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Robust GMM Tests for Structural Breaks∗

Abstract

We propose a class of new robust GMM tests for endogenous structural breaks. The tests are based
on supremum, average and exponential functionals derived from robust GMM estimators with bounded
influence function. We study the theoretical local robustness properties of the new tests and show that
they imply a uniformly bounded asymptotic sensitivity of size and power under general local deviations
from a reference model. We then analyze the finite sample performance of the new robust tests in some
Monte Carlo simulations, and compare it with that of classical GMM tests for structural breaks. In
large samples, we find that the performance of classical asymptotic GMM tests can be quite unstable
already under slight departures from some given reference distribution. In particular, the loss in power
can be substantial in some models. Robust asymptotic tests for structural breaks yield important power
improvements already under slight local departures from the reference model. This holds both in exactly
identified and overidentified model settings. In small samples, bootstrapped versions of both the classical
and the robust GMM tests provide a very accurate and very stable empirical size also for quite small
sample sizes. However, bootstrapped robust GMM tests are found to provide again a higher finite sample
efficiency.
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1 Introduction

We propose a class of new Generalized Method of Moments (GMM, Hansen (1982)) tests for

endogenous structural breaks that ensure a uniformly bounded asymptotic sensitivity of level and

power under general local departures from a reference model.

GMM based test statistics defining tests for structural breaks are typically obtained as the

supremum, the average or some related functional of sequences of quadratic GMM statistics, each

being asymptotically chi-square distributed under the null of no break1 (see e.g. Andrews and

Fair (1988), Ghysels and Hall (1990), Hansen (1992), Andrews (1993), Andrews and Ploberger

(1994), Ghysels, Guay and Hall (1997)). Such GMM functionals are evaluated at some GMM

model parameter estimates, conditionally on a given break date. A general GMM statistical

functional (as for instance a GMM estimator or the level/power of a GMM test) has a bounded

asymptotic sensitivity under local model perturbations if and only if it is based on a GMM model

with a bounded orthogonality function. Moreover, GMM statistics with unbounded asymptotic

sensitivity can be robustified by applying a weighted orthogonality function that bounds the

influence of general local departures from a given reference model (see Ronchetti and Trojani

(2001)). This defines locally robust GMM (RGMM) estimation and testing procedures of simple

parametric hypotheses in a fairly general GMM setting. In this paper, we propose a class of

RGMM tests for structural breaks, which are defined as functionals of sequences of quadratic

RGMM statistics based on a bounded orthogonality function.

The need for robust statistical procedures in estimation and testing has been stressed by many

authors and is now widely recognized; see for instance, Hampel (1974), Koenker and Bassett

(1978), Huber (1981), Peracchi (1990, 1991), Heritier and Ronchetti (1994), Krishnakumar and

Ronchetti (1997), Ronchetti and Trojani (2001), Genton and Ronchetti (2003). From a general

viewpoint, the goal of robust testing procedures is to construct test statistics that maintain a

1 Asymptotic critical values for GMM tests of endogeneous structural breaks are derived by the Functional
Central Limit Theorem and have typically to be computed by simulation; see for instance Andrews (1993) and
Andrews (2003). Analytical approximations have been proposed in Hansen (1997).
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uniformly satisfactory level and power behavior under general local distributional departures from

some given reference model. This is achieved by working with smooth test functionals that are

asymptotically stable under departures from the given reference point. In particular, in the GMM

setting, a necessary asymptotic robustness/stability requirement for a GMM test based on an

asymptotically chi-square distributed statistic is a bounded influence function (Hampel (1974)) of

the GMM estimator defining the statistic. Therefore, we define a new class of tests for breaks using

sequences of RGMM statistics with bounded influence function. A bounded influence function of

a GMM test statistic is equivalent to the boundedness of the given orthogonality function. This is

why RGMM statistics can be obtained by truncating appropriately the unbounded orthogonality

function of a nonrobust GMM model setting.

We study the theoretical properties of our robust testing procedures for structural breaks

and analyze their empirical performance in some Monte Carlo experiments of a few GMM model

settings. To our knowledge, this issue has been so far largely unexplored in the literature. For

the estimation problem, Fiteni (2002) derived the asymptotic properties of a robust break date

estimator defined through the supremum functional over a sequence of robustified loss functions.

These results apply to a standard linear regression model setting. We propose a class of general

RGMM tests for breaks that apply to linear and nonlinear model settings.

We first show theoretically that RGMM tests for breaks imply a uniformly bounded asymptotic

sensitivity of level and power under general local deviations from a reference model. This ensures

a uniform quality of the asymptotic approximation to the finite sample distribution of a RGMM

statistic over a relevant neighborhood of slightly different model distributions. We then compare

via Monte Carlo simulation the performance of GMM and RGMM tests for breaks, using both

standard asymptotic critical values and bootstrapped versions of the tests.

In large samples, we find that the performance of classical asymptotic GMM tests can be quite

unstable already under slight departures from some given reference distribution. In particular,

the power under departure from conditional normality can be quite low in some models. Robust
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asymptotic tests for structural breaks yield important power improvements already under slight

local departures from the reference model. This holds both in exactly identified and overidentified

model settings.

In small samples, bootstrapped versions of both the classical and the robust GMM tests pro-

vide a very accurate and very stable empirical size also for quite small sample sizes. However,

bootstrapped robust GMM tests are found to provide again a higher finite sample power.

The remaining of the paper is organized as follows. Section 2 reviews GMM tests for structural

breaks. Section 3 introduces robust GMM tests for structural breaks and studies formally their

local stability properties in neighborhoods of a reference model. Section 4 analyzes by Monte

Carlo simulations the empirical properties of the new robust tests in linear and nonlinear GMM

testing settings, while Section 5 concludes and gives suggestions for further developments.

2 GMM tests for structural breaks

We briefly review GMM tests for structural breaks - by focusing on Andrews (1993) setting -

and write the relevant statistics as functionals on a suitable set of probability distributions. This

formalism will allow us to analyze in Section 3 the asymptotic local stability properties of GMM

tests for structural breaks. We first discuss in Section 2.1 the different hypotheses of structural

change, and then introduce GMM estimators in Section 2.2. In Section 2.3 we define the GMM

test statistics for structural breaks which are relevant for our exposition.

In the following we adopt the symbol =⇒ to denote weak convergence in the sense of Pollard

(1984, pp. 64-66) for sequences of random elements of a space of bounded Euclidean valued cadlag

functions on Π ⊂ [0, 1], equipped by the supremum norm topology and by the corresponding

Borel sigma algebra. The symbol→d denotes convergence in distribution, ∇ denotes the gradient

operator, B ¡Rk¢ is the Borel sigma algebra on Rk, k·k is the Euclidean norm.
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2.1 Hypotheses of structural changes

We consider a parametric model indexed by parameters (βt, δ0) ∈ Θ = B × ∆ ⊂ Rp × Rq, for

t = 1, 2, ... and test the null hypothesis of parameter stability:

H0 : βt = β0 for all t ≥ 1 and some β0 ∈ B ⊂ Rp . (1)

Several alternative hypotheses may be of interest in the present setting. The simple one time

change alternative with known change point2 π ∈ Π ⊂ (0, 1) is given by:

H1T (π) : βt =


β1 (π) for t = 1, .., Tπ

β2 (π) for t = Tπ + 1, .., T

, (2)

for some constant vectors β1 (π), β2 (π) ∈ B. A natural alternative where the change point

π ∈ Π ⊂ (0, 1) is unknown is:

HA (Π) =
[
π∈Π

H1T (π) .

In this case one tests for the presence of a break in the known interval Π. Finally, when applying

tests for structural breaks as general diagnostic tools, a natural alternative may be

H1 : βs 6= βt for some s, t ≥ 1 .

Although this hypothesis is more general than ∪Π⊂(0,1)HA (Π) the robust GMM tests for structural

breaks considered in this paper have power also against H1.

2.2 GMM estimators

Let W = {Wt : t ≥ 1} be a stochastic process with values in W ⊂ Rk, defined on a measurable

space (Ω,F), and let m : Rk × Θ → Rυ be an orthogonality function. A GMM estimator eθ =µeβ0
,eδ0¶0 is the asymptotic functional solution of a quadratic minimization problem:

eθ(P ) = arg inf
θ∈Θ

Q (P, θ) ,

2 For technical reasons Π is assumed to be a closed set.
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where P is a probability measure on (Ω,F) and

Q (P, θ) =

Ã
lim
T→∞

1

T

TX
t=1

EP [m (Wt, θ)]

!0

Ω (P )

Ã
lim
T→∞

1

T

TX
t=1

EP [m (Wt, θ)]

!
, (3)

for some positive definite deterministic υ × υ matrix Ω = Ω (P ) that can depend on P .

