ y�a

b�a

) +

i sin(ik⇡ y�a

b�a

).

After the application of the rotation count algorithm to the analytical expression

(17), the results for B(⌧, �) are identical to the ones obtained through numerical

integration in (16) up to precision of the numerical integration.

4 A Fast Evaluation Scheme for the Likelihood Func-

tion in the COS Inversion

4.1 Execution Speed of the Likelihood Function

With modern computer hardware, speed is normally not the issue in estimating option

pricing models. Estimating the MAJD model is an exception. The dimension of

the model necessitates a nested likelihood function. Its complexity requires the use

stochastic optimization, with at least 10 000 evaluations10 of the likelihood function

(6).Furthermore, the matrix exponentials and logarithms in its characteristic function

are computationally more costly by a factor of 30 to 40 compared to their scalar

counterparts.

After the 70-fold speed gain a↵orded by the Matrix Rotation Count Algorithm and

9 In the benchmark example, the state matrix is close to singular in 3.5% of the sample, with X11
X22

and |X12|
X22

both smaller than 0.02. As an extreme example, the filtered state for March 7, 2007, is

X = 0.0158

✓
1.7 ⇥ 10�6 �1.3 ⇥ 10�3

�1.3 ⇥ 10�3 1

◆
.

10For example, a minimal optimization setup using di↵erential evolution has a population size of 100
and an iteration count of 100 generations.
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COS FFT
time fraction time fraction

(1) Parameter-dependent part of  144.1ms 98.8% 2854ms 99.4%
Evaluation of exp(E) in (18) 77.9ms 53.0% 1560ms 54.3%
Matrix Rotation Count Algorithm 46.1ms 31.4% 860ms 30.0%

(2) State-dependent part of  0.8ms 0.5% 5ms 0.2%
(3) Fourier inversion 1.1ms 0.7% 11ms 0.4%

Table 2: Breakdown of the execution time11 for the pricing of one option chain.

the 20-fold speed gain from the use of the COS method of Fang and Oosterlee (2008),

pricing one option chain takes 0.147 s in the benchmark case. This seems fast, but one

evaluation of the likelihood function still takes 3.5 hrs (0.4 hrs) in the NLLS (EKF)

scheme. Estimating the model still takes almost 4 (0.4) years.

In order to identify additional speed improvements, I profile the pricing of one

option chain. There are three major program blocks: (1) Evaluation of the parameter-

dependent part of the Laplace transform, i.e. of A(⌧) and B(⌧) in (15) viz. (17),

including evaluation of the matrix exponential in (18) and the application of the Matrix

Rotation Count Algorithm. (2) Evaluation of the state-dependent part of the Laplace

transform (12) and (3) the Fourier Inversion for the option prices. The results for the

2⇥2 benchmark case are given in Table 2. About 99% of the total computational cost

is caused by the parameter-dependent part of the Laplace transform. The evaluation

of the matrix exponential (18) alone takes half of the execution time. It is therefore

evident that any further improvement requires a reduction of the number of evaluations

of A(⌧) and B(⌧).

Reconsider the Levy-part of the Laplace transform (35):

 
Levy

(�; ⌧, X
t

) = exp {Tr [A(⌧, �)X
t

] + B(⌧, �)}
Only expression X

t

is time-varying. The costly expressions A(⌧, �) and B(⌧, �)

depend on ⌧ and � only. We can therefore envisage an evaluation scheme of the

likelihood function where we re-use any value of A(⌧, �), B(⌧, �) that has already been

calculated. The cost of such a scheme depends on the number of di↵erent combinations

of ⌧ and �.