In the following it will be convenient to work with the finite dimensional distributions Pt of

Wt, defined by Pt (A) := P (Wt ∈ A), for any A ∈ B ¡Rk¢ and t ≥ 1. Defining PT =
1
T

TX
t=1

Pt,

we ensure existence of a limit P∞ for the sequence
©
PT : T ≥ 1

ª
by means of the following

assumption.

Assumption 1 There exists a probability measure P∞ on
¡
Rk,B ¡Rk¢¢ such that P∞ is the weak

limit of
©
PT : T ≥ 1

ª
: PT → P∞, weakly as T →∞.

If the functional Q 7→ EQ [m (W,β, δ)] is weakly continuous3 for any (β, δ) ∈ Θ, then

lim
T→∞

1

T

TX
t=1

EP [m (Wt, β, δ)] = EP∞ [m (W,β, δ)] .

In addition, let us assume that matrix Ω is a functional of P∞, Ω = Ω(P∞). Then the GMM

estimator itself can be written as a functional of P∞ :

eθ(P∞) = arg inf
θ∈Θ

EP∞ [m (W, θ)]
0
Ω(P∞)EP∞ [m (W, θ)] , (4)

for any suitable P∞. If the GMM model is correctly specified and identified under P , i.e. if

EP∞ [m (W,θ)] = 0 , (5)

for a unique θ ∈ Θ, then the solution of (5) and the GMM estimator (4) coincide. More generally,

(5) can have several solutions or no solution under P . In this case, only the solution of the

minimization problem in (4) defines the asymptotic functional structure of eθ.
To define the finite sample GMM estimator associated with a sampleWT := {Wt : 1 ≤ t ≤ T}

let PWT :=
1
T

PT
t=1 δWt be the empirical distribution ofWT , where δWt is the measure with point

3 A sufficient condition for the weak continuity of Q 7→ EQ [m (W,β, δ)] is the boundedness of the orthogonality
function m. Boundedness of m is the condition required to ensure the local robustness of a general GMM statistic;
see Section 3 below.
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mass at Wt. Under standard regularity conditions one has PWT → P∞ weakly, P -almost surely,

as T → ∞. The finite sample GMM estimator is bθT := µbβ0

T ,
bδ0T¶0 := ³eβ ¡PWT

¢0
,eδ ¡PWT

¢0´0
,

i.e. the solution of the minimization problem in (4) for PWT . Under the correct specification and

identification hypothesis (5), and standard regularity conditions (see for instance Hansen (1982)),

the finite sample GMM estimator bθT converges a.s. as T →∞ to the unique solution eθ ¡P∞¢ in
(5), and is asymptotically normally distributed. When

n
m
³
Wt,eθ ¡P∞¢´ : t ≥ 1o is a martingale

difference sequence under P , the optimal weighting matrix Ω is:

Ω
¡
P∞

¢
= S(P∞)−1 :=

µ
EP∞

·
m
³
W,eθ ¡P∞¢´m³W,eθ ¡P∞¢´0¸¶−1 . (6)

The next section introduces GMM tests for parameter stability. They are obtained from the above

GMM estimators.

2.3 Test statistics

Some consistent, asymptotically equivalent, GMM test statistics for testing H0 against H1T (π)

are Wald-type, Lagrange Multiplier-type (LM) or Likelihood ratio-type statistics. Without loss

of generality we focus on LM test functionals4 and assume a choice of the weighting matrix as in

(6). A LM test can be defined by means of the statistic

dLMT (π) =
T

π (1− π)
· LMT (π) =

T

π (1− π)
UT (π)

0
UT (π) ,

where

UT (π) = πH
¡
P∞

¢1/2 1

πT

TπX
t=1

m
³
Wt,bθT´ ,

with

H
¡
P∞

¢
= S

¡
P∞

¢−1
M
¡
P∞

¢
Σ
¡
P∞

¢
M 0 ¡P∞¢S ¡P∞¢−1 ,

Σ
¡
P∞

¢
=

h
M 0 ¡P∞¢S ¡P∞¢−1M ¡

P∞
¢i−1

, M
¡
P∞

¢
= EP∞

h
∇β0m

³
W,eθ ¡P∞¢´i .

4 An alternative way that could be also pursued in a RGMM testing approach for breaks is to use quadratic
GMM statistics as proposed in Ghysels, Guay and Hall (1997). It can be seen from the exposition in Section 3 how
such a RGMM inference approach can be applied to that setting.
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Consistent estimators of S
¡
P∞

¢
and M

¡
P∞

¢
are given by S

¡
PWT

¢
and M(PWT ), respectively.

The LM statistic dLMT (π) is particularly simple to compute, since it requires only the computation

of a single GMM estimator. This is a clear advantage when working with RGMM statistics, because

RGMM estimators for time series are typically more computationally intensive than classical GMM

estimators, as can be seen from the description of the RGMM algorithms in the Appendices.

In order to discuss the asymptotic functional structure of UT (.), we introduce a stronger version

of Assumption 1.

Assumption 2 For any π ∈ Π, there exists a probability measure P (π) on
¡
Rk,B ¡Rk¢¢ such

that: 1
Tπ

PπT
t=1 Pt → P (π), weakly as T →∞, uniformly in π ∈ Π.

In particular, with the above notation we have P∞ = P (1). Moreover, 1
Tπ

PπT
t=1 δWt → P (π)

weakly as T →∞, P almost surely. If the functional Q 7→ EQ [m (W,β, δ)] is weakly continuous,

this implies an asymptotic functional structure U of UT of the form:

U (π, P ) = πH
¡
P∞

¢1/2
EP (π)

h
m
³
W,eθ ¡P∞¢´i . (7)

In particular, functional U (π,P ) depends on P through the finite dimensional measures P (π)

and P∞ defined on B ¡Rk¢ . Hence, the asymptotic functional structure LM (π, .) of LMT (π) is

given by

LM (π, P ) = U (π, P )
0
U (π, P ) . (8)

In this paper we focus on a class of supremum (bξsupT ), average (bξaveT ) and exponential (bξexpT ) statistics

to test H0 against alternatives of the form HA (Π) or H1. The test statistic bξsupT is defined by

bξsupT := sup
π∈Π

dLMT (π) . (9)

The test statistic bξaveT is defined by

bξaveT :=

Z
Π

dLMT (π) dλ (π) , (10)

where λ is the Lebesgue measure on Π. Similarly, the test statistic bξexpT is defined by

bξexpT := log

Z
Π

exp

µ
1

2
dLMT (π)

¶
dλ (π) . (11)
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The asymptotic functional structure of bξsupT , bξaveT and bξexpT is completely determined by functional

LM in (8). In particular, (9), (10) and (11) imply that the asymptotic stability properties of bξsup,
bξave and bξexp are determined by those of the functional U in (7). Therefore, one can expect to

obtain a class of tests for structural breaks with better local stability properties when working with

quadratic functionals based on a robust functional U . This in turn requires working with GMM

test statistics and estimators based on a GMM setting with a bounded orthogonality function m.

Section 3 below provides a more detailed discussion of these issues.

In a likelihood setting, statistics of the form (10) and (11) define an optimal test in terms of a

weighted average power criterion based on a uniform prior for the break date π ∈ Π. Specifically,

average type tests can be interpreted as the optimal test for structural breaks in the case of

alternative hypotheses very near to the null. Similarly, the exponential test is the optimal test for

testing more distant alternatives (see Andrews and Ploberger (1994)). When constructing robust

tests for structural breaks in a likelihood setting we can therefore expect robust versions of the

bξaveT , bξexpT statistics to produce a higher power, when compared with robust versions of bξsupT .

The asymptotic distribution of dLMT (·) as a process indexed by π, which implies the distribu-

tion of test statistics bξsupT , bξaveT and bξexpT in (9), (10) and (11) by means of the Functional Central

Limit theorem, can be studied under the following general assumption.

Assumption 3 The model probability P satisfies the following condition:

sup
π∈Π

°°°°°°
 √

T 1
Tπ

PπT
t=1EP

h
m
³
Wt,eθ ¡P∞¢´i− µ1 (π)√

T 1
T (1−π)

PT
t=πT+1EP

h
m
³
Wt,eθ ¡P∞¢´i− µ2 (π)

°°°°°° = o(1), (12)

for some bounded Rv-valued functions µ1, µ2 defined on Π.