11Omitting program overhead. See the appendix for the specification of the reference data set, the
benchmark model and the reference computer system. One option chain contains n

k

= 23 strikes.
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4.2 The Evaluation Scheme

The first step towards a fast evaluation scheme is to reduce the number of di↵erent

durations. Assuming a maximum duration of 1 year, this number can be trimmed to

just 52 if we use weekly data sampled on a fixed day of the week, e.g. Wednesday.12

The shortest duration will be 3 days (Wednesday until expiry on Saturday), the next

one 10 days and so on. Two limitations have to be accepted: if there is no data for

a given Wednesday, a whole trading week has to be omitted,13 as replacing missing

Wednesdays by the preceding Tuesdays potentially doubles the number of di↵erent

durations in the sample. Quarterly options also have to be discarded, as they usually

do not expire on a Saturday.

The second step is more delicate: in the COS expansion, �
k

depends on the inte-

gration limits [a, b], which in turn depend on the second and fourth cumulants of the

risk neutral distribution, see (37) and (38):

�
k

=
k

b
t

� a
t

with � a
t

= b
t

= L

r


2,t

(✓, ⌧, X
t

) +
q


4,t

(✓, ⌧, X
t

)

Thus � = �(✓, ⌧, X
t

), which makes it usually impossible to re-use a previously

calculated A(·), B(·). We have to find a “one size fits all” approximation for a and

b as a function of ⌧ alone. We start from the observation that, for su�ciently long

durations, 
2

can be approximated by the variance level V
t

times the duration:


2,t

⇡ ⌧ V
t

Next, define 
2

= ⌧ V , with V the sample average of the short term, at the

money variance. (In the benchmark example, V = 0.2.) To accommodate the kur-

tosis created by jumps at short horizons, we correct ⌧ for durations below 2 months:

⌧ c = ⌧ + 0.3(2/12� ⌧). We can now approximate the integration limits as function of

⌧ exclusively

�a(⌧) = b(⌧) = L ·p
2

= L ·
p

⌧ c V (23)

This gives rise to the following algorithm:

Algorithm 3 (Fast Evaluation Scheme of the Likelihood Function). Using approxi-

mation (23), the likelihood function (8) can be evaluated for a given parameter set ✓

12Further reducing the frequency to monthly data reduces the number of possible durations only to
26, due to the fact that some months have four and some have five Wednesdays.

13For the S&P 500, there are four such occasions in the seven-year period 1996-2002: christmas 1996
and 2002, 9/11/2001 and 7/4/2001.
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and time series {X
t

} of the state.

1. Make a list of all ⌧
i

in the dataset O.

2. For every ⌧
i

, with 1  i  n
⌧

do

3. Calculate vector �
i

(⌧
i

) = k

b(⌧i)�a(⌧i)
based on (23)

4. Calculate A(⌧
i

, �
i

), B(⌧
i

, �
i

) using Algorithm 1, save in list L
1

enddo

4. For every trading day t with 1  t  T do

5. For every duration ⌧
j

on day t with 1  j  n
⌧,t

do

6. Retrieve elements A(⌧
j

), B(⌧
j

) from list L
1

7. Calculate  
Levy

= exp(tr(A(⌧
j

)X
t

+B(⌧
j

))

8. Perform the Fourier inversion

enddo

enddo

Remark 1. To accommodate the NLLS or EKF estimation strategy, simply aug-

ment steps 5.� 8. As the parameter-dependent part of the Laplace transform is eval-

uated in steps 1. � 3., the additional cost of the nested optimization is negligible. In

the case of the NLLS scheme, the objective function of the inner optimization obtains

from evaluating steps 5. � 8. The state bX
t

is estimated from an optimization over

this objective function, separately day-by-day. In the case of the Kalman filter, the

Jacobian matrix is calculated via numeric di↵erentiation. For this, steps 7. � 8. are

repeated with X
t

+ hE
j

, where E
j

is a matrix that is one at the location of state

component j and zero otherwise.

Remark 2. Table 3 presents a detailed timing analysis of the speedup enabled by

Algorithm 3. Beyond a vast cut in execution time, the scaling behavior of the likelihood

function with respect to the dimension of the process n is improved. For the Kalman

Filter approach, the number of evaluations of the parameter-dependent part of the

Laplace transform is reduced from ML
EKF

= T n
⌧

(2 + n(n+ 1)/2) to 52. Already in

the 2⇥ 2 benchmark case, this is a reduction by a factor of 168. The improvement for

the NLLS approach is even larger, as the cost for the nested (inner) optimization is

now greatly reduced. As a consequence, the di↵erence in computational cost between

NLLS and Kalman Filter shrinks from 10:1 to 2:1.
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Quadrature FFT COS
Pricing one option chain 207 s 2.88 s 0.147 s
One evaluation of the likelihood function
NLLS standard scheme 4954 hrs 69.5 hrs 3.5 hrs
NLLS advanced scheme n/a 562 s 138 s
EKF standard scheme 495 hrs 7 hrs 0.4 hrs
EKF advanced scheme n/a 191 s 26 s
Marginal cost for adding . . .
One maturity 207 s 2.87 s 0.146 s
One state ⇥ maturity 207 s 4.76ms 0.71ms
One strike 9 s 1.25µs 35µs

Table 3: Execution time for one evaluation of the likelihood function and marginal
computational costs for additional observations. FFT and COS methods use formula-
tion (17) for B(⌧) and apply the matrix rotation count algorithm.

1 2 4 6 8 10 12 24 36 48 60

10-6

10-5

10-4

10-3

Figure 5: Error analysis of the fast evaluation scheme for the benchmark 2⇥ 2 model.
The black (dashed) line depict the maximum (average) absolute implied volatility error
of the fast evaluation scheme for the COS inversion, in terms of volatility percentage
points. Volatility ranges from 10% to 63%, strikes are in the range 0.05  |�|  0.95,
and all admissible state structures are scanned using the polar coordinate representa-
tion (29).
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Figure 6: Loss of precision in calculating log C
22

(�) for the COS inversion. The graph
depicts the number of significant digits (out of 16) lost when calculating log C

22

as
a function of k in the COS inversion. Left: ⌧ = 1yr, integration limits (23). Right:
⌧ = 5yr, sub-optimal integration limits a(⌧), b(⌧) with ⌧ = 1 yr.

4.3 Error analysis

Fixed integration limits introduce two types of error: An analytical error from the

truncation of tails of the risk-neutral distribution at high volatilities and a numerical

error as too wide integration limits are selected for low volatilities. To assess the

quality of the approximation, I perform a detailed study of the pricing behavior for

the benchmark model. Using the polar coordinate representation (29), I create state

matrices with variances between 0.01 and 0.4 (volatilities from 10% to 63%) and all

admissible structures.14 I test the pricing for strikes in the range 0.05  |�|  0.95

(puts and calls) and durations from 1 month to 5 years.

The average and the maximal absolute approximation error in terms of implied

volatility as a function of ⌧ is quantified in Figure 5. It is always below 10�3 volatil-

ity percentage points, i.e. below one tenth of a volatility basis point, and averages

below one-thousandth of a volatility basis point. Given that the best model in Gru-

ber et al. (2010) has an rms model error of 69 volatility basis points, the numerical

approximation error is negligible.

5 Loss of precision in tr(log(C22))

A numerical instability in the calculation of tr(log(C
22

)) arises, if the Laplace transform

is evaluated for unsuitable, i.e. usually too large, values of �. The problem is best

analyzed for the 2⇥ 2 case using the identity log(det(C
22

)) = tr(log(C
22

)), though the

14All combinations V
t

= (0.01, 0.02, 0.05, 0.1, 0.2, 0.4), ⇠ = (0, 0.25, 0.5) and ↵1 = (0,⇡/8, . . .⇡)
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Figure 7: Loss of precision in calculating log C
22

(�) for the FFT inversion. The graph
depicts the number of significant digits lost (out of 16) when calculating log C

22

as a
function of k in the FFT inversion for ⌧ = 1 yr. Left: upper integration limit a = 100.
Right: upper integration limit a = 1024, the original value of Carr and Madan (1999).

e↵ect is the same when evaluating similar expressions. The determinant of C
22

det(C
22

) = C11

22

C22

22

� C12

22

C21

22

(24)

contains a subtraction. For large values of �, the two terms in (24) have very similar

values, which makes the following theorem relevant:

Theorem 1 (Loss of precision theorem). In a subtraction x � y with 0 < y < x, a

number of

q ⇡ �log
10

(1� y

x
)

significant digits are lost.