We may distinguish two cases for the interpretation of this assumption. When model P satisfies

the null hypothesis H0 of parameter stability in (1):

EP

³
m
³
Wt,eθ ¡P∞¢´´ = 0, for all t,

then condition (12) is satisfied with µ1 (π) = µ2 (π) = 0, for all π ∈ Π. When instead either

function µ1 or function µ2 is different from zero, then model P satisfies a local alternative hypoth-
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esis, which is equivalent to Assumption 1-LP in Andrews (1993, p. 841). In addition, condition

(12) implies the correct specification hypothesis EP∞

³
m
³
Wt,eθ ¡P∞¢´´ = 0. The asymptotic

distribution of bξsupT , bξaveT and bξexpT is characterized in the next theorem.

Theorem 1 Under Assumption 3 and regularity conditions on (Θ,m,P ) (see Andrews (1993),
Assumption 1 p. 830 and Assumption 3 p. 835) it follows:

1. dLMT (·) =⇒ Qp (·) as a process indexed by π ∈ Π, where

Qp (π) :=
1

π (1− π)
(Jp (π) + b(π))

0
(Jp (π) + b(π)) , π ∈ Π,

Jp (.) is a Brownian Bridge process, that is Jp(π) = Bp (π)−πBp (1), with Bp (·) a p−dimensio-
nal standard Brownian motion on [0, 1], and vector b is given by:

b(π) = π (1− π)H
¡
P∞

¢1/2
[µ1(π)− µ2(π)] , π ∈ Π.

2. bξsupT →d supπ∈ΠQp (π) under P .

3. bξaveT →d

R
Π
Qp (π) dλ (π) under P .

4. bξexpT →d log
R
Π
exp

¡
1
2Qp (π)

¢
dλ (π) under P .

Based on this result, critical values for test statistics bξsupT , bξaveT , bξexpT can be computed by simu-

lation of process Jp(π)
0
Jp(π)/π (1− π), π ∈ Π. Under local alternatives, the power of the test is

characterized by the noncentrality vector b (π), π ∈ Π.

3 Robust GMM tests for structural breaks

The goal of robust statistics is to provide estimation and inference procedures which are locally

stable in a nonparametric neighbourhood of relevant distributions around a given reference model.

In other words, those procedures are not excessively sensitive to small deviations from a reference

model. Therefore, statistical robustness deals with inference procedures that are based on smooth

statistical functionals. A minimal robustness requirement is continuity of such functionals. A

second stronger requirement is their Fréchet differentiability5 (see for instance Bednarsky (1993),

5 Let M be the linear space of finite measures on
¡
Rk,B(Rk)¢, equipped with a norm k.k. A functional U(P )

defined on M is Fréchet differentiable at P if there exists a bounded linear operator DU(P, .) such that:

U(Q)− U(P ) = DU(P,Q− P ) + o (kQ− Pk) .
DU(P, .) is called Fréchet derivative of U at P .
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p.27). From (9), (10) and (11) we can expect the power and level functionals of robust tests for

breaks to satisfy the first or the second requirement if the statistical functional U in (7) does

it. Therefore, a first focus is on GMM settings where such statistical functionals are Fréchet

differentiable.

3.1 Fréchet differentiability

Boundedness of the orthogonality function m is a necessary condition for a general GMM statistic

like the GMM estimator eθ in (4) or the functional U in (7) to be Fréchet differentiable. More

specifically, an orthogonality functionm is unbounded if and only if the influence function (Hampel

(1974)) of a GMM statistic is unbounded. Unboundedness of the influence function in turn implies

an unbounded asymptotic sensitivity of a GMM statistic in a neighborhood of P∞, a fact that

is not compatible with Fréchet differentiability (see for instance Heritier and Ronchetti (1994)).

Therefore, for the rest of the paper we consider a GMM setting based on a bounded orthogonality

function m.

Assumption 4 The orthogonality function m is such that

kmk∞ := sup
(w,θ)∈W×Θ

km (w, θ)k <∞ .

Under Assumption 4 and further regularity conditions, Fréchet differentiability of the GMM func-

tionals eθ and U can be ensured (see for instance Clarke (1986), Bednarski (1993), Heritier and

Ronchetti (1994)). We assume in the sequel the Fréchet differentiability of such functionals6 .

Assumption 5 The functionals eθ and U are Fréchet differentiable.

The important property of Fréchet differentiable testing functionals for robust inference purposes is

their uniform convergence in distribution over asymptotic neighborhoods of the reference model.

This feature provides a way to compute uniform asymptotic expansions where the linearized

asymptotic sensitivity of the level and the power of the test can be uniformly bounded over

neighborhoods of the reference model. In the next section we define asymptotic neighbourhoods

6 The Fréchet derivative of functionals eθ and U are computed in Appendix 1 in the proof of Theorem 2.
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of the reference model. Then, we address (Sections 3.3 and 3.4) the issue of uniform convergence of

robust tests for structural breaks and the uniform expansion of their level and power functionals.

3.2 Asymptotic neighbourhoods

Let P be a probability measure on (Ω,F). This will be the reference model in our robust setting.

The next assumption is imposed on the reference model.

Assumption 6 Under the reference model P , condition (12) is satisfied.

In particular, recall that under Assumption 6 the reference model satisfies the correct specification

hypothesis (5).

In order to study the local stability of GMM tests for structural breaks we now introduce

asymptotic neighbourhoods of the reference model P. Without loss of generality we work in the

sequel with asymptotic ε−contaminated neighbourhoods. LetM∞ be a set of measures satisfying

Assumption 2:

M∞ =

(
Q : Q is a probability measure and

1

πT

TπX
t=1

Qt → Q (π) weakly as T →∞,

uniformly in π ∈ Π
¾

.

For such measures the uniform weak limit of 1
(1−π)T

PT
t=Tπ+1Qt as T → ∞ also exists, and is

denoted by Q (π), π ∈ Π. An ε−contaminated local neighbourhood Uε,T of P is defined by:

Uε,T =
½
Qη,T =

µ
1− η√

T

¶
P +

η√
T
Q : Q ∈M∞ and η < ε

¾
. (13)

Neighbourhood Uε,T represents a set of relevant process distributions close to the reference model

P , over which the econometrician desires a smooth behaviour of test statistics for structural

breaks. Depending on whether the reference model P satisfies condition (12) with zero or non-

zero µ1, µ2 functions, set Uε,T represents an asymptotic neighbourhood of a model satisfying the

null hypothesis of structural stability, or a neighborhood of a local alternative model, respectively.

We emphasize that Uε,T is a nonparametric neighbourhood of distributions, since virtually no
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parametric assumption is imposed on the local deviation directions Q. The only restriction is that

any Qη,T ∈ Uε,T is a mixture of distributions7 .

It is important to notice that, in an overidentified setting, for any finite sample size T, local

deviations Qη,T ∈ Uε,T may or may not admit the existence of a solution for the corresponding

finite sample population moment conditions. In the second case, a GMM local misspecification

in the sense of Hall and Inoue (2003) arises. In particular, local robustness of our RGMM test

statistics for structural breaks ensures automatically stability of level and power under possible

local GMM misspecifications.

We conclude this section by presenting a restricted class of local contamination directions Q,

in order to provide some more insight into the structure of partial sample asymptotic measures

Q (π), π ∈ Π, in applied examples. This class will be useful later on to illustrate in a simple

setting some of our results. It is characterized by the following Assumption.

Assumption 7 Measure Q ∈M∞ satisfies:

EQ(π)

h
m
³
W,eθ ¡P∞¢´i = γ(π)EQ∞

h
m
³
W,eθ ¡P∞¢´i , π ∈ Π,

for some continuous function γ(.) defined on Π.

If Assumption 7 holds, we will always assume that local deviation directions Q spanning neigh-

bourhood Uε,T satisfy such assumption.

The class of measures Q satisfying Assumption 7 includes several relevant cases of practical

interest. For instance, time homogeneous local deviations Q, such that Q(π) = Q∞, for all

π ∈ Π, correspond to the case γ(π) = 1, for all π ∈ Π. Assumption 7 is also satisfied for time

non-homogeneous local deviations Q for which only a fraction of the sample is contaminated, as

illustrated in the following example.

Example 1 In this example we consider local deviations involving replacement outliers. Let draws
from measure Q be obtained by replacing with probability η∗ coordinates Wt of draws from P with
independent draws from a distribution P ∗ ∈ B(Rk), for π = t/T < π0, where π0 ∈ (0, 1). Then

7 In particular, when we have a setting with a (1− ) percentage of clean data, it is possible to show that such
local deviations can be represented as in (13), Künsch (1984), p. 486.
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under Q :

Q :

½
Wt ∼ Pt, π ≤ π0,
Wt ∼ (1− η∗)Pt + η∗P ∗, π > π0.