Therefore, too large values of � must be avoided in the evaluation of the Laplace

transform. Figure 6 shows the number of significant digits (out of 16 for double

precision numerics), for the COS inversion. The left panel is evaluated at a duration

of 1 year, using the optimal integration limits (23). Up to six digits are lost for

N < 250, which a↵ords a su�cient precision for option prices.15 However, we observe

the phenomenon that adding more terms to the Fourier expansion can lead to worse

results: for N > 600, some elements of the COS expansion loose all significant digits,

resulting in a logarithm of zero and option prices that cannot be calculated. Theorem

1 also highlights the importance of the correct choice of integration limits. If we

perform the COS inversion for a duration of 5 years using the integration limits (23)

for ⌧ = 1 yr, the argument � of the Laplace transform becomes too large (see Table

1), and all significant digits are lost for N > 80, see right panel of Figure 6.

15Numerical experiments show that a similar number of digits is lost for durations from 1 month to
5 years, when using the optimal integration limits.
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Figure 8: Example for the non-convexity of the objective function: Likelihood of the
benchmark model as function of Q

11

, expressed in multiples of the estimated value
bQ
11

. All other parameters are set to their point estimates.

Worse results obtain for the FFT method, where the upper limit of the integration

a = N⌘ (in the original notation of Carr and Madan (1999)) needs to be comparatively

high in order to counter the e↵ects of the oscillating summands. Carr and Madan

(1999) propose N = 4096 and ⌘ = 0.25, i.e. a = 1024. Figure 7 shows that for

⌧ = 1 yr, an upper limit of 1024 leads to a loss of all significant digits for N > 600.

Numerical experiments show that a reasonable choice of a for the FFT is 100/⌧ leading

to a loss of up to 8 digits, which is acceptable.

6 Numerical problems in the Model Estimation

6.1 Stochastic Optimization

The estimation of the MAJD model is formulated in (6) as a nested optimization

problem:
b✓ = argmax

✓

L
⇣

✓, argmax
{Xt}

L(✓, {X
t

};O);O
⌘

.

Following the convention in the optimization literature, I implement the estimator

of ✓̂ by minimizing the negative likelihood. There is no theoretical evidence that this

optimization problem is convex, on the contrary. As a simple counter-example, Figure

8 depicts the likelihood of the benchmark model as a function of Q
11

, expressed in

multiples of the estimated value bQ
11

. As expected, there is a maximum at 1, and

the likelihood decreases rapidly for larger and smaller arguments. There is, however,

a strong local maximum around �0.55 bQ
11

. The presence of this local maximum

precludes the use of convex optimization algorithms.
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Futhermore, little is ex ante known about the role and interpretation of the param-

eter matrices, especially of their out-of-diagonal components. Most parameters may

change sign as illustrated in Figure 8. This makes it di�cult to derive useful starting

values for classical optimization algorithms from economic considerations.

Both problems – lack of good starting values and non-convexity – are elegantly

solved by using population-based stochastic optimization algorithms such as di↵er-

ential evolution of Storn and Price (1997). This non-convex optimization algorithm

only requires an interval of plausible starting values for each element of the parameter

vector. The elevated computational cost of this algorithm – Storn and Price propose a

population size of five to ten times the number of parameters and 100 generations – is

easily accommodated thanks to the speed increases a↵orded by the Matrix Rotation

Count algorithm and the Fast Evaluation Scheme of the likelihood function. Moreover,

di↵erential evolution can be parallelized up to the order of the population size.

To increase the precision of the point estimate, the result of the stochastic opti-

mization is used as starting value for a simplex optimization using the algorithm of

Nelder and Mead (1965), assuming local convexity around the optimum.

6.2 Matrix Representations and Optimization Constraints

The standard convention in the optimization literature is optimization over a parame-

ter vector. As the MAJD model feature several parameter matrices and a state matrix,

we have to encode the argument of the objective function as a vector. In the uncon-

strained case, this can be done in a straight forward manner using the vectorization

function vec() viz. the half-vectorization function vech() for symmetric matrices. The

parameter vector is then ✓ = {vec(M), vec(R), vec(Q), �,�
0

, vec(⇤), ✓
⇠

; vech(X
t

)}
where ✓

⇠

denotes the parameters of the return jump distribution.

However, considerations of identification16 and admissibility of the stochastic pro-

cess require several constraints. These are:

• Positive definiteness and symmetry of the state X
t

• Negative definiteness and lower triangularity of M

• Positive definiteness of ⇤

• Existence of
p
Id

n

�R0R

Some of these constraints are tedious to implement in cartesian coordinates. For

example, positive definiteness of the 2⇥2 state matrix requires three constraints: X
11

>

16See (Gruber et al. 2010) for a detailed discussion of the model identification.
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0; X
22

> 0 and X
11

X
22

> (X
21

)2. In higher dimensions the number of constraints

increases with n+ n(n� 1)/2.

I therefore propose the following matrix reparametrizations that allow for an easier

implementation of constraints and support a better understanding of the volatility

structure. The first reparametrization transforms a constrained optimization into an

unconstrained one and the second transforms some unbounded variables to bounded

ones.

6.2.1 Choleski decomposition

The Choleski decomposition of a symmetric, positive definite matrix X is the unique

triangular matrix D such that

X = DD0 (25)

Conversely, the product DD0 of any matrix D will be a positive definite, symmetric

matrix. The Choleski decomposition is therefore a useful representation of the state

matrix. It allows for an unconstrained optimization over vech(D) using (25) to recover

X.

6.2.2 Eigendecomposition

A more general decomposition is the eigendecomposition or PDP -decomposition. Any

square matrix A with linearly independent eigenvectors can be written as

A = PDP�1 (26)

whereD is a diagonal matrix of the eigenvalues of A and P is a matrix whos column

vectors are the normalized eigenvectors of A.

The PDP decomposition makes it straight forward to implement definiteness con-

straints on non-symmetric matrices by constraining the sign of the diagonal elements

of D.

6.2.3 Polar coordinate representation of the state

The eigendecomposition can be taken further by representing the eigenvectors in terms

of polar coordinates. An n-dimensional normalized eigenvector can be expressed in

polar coordinates using n�1 angles. For example, a general 2⇥2 matrix A = PDP�1
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can be expressed as

A =

 

sin↵
1

sin↵
2

cos↵
1

cos↵
2

! 

D
11

0

0 D
22

! 

sin↵
1

sin↵
2

cos↵
1

cos↵
2

!�1

(27)

Expression (29) can be used to understand the structure of A and to implement

structural and definiteness constraints. It is simplified for symmetric matrices like the

state X
t

, as cos↵
1

= sin↵
2

implies ↵
2

= ↵
1

+ ⇡/2. Using the symbol

⇠ :=
D

11

tr(X
t

)
=

D
11

D
11

+D
22

(28)

we define the following mapping the 2⇥ 2 state matrix X
t

(X
11,t

, X
12,t

, X
22,t

) ! (V
t

, ⇠
t

,↵
1,t

) (29)

where V := tr(X) is the (di↵usive) variance level. The remaining two variables

describing the volatility structure are bounded: 0  ⇠  1 and 0  ↵  ⇡. This

boundedness of ⇠,↵ makes it possible to scan the space of admissible state matrices

for a given volatility level.