It can be verified that:

EQ(π)

h
m
³
W,eθ ¡P∞¢´i = ( 0 π ≤ π0,

1−π0/π
1−π0 EQ∞

h
m
³
W,eθ ¡P∞¢´i π > π0.

Hence, this example satisfies Assumption 7 with γ (π) = 0 for π ≤ π0 and γ (π) = 1−π0/π
1−π0 for

π > π0. Similarly, convex combinations of measures of this kind with different break dates π0, or
measures where only the first portion π0 of the sample is contaminated, also satisfy Assumption 7.
Finally, the limit case π0 = 0 corresponds to a time homogeneous local deviation with replacement
outliers.

Local contaminations of the form in Example 1 are relevant in applications. As an illustration,

let us consider the situation where a structural break in the parametric part of the model, due for

instance to a change in economic policy or a change in the institutional context, is associated with

isolated, abrupt movements in the series, due for instance to some instability in financial markets.

These movements correspond to general changes in the distribution of the process, which typically

cannot be fully incorporated in the parametric part of the model. In such a situation, it is

important to ensure that tests for structural breaks still maintain their power against breaks in

the parametric (structural) part of the model.

3.3 Uniform convergence

In this section we provide a uniform convergence result for robust GMM test statistics for structural

breaks. The motivation for this result is that uniform convergence ensures a uniform quality

of the asymptotic approximation over a relevant set of slightly different model distributions. In

particular, uniform convergence gives us a way to control uniformly the stability of the asymptotic

level and power functionals of bξsupT , bξaveT and bξexpT under sequences of local departures Qη,T , T ≥ 1,

from the reference model. We first define uniform weak convergence of process UT (·) as a process

indexed by π.

Definition 1 The sequence {UT (·) : T ≥ 1} converges weakly as a process indexed by π to Jp (·),
uniformly over the asymptotic neighborhood Uε = {Uε,T : T ≥ 1}, if

Lη,T
³√

T
¡
UT (·)− U

¡·, Qη,T
¢¢´

=⇒ Jp (·) (T →∞)

13



uniformly in Qη,T ∈ Uε,T , where Lη,T is the process distribution under Qη,T whereas Jp (·) is the
Brownian Bridge process in Theorem 1.

Note that Definition 1 applies independently of whether P satisfies the null hypothesis H0 of no

break or the alternative hypothesis HA(Π).

Given the Fréchet differentiability Assumption 5, we can assume uniform convergence in dis-

tribution of the sequence {UT (·) : T ≥ 1} (see Clarke (1986) and Heritier and Ronchetti (1994)

for more details on the relation between Fréchet differentiability and uniform convergence in dis-

tribution).

Assumption 8 The sequence {UT (·) : T ≥ 1} converges weakly as a process indexed by π to Jp (·),
uniformly over the asymptotic neighborhood Uε.

The Fréchet differentiability Assumption 5 and the uniform convergence Assumption 8 imply the

following uniform convergence of the RGMM test statistics for breaks over asymptotic neighbor-

hoods of the reference model.

Theorem 2 Under Assumptions 4, 5, 6, 8 it follows that:

1. dLMT (.) =⇒ Q∗p (.) as a process indexed by π ∈ Π, uniformly in Qη,T ∈ Uε,T , where

Q∗p (π) =
1

π(1− π)
(Jp(π) + b∗ (π))

0
(Jp(π) + b∗ (π)) ,

with:
b∗ (π) = π (1− π)H

¡
P∞

¢1/2
(µ∗1(π)− µ∗2(π)) ,

and:

µ∗1(π) = µ1(π) + ηEQ(π)

³
m
³
W,eθ ¡P∞¢´´ , µ∗2(π) = µ2(π) + ηEQ(π)

³
m
³
W,eθ ¡P∞¢´´ .

2. bξsupT →d supπ∈ΠQ∗p (π) , uniformly in Qη,T ∈ Uε,T .
3. bξaveT →d

R
Π
Q∗p (π) dλ (π), uniformly in Qη,T ∈ Uε,T .

4. bξexpT →d log
R
Π
exp

¡
1
2Q
∗
p (π)

¢
dλ (π), uniformly in Qη,T ∈ Uε,T .

Proof. See Appendix 1.

The local contamination direction Q affects the asymptotic distribution of statistics bξsupT ,bξaveT ,bξexpT ,

in particular their asymptotic level and power, through the additional term

ηπ (1− π)H
¡
P∞

¢1/2 n
EQ(π)

³
m
³
W,eθ ¡P∞¢´´−EQ(π)

³
m
³
W,eθ ¡P∞¢´´o

= ηπH
¡
P∞

¢1/2 n
EQ(π)

³
m
³
W,eθ ¡P∞¢´´−EQ∞

³
m
³
W,eθ ¡P∞¢´´o ,
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in the non-centrality vector b∗ (π). This term involves the difference between the moment con-

ditions computed on a portion of the sample and the moment conditions computed on the full

sample, evaluated at the reference model parameter eθ ¡P∞¢. In general, time non-homogeneous
local deviation directions Q such that EQ(π)

³
m
³
W,eθ ¡P∞¢´´ varies with π affect asymptotically

the level and the power of test statistics for structural breaks. Conversely, time homogeneous local

deviations Q such that Q(π) = Q∞, π ∈ Π, have no asymptotic impact. This is a consequence

of the fact that functional U (., Q) in (7) is equal to zero for all measures such that Q(π) = Q∞,

π ∈ Π. We emphasize that Theorem 2 provides uniform convergence results over neighbourhoods

of the reference model, which guarantee the stability of level and power of the RGMM test sta-

tistics for structural breaks uniformly over small local deviations from the reference model. For

instance, Theorem 2 implies that time homogeneous local deviations do not affect asymptotically

size and power of test statistics, uniformly in a neighbourhood of P . It is important to stress

that this result only holds under Assumption 4 of a bounded orthogonality function m. With an

unbounded m function, these convergence results can hold only pointwise with respect to local

deviation directions Qη,T . This implies that, for any fixed sample size T , the distortion of the

level and power of test statistics based on unbounded orthogonality functions m may become

arbitrary large for some local deviation Qη,T very close (in distribution) to the reference model

P . Therefore, in finite samples we expect more stable level and power properties across different

local deviations for GMM test statistics based on a bounded orthogonality function m.

When the local deviation direction Q satisfies Assumption 7, the non-centrality vector b∗ gets

the more explicit representation:

b∗ (π) = π (1− π)H
¡
P∞

¢1/2
[µ1(π)− µ2(π)] + ηπ [γ (π)− 1] d ¡P∞,Q∞¢ ,

where

d
¡
P∞, Q∞

¢
= H

¡
P∞

¢1/2
EQ∞

³
m
³
W,eθ ¡P∞¢´´ .
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In this particular case, a time non-homogeneous local deviation Q can affect asymptotically the

level or the power of statistics for structural breaks if and only if EQ∞

³
m
³
W,eθ ¡P∞¢´´ 6= 0,

that is if the orthogonality conditions at eθ ¡P∞¢ are not satisfied under Q∞.
3.4 Asymptotic expansions of level and power functionals

In this section we provide a uniform expansion for small contamination amounts ε of the as-

ymptotic level and power functionals of robust GMM tests for structural breaks, over asymptotic

neighborhoods of the reference model P .

Let us first consider the level functional. In this case the reference model P satisfies Assumption

6 with µ1 = µ2 = 0 in (12). The asymptotic level functional is defined by:

lim
T→∞

α
¡
Qη,T

¢
= lim

T→∞
Qη,T

³bξT > ξ0

´
,

where bξT is any of the supremum, average or exponential statistics (9), (10) or (11), respectively,
and ξ0 is the corresponding critical value for a given nominal size α0, computed from Theorem

1 (or Theorem 2) with b = 0 (b∗ = 0, respectively). From Theorem 2 it follows that the level

converges to L∗ (ξ0), where L∗ (.) is the cumulative distribution function of the limit variables in

points 2., 3., or 4. of Theorem 2, uniformly in Qη,T ∈ Uε,T . The general analysis of level distortions

induced by local deviations follows the line of the discussion of Theorem 2. In some particular

settings, it is possible to give a more precise characterizations of such level distortions. This is

the case for instance when Assumption 7 is satisfied. Since the direction of the noncentrality

parameter b∗ (π) does not depend on π (Theorem 2), and:

kb∗ (π)k2 = η2π2 [1− γ (π)]2
°°d ¡P∞, Q∞¢°°2 ,

the distribution of stochastic process Q∗p(.) depends on local deviation direction Q∞ only through8

η2
°°d ¡P∞, Q∞¢°°2. Denote by Q∗p(π, η

2
°°d ¡P∞, Q∞¢°°2), π ∈ Π, a process with such a distri-

bution. We provide a theorem for the asymptotic level expansion of the robust GMM statistics

8 As in the standard argument for the distribution of a chi-square variable, we use the fact that there exists a

rotation matrix R such that Q∗p (π) = (RJp(π) +Rb∗ (π))
0
(RJp(π) +Rb∗ (π)), Rb∗ (π) = kb∗ (π)k (1, 0, ...0)0 and

R · Jp is a Brownian Bridge.
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for structural breaks under small contamination amounts ε. We focus in the exposition on the

average statistic, the case of supremum or exponential statistics being completely similar.

Theorem 3 Under Assumptions 4-8 it follows that, for any η < ε:

lim
T→∞

α
¡
Qη,T

¢
= α0 + η2µ · °°d ¡P∞, Q∞¢°°2 + o

¡
η2
¢
,

uniformly in Qη,T ∈ Uε,T , where µ = −∂L (ξ0, y) /∂y|y=0 , L (·, y) is the cumulative distribution
function of the random variable Z

Π

Q∗p (π, y) dλ (π) ,

and:
d
¡
P∞, Q∞

¢
= H

¡
P∞

¢1/2
EQ∞

h
m
³
W,eθ ¡P∞¢´i . (14)

Proof. See Appendix 2.

It is possible to provide the corresponding theorem for the asymptotic expansion of the power

functional, defined by:

lim
T→∞

π
¡
Qη,T

¢
= lim

T→∞
Qη,T

³bξT > ξ0

´
,

where now the reference model P satisfies Assumption 6 with some given non-zero functions µ1, µ2.

Let Q#p (π, y) denote the random variable Q#p (π, y) = (Jp(π) + b(π, y))
0
(Jp(π) + b(π, y)), where

b(π, y) = π (1− π)H
¡
P∞

¢1/2
[µ1(π)− µ2(π)] + π [γ (π)− 1] y, y ∈ Rv.

Then, we have the following power counterpart of Theorem 3.

Theorem 4 Under Assumptions 4-8 it follows that, for any η < ε:

lim
T→∞

π
¡
Qη,T

¢
= π

¡
P∞

¢
+ ηµ

0
· d ¡P∞, Q∞¢+ o (η) ,

uniformly in Qη,T ∈ Uε,T , where µ = −∂L (ξ0, y) /∂y|y=0, L (., y) is the cumulative distribution
function of the random variable Z

Π

Q#p (π, y) dλ (π) ,

and d
¡
P∞, Q∞

¢
is given in (14).

Proof. See Appendix 2.

Versions of Theorems 3 and 4 for the supremum and exponential statistics are completely similar,

with L (., y) the cumulative distribution function of the random variables supπ∈ΠQa
p (π, y) and

log
R
Π
exp

¡
1
2Q

a
p (π, y)

¢
dλ (π), a = ∗,#, respectively.
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Theorems 3 and 4 show that the asymptotic linearized distortion in the level and power of

tests for structural breaks is proportional to
°°d ¡P∞, Q∞¢°°2 and d

¡
P∞, Q∞

¢
, respectively. In

particular, if m is bounded, for any given function γ in Assumption 7 the distortion in the level or

power of supremum, average and exponential tests for breaks is uniformly bounded over asymptotic

neighborhoods of the reference model. In this setting, this implies the robustness of GMM tests

for breaks based on bounded orthogonality functions.

Theorem 3 can be used to give uniform asymptotic bounds on the maximal sensitivity in the

level of tests based on a bounded orthogonality function. In particular, an orthogonality function

such that

sup
(w,θ)∈W×Θ

¯̄
m (w, θ)0H

¡
P∞

¢
m (w, θ)

¯̄
< c2 , (15)

for some constant c >
√
υ, implies up to terms of uniform order o

¡
η2
¢
:

¯̄̄
lim
T→∞

α
¡
Qη,T

¢− α0

¯̄̄
≤ η2µ · c2 . (16)

The tuning constant c of our RGMM estimators determines their degree of robustness. In ap-

plications c has to be determined by the econometrician, for instance on the basis of some prior

information about a maximal realistic extent η of deviation from the reference model which can

be expected in the data. A lower constant c implies a higher robustness under a departure from

the reference model. For testing purposes, the bounds (16) can be used to choose the constant c

in dependence of the maximal amount of contamination expected (ε) and the maximal distortion

in the asymptotic level which a researcher is willing to accept. In this case, the derivatives µ will

have to be computed numerically, by simulating the distribution of

sup
π∈Π

Q∗p (π, y) ,

Z
Π

Q∗p (π, y) dλ (π) , log

Z
Π

exp

µ
1

2
Q∗p (π, y)

¶
dλ (π) ,

for several values of y in a neighborhood of 0. For instance, the local robustness of the level of tests

for structural breaks could be studied in dependence of c, thereby producing information about

the degree of asymptotic local stability in the level required for a particular model setting. Notice
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that in the case where Π = {π0} and λ = δπ0 (the Dirac distribution at π0) the above tests collapse

to a test for a break at a known break date. In this case Theorem 3 and Theorem 4 coincide with

Theorem 1 and Theorem 3 in Ronchetti and Trojani (2001), where the local robustness of the level

and power functionals for standard Maximum Likelihood-type GMM tests has been characterized.

Since in this case the distribution of the random variable Q∗p (π0, y) is noncentral chi-square with

noncentrality parameter y, full analytical expressions for µ become available.

The bound (15) is satisfied by RGMM estimators with bounded self-standardized sensitivity,

i.e. such that9

sup
(w,θ)∈W×Θ

¯̄̄
m (w, θ)

0
S
¡
P∞

¢−1
m (w, θ)

¯̄̄
< c2 . (17)

An analogous result applies for the power of RGMM tests for structural breaks based on a bounded

orthogonality function m satisfying (17). Therefore, we consider supremum, average and exponen-

tial tests for breaks based on such RGMM estimators and their orthogonality functions. Details on

the definition and the computation of such RGMM estimators and their orthogonality functions

in a general GMM setting are provided in Ronchetti and Trojani (2001), p. 45-48.

4 Monte Carlo simulations

Having presented in the last section the theoretical background of RGMM tests for structural

breaks, in this section we report a series of Monte Carlo simulations in order to evaluate their finite

sample level and power properties across different model settings. We compare the performance of

RGMM tests with the one of classical GMM tests by focusing on the stability of power and level

under local departures from a given reference model. We first provide results for relatively large

samples sizes using standard asymptotic critical values. In a second step, we also present results

for bootstrapped versions of the tests in small samples. It is known that bootstrap procedures can

provide very accurate refinements of the finite sample distribution of classical tests for structural

9 This follows from the orthogonal projection property of the matrix

S
¡
P∞

¢ 1
2 H

¡
P∞

¢
S
¡
P∞

¢ 1
2 .
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breaks; see for instance Diebold and Chen (1996) for such an evidence in a simple linear model

setting. Our simulations investigate how far bootstrapping RGMM statistics for structural breaks

can help providing a uniform bootstrap performance over a relevant model neighbourhood.

4.1 Testing for structural breaks in a linear regression model

We first consider tests for a break in the slope coefficient of a linear regression model with an

autoregressive regressor. The model is given by:

yt = γ + βtxt + σut

xt = α+ ρxt−1 + σεεt

, (18)

where:

βt =


β1, for t = 1, ..., Tπ0

β2, for t = Tπ0 + 1, ..., T

,

for some π0 ∈ Π. The error term εt in the process xt is i.i.d. N (0, 1) distributed. For the error

term ut in the linear regression model (18) we simulate a set of different distributions according

to Model 1a-1e below. Specifically, we set:

• Model 1a: ut ∼ i.i.d. N (0, 1) ,

• Model 1b: ut ∼ i.i.d. t5/
p
5/3,

• Model 1c: ut ∼ i.i.d. t3/
√
3,

• Model 1d: ut ∼ i.i.d. CN (0.05, 0, 3) /
√
1.4,

• Model 1e: ut ∼ i.i.d. CN (0.1, 0, 3) /
√
1.8,

where tn is a Student distribution with n degrees of freedom and CN (x, 0, 3) is a standard normal

distribution contaminated with probability x by a further zero mean normal distribution having

standard deviation 3. All error distributions have been standardized. The standard orthogonality

conditions for a least squares estimation of the linear regression model (18) are based on an
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orthogonality function given by

ψ(Wt, β, δ) =

 ψ1(Wt, β, δ)

ψ2(Wt, β, δ)

 =



 1

xt

 (yt − γ − βxt)

(yt − γ − βxt)
2 /σ2 − 1

 ,

where Wt = (yt, xt)
0, δ =

¡
γ, σ2

¢0
. Classical GMM estimators are obtained by using such or-

thogonality conditions. In particular, the model is exactly identified and under a Gaussian error

distribution the estimating function ψ defines the maximum likelihood estimator of θ. Therefore,

under Gaussianity of the error distributions we can expect classical tests based on the average or

the exponential statistics to provide the highest power (see again Andrews and Ploberger (1994)).