7 Conclusion

The useful properties of matrix a�ne jump di↵usion (MAJD) models, introduced by

Leippold and Trojani (2008) come at the price that this class of models is notoriously

di�cult to estimate. The matrix nature of the state space is numerically unstable

and renders the evaluation of the Laplace transform computationally more costly by

two orders of magnitude compared to similar scalar models. The numerical methods

presented in this paper are essential for rendering the estimation and evaluation of

MAJD models feasible.

I first show that MAJD models require costly nested and stochastic optimization. I

then reduce the computational cost in several steps. First I formulate the Matrix Rota-

tion Count algorithm, which makes the use of transform methods possible, resulting in

a 1400-fold speed increase. Next, I propose a fast evaluation scheme of the likelihood

function based on an approximation of the integration limits in the COS inversion

method. This evaluation scheme vastly reduces the number of required evaluations of

the Laplace transform, resulting in a 50- to 500-fold speed increase, depending on the

estimation procedure. Combined with moderate use of parallelization in the di↵eren-

tial evolution optimization scheme, I achieve a reduction in the estimation time of a

factor of approximately 106.
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I also highlight a numerical instability of the Laplace transform, that requires a de-

liberate choice of integration bounds, especially in the FFT method of Carr and Madan

(1999). This instability has the counter-intuitive consequence that fewer elements of

the Fourier sum result in a more precise result.

I finally propose a reformulation of the Matrix state space in terms of polar coor-

dinates that allows for an elegant implementation of identification and admissibility

constraints for the matrix optimization.

A The COS method

The Cosine-Fast Fourier inversion (COS) method, introduced by Fang and Oosterlee

(2008), is an e�cient algorithm to approximate option prices given the Laplace trans-

form. It reduces the number of required evaluations from 212 for a standard FFT of

Carr and Madan (1999) to typically 200. A second useful property of the Cosine-FFT

method is the fact that it does not involve an interpolation between strikes, which

allows for a more precise calculation of skewness measures like S
t

= lim
T!t

@IV (T,St)

@K

.

The COS algorithm approximates a (density) function f(⌧ ; y) on a finite support

[a, b] via a truncated cosine-series expansion:

f(y) =
1
X

k=0

0A
k

cos

✓

k⇡
y � a

b� a

◆

⇡
N�1

X

k=0

0A
k
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✓

k⇡
y � a

b� a

◆

(30)

with

A
k

=
2

b� a

Z

b

a

f(y) cos

✓

k⇡
y � a

b� a

◆

dy
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b� a
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f(y) exp
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�

✓

k⇡
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◆

exp

✓

�i
k⇡a

b� a

◆�

(31)

The price O(y) of a contingent claim with payo↵ v
t

(y) and time to maturity ⌧ = T � t
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is:

O(y) = e�r⌧

Z 1

�1
v(y)f(y|X

t

)dy (32)

⇡ e�r⌧

Z

b

a

v(y)
N�1

X

k=0

0A
k

cos

✓
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2
(b� a)A

k

Z

b

a

2

b� a
v(y) cos

✓

k⇡
y � a

b� a

◆

(33)

where y = ln(S
T

/K) and we assume that f(y) ⇡ 0 outside [a, b].

For a plain vanilla call viz. put with payo↵s vc(y) = [K(ey � 1)]+ and vp(y) =

[K(1� ey)]+ the integral U
k

:= 1

K

R

b

a

2

b�a

v(y, T ) cos
�
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This leaves us with

O(y) = e�r⌧K

N�1

X

k=0

01

2
(b� a)A

k

U
k

(34)

This expression is not very e�cient: We would have to recalculate A
k

for every

strike, as it depends on y = ln(S
T

/K) via the characteristic function. We therefore

need to separate the contract-dependent part of the Laplace transform from the model-

dependent part. In our case, this Laplace transform (12) can be separated as

 (�; ⌧, X
t

) = exp (�y + tr[A(�; ⌧)X
t

] + B(�; ⌧)) = exp(�y) 
Levy

(�) (35)

with the according characteristic function �(u) = exp(iuy)�
Levy

(u). We now insert
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(31) into (34) to obtain the COS pricing formula
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(36)

Note that the evaluation of  
Levy

(u) and U
k

is independent of y and therefore need

not be repeated for di↵erent strikes. This expression can be evaluated with arbitrary

precision for any strike K without further interpolation.

The choice of the integration limits a, b is governed by a tradeo↵ between two errors:

too tight limits introduce an analytical error from cutting o↵ the tails of the distribu-

tion. Too wide limits cause a numerical error as the elements of the Fourier expansion

are not employed e�ciently. Fang and Oosterlee (2008) propose as integration limits

[a, b] =




1

� L
q


2

+
p

4

, 
1

+ L
q


2

+
p

4

�

(37)

with 
i

denoting cumulant i of the risk-neutral distribution and the scaling factor L

chosen to be 10. All cumulants of the returns distribution and therefore the integration

limits depend on the parameter vector ✓, the duration ⌧ and on the state X
t

.

The values of �
k

also depend on a, b and are

�
k

=
k

b(✓, ⌧, X
t

)� a(✓, ⌧, X
t

)
, 0  k  N � 1. (38)
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B Additional Tables

Panel A: Summary statistics of the data

In-sample Out-of sample Total
Time frame 1996-2002 2003-01/2013 1996-01/2013
Sampling frequency weekly
Trading days T 359 524 883
Number of observations 37’499 85’237 122’736
Average time to maturity (days) 141.5 124.9 130.0
Average moneyness (S/K) 0.99 0.98 0.99

Panel B: Number of observations by duration and delta

⌧ < 30 30 < ⌧ < 75 75 < ⌧ < 180 180 < ⌧ all
|�| < 0.2 1’761 4’647 3’679 3’858 13’945

0.2 < |�| < 0.4 2’576 7’460 6’369 6’769 2’3174
0.4 < |�| < 0.6 2’575 8’258 7’303 7’586 25’722
0.6 < |�| < 0.8 3’479 10’808 9’399 10’446 34’132
0.8 < |�| 2’981 8’651 6’947 7’184 25’763
all 13’372 39’824 33’697 35’843 122’736

Table 4: Main characteristics of our S&P500 option panel. We use out-of the money
calls and puts.
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Panel A: Di↵usion parameters

SV20 SV30 SV31 SV J20 SV J30 SV J31
M11 -0.3121 -0.0844 -1.0716 -0.3242 -0.1231 -0.0079

( 0.0063) ( 0.0020) ( 0.0185) ( 0.0067) ( 0.0023) ( 0.0002)

M22 -5.0719 -5.4283 -4.9213 -4.4564 -4.2041 -2.6808

( 0.1040) ( 0.1254) ( 0.0489) ( 0.0895) ( 0.0582) ( 0.0261)

M33 -1.4410 -0.5517

( 0.0307) ( 0.0104)

M21 14.3050 1.0265

( 0.2173) ( 0.0120)

Q11 0.2370 0.1957 0.0556 0.0903 0.0742 0.0698

( 0.0024) ( 0.0026) ( 0.0006) ( 0.0015) ( 0.0010) ( 0.0009)

Q22 0.4209 0.4498 0.5256 0.4204 0.2853 0.2924

( 0.0057) ( 0.0062) ( 0.0033) ( 0.0054) ( 0.0026) ( 0.0024)

Q33 0.0718 0.0738

( 0.0019) ( 0.0016)

Q12 -0.1440 -0.0770

( 0.0021) ( 0.0012)

R11 -1.0000 -1.0000 -0.0431 -1.0000 -0.9997 -0.2970

( 0.0131) ( 0.0134) ( 0.0008) ( 0.0227) ( 0.0189) ( 0.0036)