However, since ψ is unbounded, maximum likelihood estimators and tests based on such an es-

timating function are not robust. RGMM estimators of (18) can be constructed by applying

orthogonality conditions based on a truncated orthogonality function given by

m(Wt, β, δ) =

 m1(Wt, β, δ)

m2(Wt, β, δ)

 =

 A1ψ1(Wt, β, δ)wc1 (A1 [ψ1(Wt, β, δ)])

A2 [ψ2(Wt, β, δ)− τ2]wc2 (A2 [ψ2(Wt, β, δ)− τ2])

 ,

(19)

where wc(z) := min(1, c/ kzk) defines a set of Huber’s weights that downweight observations which

are influential (in terms of asymptotic bias) for a classical least squares estimation of the model;

see also Hampel et al. (1986), Section 4.4., for more details. The constants c1 >
√
2, c2 > 1

are tuning constants that control the amount of robustness in the estimation of (γ, β)0 and σ2,

respectively. The matrix A1 ∈ R2×2 and the scalars A2, τ2 are determined as the solution of the

implicit equations10 :

0 = EP0 [m(Wt, β0, δ0)] , (20)

I = EP0

h
m(Wt, β0, δ0)m(Wt, β0, δ0)

0i
, (21)

10 Shift factor τ2 is introduced to ensure Fisher consistency at the reference model P0, see equation (20). In
particular, no such shift factor in needed for orthogonality function m1, since ψ1 is a symmetric random variable
under P0. Matrix A1 and scalar A2 are normalization factors, which ensure that the self-standardized sensitivity

of the RGMM estimator is bounded by c :=
q
c21 + c22; see also equation (17).

21



where P0 is the reference model distribution of a linear regression model (18) with normally

distributed11 error terms ut, that is Model 1a, and θ0 = eθ (P0).
We emphasize that the reference model distribution P0 is used in the definition of RGMM

statistics only to define a truncated GMM orthogonality condition which, by virtue of the uniform

asymptotic results in Theorem 12, 13 and 14 , ensures a uniform asymptotic behavior of the

statistics bξsupT , bξaveT , bξexpT under local departure from model P0. In particular, when we simulate -

for instance - under a student t7 or t5 distribution in Model 1b or 1c, the student t distribution

is by no way used to define the RGMM moment conditions in such model setting. Instead, the

robustified bounded orthogonality function m is still computed using only the structure of the

given reference P0, according to (20), (21).

In addition to Models 1a-1e, we also consider a further model of local contamination, where

replacement outliers invalidate for any finite sample size T the population moment conditions

evaluated at the solution eθ(P0) implied by the reference model P0. Specifically, we study the
effects of the following time homogeneous outliers replacement model:

• Model 1f: the observations of a sample yt, t = 1, ..., T from model 1a are replaced with

probability 0.05 with an outlier yt ∼ 3N (0, 1) .

Model 1f corresponds to a time homogeneous local deviation as in Example 1 with π0 = 0. Since

the GMM moment conditions are exactly identified, no GMM misspecification is induced.

In the given setting, RGMM tests based on the bounded orthogonality function m will suffer

an efficiency loss under an exact Gaussian distribution for ut. However, already under slight

departures from Gaussianity they can provide a higher power of inferences on structural breaks.

In the next subsections, we study these issues by simulation for the above Models 1a-1f of local

departure from a conditionally Gaussian linear regression model.

11 Specifically, since under P0 the random variable (yt − γ0 − β0xt)
2 /σ20 is X 2

1 distributed, irrespectively of
(β0, δ0), the correction constants A2, τ2 have to be computed only once, before starting the robust estimation
algorithm.
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4.1.1 Asymptotic tests

Tables 1a-1f report the results of our Monte Carlo simulations for Models 1a-1f in the given linear

regression setting. The break date is fixed at t0 = 0.5 · T , where T = 100, 200,300, respectively.

In the simulations for T = 200 we have set α = γ = 0, β1 = 1, β2 = 1, 1.1, 1.2, 1.3, σu = σe = 1,

ρ = 0.5 12 . In the simulations for the other sample sizes the values of β2−β1 applied for T = 200

have been multiplied by a factor
p
200/T in order to obtain comparable local alternatives across

the different sample sizes. We also fixed Π = [p0, 1− p0], where p0 = 0.25. We provide the

results for the supremum and average classical GMM statistics, and for the corresponding RGMM

statistics using the bounded orthogonality function (19). Though available on request, we omit

the results for the exponential statistics, since they are very close to those of the average statistics

across all designs. Finally, the tuning constants for the RGMM test have been set at c1 = 3, c2 = 3.

Tables 1a-1f about here

Table 1a shows that the power loss under normality of supremum and average RGMM tests for

breaks is moderate, with losses relatively to the classical GMM tests that are typically below 10%.

As expected, the power of classical and robust average tests is above the one of tests based on the

supremum functional. Table 1b shows that already under a t5 error distribution the power curves

of classical and robust GMM tests are very similar. In Table 1c, under a t3 error distribution,

these issues are more pronounced with a clearly higher power of robust GMM tests relatively

to standard procedures. In this model setting some oversize of classical average tests arises. For

example, the empirical sizes of the classical GMM tests are above 8.5% for T = 100. Table 1d shows

similar patterns as for a t5 distribution when simulating under a CN (0.05, 0, 3) error distribution:

the power curves of classical and robust GMM tests under such a setting are very similar and the

classical average test shows a tendency to a slight oversize when T = 100. Under the CN (0.1, 0, 3)

setting in Table 1e this last pattern is more pronounced, and RGMM tests improve on the power

12 Simulations for more extreme autocorrelation coefficients ρ = 0.2, 0.8 give similar findings as for ρ = 0.5.
These results are available from the authors on request.
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of classical GMM procedures.

Finally Table 1f shows that the empirical size of GMM and RGMM statistics under replacement

outliers is for T = 300 quite accurate. At the same time, RGMM tests provide for T = 300 a

higher power, both for the supremum and the average statistics. For moderate sample sizes

T = 100, 200, RGMM tests based on the average statistics still perform satisfactorily. On the

other hand, classical GMM tests based on the average tend to produce a slight oversize which

induces an "artificial" power increase. This pattern is confirmed by our bootstrap results for

sample size T = 50, presented in the next section. GMM and RGMM results for the supremum

tests and sample sizes T = 100, 200, show that all statistics produce an undersize which reduces

uniformly the finite sample power of the tests. This pattern is slightly more pronounced for the

robust tests. Moreover, it seems to be due to a pure finite sample effect which disappears when

applying bootstrap resampling methods that provide a more accurate finite sample inference. This

is confirmed by our bootstrap results for sample size T = 50, presented in the next section.

The observed stability of level and power of RGMM statistics - in particular those based on

the average functional - across different local deviations from the Gaussian reference model is a

consequence of their uniform convergence (see Theorem 2 and the discussion thereafter). Uniform

convergence implies that, for any finite sample size T , the distortion of level and power is bounded

uniformly across local deviations from the reference model, whereas they can be arbitrarily large

in some direction for the classical GMM statistics.

4.1.2 Bootstrap tests

The two last panels of Tables 1a-1f present for a sample size T = 50 the results implied by GMM

and RGMM tests for breaks based on (i) standard asymptotic critical values and (ii) bootstrapped

versions of the relevant GMM statistics. In all simulations we used 1000 bootstrap samples. Gen-

erally, from these results we see that the finite sample size of GMM and RGMM asymptotic

tests based on the supremum functional can be quite biased relatively to the given nominal level.
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Indeed, for basically all Models 1a-1f we observe an empirical size of such tests which is systemat-

ically below the correct nominal level of 5%. Similarly, classical asymptotic GMM tests based on

the average tend to produce a clear oversize relatively to the correct nominal level. By contrast,

RGMM tests based on the average seem to control quite well the empirical sizes across all Models

1a-1f. Bootstrapped versions of GMM and RGMM tests for T = 50 are found to provide very

accurate finite sample sizes, thus correcting the distortion observed for the asymptotic tests dis-

cussed previously. This is consistent with the findings of Diebold and Chen (1996). However, more

strikingly, it appears that bootstrapped versions of the RGMM tests tend to produce a uniformly

higher power across all Models 1a-1f. For instance, the power of bootstrapped RGMM tests under

Model 1a for β2 = 1.3 is not smaller than the one of bootstrapped classical GMM tests for both

the supremum and the average statistics. Under local deviations from Gaussianity of the errors

in the regression model (Table 1b-1f) such power increases appear to be often quite substantial,

as for instance under a student t3 error distribution in Table 1c.

4.2 Testing for structural breaks in an ARCH model

In order to investigate the properties of classical and robust GMM tests for structural breaks

in a nonlinear model, we now consider an ARCH model setting (Engle (1982)). Specifically we

analyze tests for breaks in the autoregressive coefficient of the conditional variance equation in an

ARCH(1) model.

The model specification is given by:

yt = σtut,

σ2t = α0 + α1,ty
2
t−1,

where

α1,t =


α1, for t = 1, ..., Tπ0

α2, for t = Tπ0 + 1, ..., T

,

for some π0 ∈ Π. For ut we simulate again a set of distributions near to a standard normal one,
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according to Models 2a-2e below:

• Model 2a: ut ∼ i.i.d. N (0, 1) ,

• Model 2b: ut ∼ i.i.d. t7/
p
7/5

• Model 2c: ut ∼ i.i.d. t5/
p
5/3

• Model 2d: ut ∼ i.i.d. CN (0.05, 0, 3) /
√
1.4

• Model 2e: ut ∼ i.i.d. CN (0.1, 0, 3) /
√
1.8

All error distributions have been standardized. As for the previous section, we also consider

replacement outliers which destroy the structure of the model by distorting the GMM parameter

estimate which satisfies the population orthogonality conditions for a finite sample size T :

• Model 2f: the observations from a sample yt, t = 1, ..., T, of model 2a are replaced with

probability 0.025 with an outlier yt ∼ N(0, 4
p
α0/(1− α1))

The orthogonality conditions for a classical GMM estimation of the model are defined by an

orthogonality function given by:

ψ(Wt, β, δ) =

 1

y2t−1

 1

σ2t

µ
y2t
σ2t
− 1
¶

,

where σ2t = α0 + α1y
2
t−1, Wt = (yt, yt−1), β = α1, δ = α0. Similarly to the previous simula-

tion setting, under a Gaussian error distribution ψ defines a maximum-likelihood estimator of θ.

However, this orthogonality function is unbounded, so that the implied GMM estimators are not

robust. The orthogonality function for a robust GMM estimation of the model is given by:

m(Wt, β, δ) = A [ψ(Wt, β, δ)− τ (yt−1)]wc (A [ψ(Wt, β, δ)− τ (yt−1)]) , (22)

for some tuning constant c >
√
2. The matrix A ∈ R2×2 and the vector function τ are defined by
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the implicit equations13 :

0 = EP0

h
m(Wt, β0, δ0) | yt−1

i
,

I = EP0

h
m(Wt, β0, δ0)m(Wt, β0, δ0)

0
i

,

(23)

where P0 is the reference model distribution of an ARCH(1) model with conditionally normally

distributed error terms ut (Model 2a). The shift factors τ (yt−1), t = 1, ..., T , can be computed

by using an analytical Laplace approximation of the integrals involved in the solution of (23), as

proposed in Mancini, Ronchetti and Trojani (2003). This avoids the numerical computation of

such integrals and largely reduces the computation time of robust GMM estimators in the present

and related settings. Details on the computation of τ (yt−1) and the corresponding robust GMM

estimator for the moment conditions (23) are given in Appendix 3.

4.2.1 Asymptotic tests

Tables 2a-2f present the results of our Monte Carlo simulations for Models 2a-2f in the given

ARCH(1) model setting. The break date is fixed at t0 = 0.5 · T , where T = 250, 500, 1000. In the

simulations for T = 1000 we have set α0 = 0.01, α1 = 0.6, α2 = 0.6, 0.7, 0.8, 0.9. In the simulations

for the other sample sizes the values of α2 − α1 applied for T = 1000 have been multiplied by a

factor
p
1000/T in order to obtain comparable local alternatives across the different sample sizes.

The tuning constants for the RGMM test have been set at c = 6.18. We also fixed Π = [p0, 1− p0],

where p0 = 0.45. The nominal level of the test is 5%.

Tables 2a-2f about here

Table 2a shows that the power loss under normality of average and exponential RGMM test

for breaks is moderate and always below 10%. Moreover, even under normality, the power of

RGMM supremum tests is above the one of classical GMM procedures. As expected, the power of

classical and robust average and exponential tests is above the one of tests based on the supremum

13 Similarly to the previous simulation setting, shift vectors τ (yt−1), t = 2, ..., T , ensure conditional Fisher
consistency of RGMM estimators for ARCH models at the reference model P0. The normalization matrix A
ensures that the self-standardized sensitivity of the RGMM estimator is bounded by c; see also equation (17).
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functional. Table 2b shows that under a t7 error distribution the gain in power of RGMM tests

based on the supremum is very large, with relative increases that are sometimes around 80%-100%.

Also in the case of the average and exponential statistics RGMM procedures do produce clear power

increases in this setting. Such patterns are even more apparent in Table 2c, under a t5 distribution,

where average and supremum RGMM statistics yield very large power improvements. The results

in Tables 2d and 2e (for a CN (0.05, 0, 3) and a CN (0.1, 0, 3) error distribution, respectively) are

qualitatively similar to those of Table 2b and 2c, with effects that are however quantitatively even

larger than in the case of a Student t error distribution. Finally, Table 2f shows the results under

the outlier replacement Model 2f. These findings further confirm the large power improvement of

RGMM tests.

4.2.2 Bootstrap tests

The last two panels of Tables 2a-2f present for a sample size T = 125 the results implied by GMM

and RGMM tests for breaks based on (i) standard asymptotic critical values and (ii) bootstrapped

versions of the relevant GMM statistics. Generally, from these results we see that the finite sample

size of GMM and RGMM asymptotic tests for all Model 2a-2f can be quite biased downwards

relatively to the given nominal level.

Bootstrapped versions of GMM and RGMM tests for T = 125 provide very accurate finite

sample sizes, thus correcting very well the bias observed for all asymptotic tests discussed pre-

viously. Similarly to the previous section, we observe that bootstrapped versions of the RGMM

tests tend to produce a uniformly higher power across all Models 2a-2f. Under local deviations

from conditional Gaussianity in the ARCH(1) model such power increases appear to be often quite

substantial, as for instance under the contaminated normal model in Table 2e.

4.3 Testing for structural breaks in overidentified models

In this last section we investigate the properties of classical and robust GMM tests for structural

breaks in an overidentified model. Such models are important for applications, since they are
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the basis of many structural economic specifications, such as for instance regression models with

more instruments than endogenous variables or intertemporal models with more Euler equations

than structural parameters. As it is well-known, a major concern with GMM inference in overi-

dentified models is the finite sample performance of GMM estimators and tests, especially when

the number of orthogonality conditions is large (see for instance Altonji and Segal (1996), Burn-

side and Eichenbaum (1996) and Hansen, Heaton and Yaron (1996)). In order to address this

point, we consider testing for structural breaks in a standard specification from the literature on

finite sample properties of GMM, proposed by Burnside and Eichenbaum (1996). The model is

characterized by the orthogonality conditions:

E [Wt − βtι] = 0,

where Wt = (W1,t, ...,Wd,t)
0
is a d-dimensional vector of independent random variables, d = 10,

ι = (1, ..., 1) ∈ Rd, and βt is a scalar parameter such that:

βt =


β1, for t = 1, ..., Tπ0

β2, for t = Tπ0 + 1, ..., T

,

for some π0 ∈ Π. We test therefore for a break in the common mean β of a set of variables

W1,t, ...,Wd,t. For each component Wi,t we simulate a set of distributions close to the chi-square

distribution with one degree of freedom:

Wi,t = βtu
2
i,t,

according to the following models:

• Model 3a: ui,t ∼ i.i.d. N (0, 1) ,

• Model 3b: ui,t ∼ i.i.d. t7/
p
7/5,

• Model 3c: ui,t ∼ i.i.d. t5/
p
5/3,

• Model 3d: ui,t ∼ i.i.d. CN (0.05, 0, 3) /
√
1.4,
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• Model 3e: ui,t ∼ i.i.d. CN (0.1, 0, 3) /
√
1.8.