R22 -0.5348 -1.0000 -0.6405 -0.3823 -0.7111 -0.4057

( 0.0087) ( 0.0192) ( 0.0055) ( 0.0069) ( 0.0117) ( 0.0048)

R33 0.9633 -0.1178

( 0.0255) ( 0.0026)

R12 -0.7672 -0.8708

( 0.0110) ( 0.0121)

�11 1.0000 1.0031 1.0000 1.0006 1.0064 1.0012

( 0.0160) ( 0.0169) ( 0.0118) ( 0.0191) ( 0.0180) ( 0.0116)

�22 1.0000 1.0007 1.0000 1.0042

( 0.0187) ( 0.0219) ( 0.0197) ( 0.0153)

�33 1.0162 1.0146

( 0.0235) ( 0.0187)

M

⇤
11 -1.4051 -1.2204 -0.6378 -0.7395 -0.8289 -0.5467

( 0.0266) ( 0.0298) ( 0.0091) ( 0.0172) ( 0.0134) ( 0.0083)

M

⇤
22 -1.8593 -2.2558 -2.7528 -1.9462 -1.2661 -2.6808

( 0.0401) ( 0.0584) ( 0.0435) ( 0.0477) ( 0.0221) ( 0.0334)

M

⇤
33 -0.4869 -0.5539

( 0.0116) ( 0.0093)

M

⇤
21 1.9200 0.3982

( 0.0284) ( 0.0051)

�

⇤
11 1.0000 1.0017 1.0000 1.0006 1.0064 1.0012

( 0.0203) ( 0.0216) ( 0.0162) ( 0.0200) ( 0.0190) ( 0.0124)

�

⇤
22 1.0000 1.0046 1.0000 1.0042

( 0.0201) ( 0.0199) ( 0.0251) ( 0.0232)

�

⇤
33 1.0693 1.0146

( 0.0316) ( 0.0208)

Panel B: Jump parameters

SV J20 SV J30 SV J31
�0 0.0000 0.0003 0.0000

( 0.0003) ( 0.0002) ( 0.0002)

⇤11 43.8971 57.3248 25.6671

( 0.9240) ( 0.9276) ( 0.3193)

⇤22 1.0566 11.9429 15.9795

( 0.0265) ( 0.1899) ( 0.1933)

⇤33 0.0454

( 0.0008)

⇤12 40.4278

( 0.6332)

¯

k -0.1500 -0.1500

( 0.0030) ( 0.0019)

� 0.1500 0.1500

( 0.0027) ( 0.0020)

�

�
7.1518

( 0.0372)

�

+
58.3547

( 0.7690)

�

⇤
⇤ 0.3230

( 0.0553)

Table 5: In-sample (1996/01-2002/12) parameter estimates and standard errors. Panel
A: di↵usion parameters. Panel B: jump parameters. For consistency and for brevity,
all parameter values are reported using a notation based on matrix AJD, i.e., by
considering Bates- and Heston-type models as nested diagonal matrix AJD models.
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Kahl, Christian, and Peter Jäckel (2005) ‘Not-so-complex logarithms in the heston

model.’ Wilmott pp. 94–103

Leippold, Markus, and Fabio Trojani (2008) ‘Asset pricing with matrix jump di↵u-

sions.’ SSRN eLibrary

Lord, Roger, and Christian Kahl (2010) ‘Complex logarithms in heston-like models.’

Mathematical Finance 20(4), 671–694

Mayerhofer, Eberhard (2014) ‘Wishart processes and wishart distributios: An a�ne

process point of view.’ Lecture Notes

Muhle-Karb, Johannes, Oliver Pfa↵el, and Robert Stelzer (2010) ‘Option pricing in

multivariate stochastic volatility models of ou type.’ Working paper

Nelder, J.A., and R. Mead (1965) ‘A simplex method for function minimization.’ The

Computer Journal 7, 308–313
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