The orthogonality function in Burnside and Eichenbaum (1996) model is given by:

ψ (Wt, β) =Wt − βι,

and is unbounded, implying nonrobust GMM statistics. Moreover, even under a Gaussian dis-

tribution for ui,t, the GMM estimator implied by ψ is not a maximum likelihood estimator. A

RGMM estimator can be constructed by truncating the orthogonality conditions:

m (Wt, β) = A (Wt − βι− τ)wc (A [Wt − βι− τ ]) ,

for some tuning constant c. Vector τ and matrix A are defined by the implicit equations:

0 = EP0 [m(Wt, β0)] ,

I = EP0

h
m(Wt, β0)m(Wt, β0)

0i
,

where P0 is the reference model distribution14 corresponding to a chi-square distribution χ2(1) for

the variables Wi,t/β0. All above models of departure from a Gaussian distribution for ut satisfy

the moment conditions implied by the orthogonality function ψ.

Finally, we consider local models of contamination which invalidate for any finite sample size T

the population moment conditions implied by the orthogonality function ψ. Specifically, we study

the effect of the two following outlier replacement models:

• Model 3f: the observations of components i = 1, ..., 5 of a sample Wi,t, t = 1, ..., T from

model 3a are replaced with probability 0.05 by an outlier Wi,t ∼ (3N (0, 1))
2
.

• Model 3g: the observations of components i = 1, ..., 5 of a sample Wi,t, t = 1, ..., T from

model 3a are replaced with probability η by an outlier Wi,t ∼ (3N (0, 1))2 for t = 1, ..., 0.5T.

14 As in section 4.1 vector τ ensures Fisher consistency at the reference model and has to be computed only
once, before starting the robust estimation algorithm. Matrix A is computed in the robust estimation algorithm,
using an empirical version of the second implicit equation, and ensures a self-standardized sensitivity of the RGMM
estimator bounded by c; see again equation (17).
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Models 3f and 3g represent local deviations which induce a local GMM model misspecification

in the sense of Hall and Inoue (2003). More specifically, Model 3f implies a time homogeneous

local departure from the reference model P0. Model 3g, instead, is a time non-homogeneous local

deviation. It represents a shift in the distribution of Wi,t, which cannot be exhausted by a break

in the structural parameter β only. In particular, local deviations in Model 3f and 3g are of the

type considered in Example 1 and satisfy Assumption 7.

4.3.1 Asymptotic tests

Tables 3a-3g present the results of our Monte Carlo simulations for Models 3a-3g in Burnside and

Eichenbaum’s (1996) model. The break date is fixed at t0 = 0.5 · T , where T = 100, 200 15 . In

the simulations for T = 200 we have set β1 = 1, β2 = 1, 1.1, 1.2, 1.3. In the simulations for the

other sample sizes the values of β2 − β1 applied for T = 200 have been multiplied by a factorp
200/T in order to obtain comparable local alternatives across the different sample sizes. The

tuning constants for the RGMM test have been set at c = 4.18. We also fixed Π = [p0, 1− p0],

where p0 = 0.25. The nominal level of the tests is 5%.

Tables 3a-3g about here

Table 3a shows that under the given reference model classical and robust GMM tests for breaks

perform very similarly. Finite sample sizes of all tests are quite near to their nominal levels.

Moreover, virtually no loss in power of RGMM tests is observed, relatively to their classical

counterparts. Under a student t7 or t5 distribution, in Tables 3b and 3c, RGMM tests provide

a clearly higher power than their classical counterparts. For instance, in Table 3c for T = 200

the power of RGMM tests against the alternative β2 = 1.3 is about 46%, 53% and 52% for

the supremum, the average and the exponential statistics. The power obtained when applying

classical GMM tests is instead only about 34%, 41% and 40%, for the supremum, the average and

the exponential statistics.

15 Sample size T = 100 is used in Burnside and Eichenbaum (1996).
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The results in Tables 3d and 3e for the contaminated normal models are qualitatively similar to

those under a student t distribution. However, the quantitative gains in power implied by RGMM

statistics are even larger, and are in some cases near to 50%, as for instance in the models with

β2 = 1.3 for T = 200.

Finally, in Tables 3f and 3g it is shown that also under an outlier replacement model RGMM

tests for breaks provide a clearly higher efficiency of inferences on breaks than tests based on the

classical GMM. For instance, in Model 3f with β2 = 1.3 for T = 200 the power of RGMM tests

is about 60%, 65% and 64% for the supremum, the average and the exponential statistics. This

is clearly above the power implied by classical GMM testing procedures. In Table 3g we compare

the power of GMM and RGMM tests under Model 3g for (β2 − β1)
q

200
T = 0.3 and different

contamination probabilities η = 0.0, 0.025, 0.05, 0.075. It is shown that RGMM statistics maintain

a higher power against structural breaks in the parametric part of the model, also in the presence

of time non-homogeneous local deviations (see again the discussion after example 1).

4.3.2 Bootstrap tests

The last two panels of Tables 3a-3g present for a sample size T = 50 the results implied by GMM

and RGMM tests for breaks based on (i) standard asymptotic critical values and (ii) bootstrapped

versions of the relevant GMM statistics. Generally, from these results we see that the finite sample

sizes of GMM and RGMM asymptotic tests based on the supremum functional can be quite biased

downwards relatively to the given nominal level for all Model 3a-3g. By contrast, the empirical

sizes of both classical and robust GMM tests based on the average and the exponential seem to

be quite well controlled. However, for all statistics we observe again in all Models 3a-3g a larger

power of RGMM tests when compared with the classical ones. In some cases the power increase

is very substantial, as for instance in Table 3e for a contaminated normal distribution.

Bootstrapped versions of GMM and RGMM tests16 for T = 50 provide all accurate finite

16 They are based on the recentered bootstrap of Hall and Horowitz (1996) for overidentified models.
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sample sizes, thus correcting well the bias observed for the asymptotic tests based on the supremum

statistic discussed previously. Moreover, the power curves of bootstrapped GMM and RGMM tests

based on the average and the exponential are very similar to those obtained for the corresponding

asymptotic tests. This further confirms the good finite sample performances of such asymptotic

tests in the present model setting.

Similarly to the previous section, we finally observe that bootstrapped versions of the RGMM

tests tend to produce a uniformly higher power across all Models 3a-3g. Again, under local

deviations from the reference model, such power increases appear to be often quite substantial, as

is for instance illustrated by the results for the contaminated normal model in Table 3e.

5 Conclusions

We proposed a class of new supremum, average and exponential RGMM tests for structural breaks,

which imply a bounded sensitivity of level and power under local departures from a reference

model. Robustness of the new tests is obtained by computing the supremum, the average or

the exponential functionals over a sequence of GMM Lagrange Multiplier statistics in a setting

based on a bounded orthogonality function. Monte Carlo simulations showed that the new robust

GMM tests perform well across a quite broad set of model configurations, both in terms of the

efficiency and the robustness of the inference procedure, when compared with standard GMM tests

for structural breaks. Due to the intrinsic difficulties in the formulation and the identification of

econometric models that exactly describe the whole data distribution, it is expected that RGMM

tests for breaks can help in providing some more robust and consistent evidence on the presence

of breaks in the statistical analysis of economic data series.
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6 Appendix 1: Proof of Theorem 2

By Assumption 8 we have:

√
TUT (·) =⇒ Jp (·) + x (.) ,

uniformly over Qη,T ∈ Uε,T , where:

x(π) = lim
T→∞

√
TU

¡
π,Qη,T

¢
, π ∈ Π.

Let us compute x. By Assumptions 5 and 6, a von Mises expansion up to terms O(η/
√
T ) gives:

√
TU

¡
π,Qη,T

¢
=
√
TπH

¡
P∞

¢ 1
2 E

Q
η,T

(π)

h
m(W,eθ(Qη,T

∞ ))
i

=
√
TU (π, P ) + ηπH

¡
P∞

¢ 1
2

n
EP∞

h
∇θ

0m(W,eθ(P∞))iDeθ(P∞, Q∞ − P∞)

+ EQ(π)

h
m(W,eθ(P∞))io , (24)

where Deθ(P∞,Q∞−P∞) is the Fréchet derivative of eθ at P∞ in direction Q∞−P∞. To compute
Deθ(P∞, Q∞ − P∞) note first that the asymptotic estimating equation for eθ ¡P∞¢ is

0 = N 0 ¡P∞¢Ω ¡P∞¢EP∞

³
m
³
W,eθ ¡P∞¢´´ , (25)

where

N
¡
P∞

¢
= EP∞

³
∇θ0m

³
W,eθ ¡P∞¢´´ .

The directional derivative Deθ ¡P∞, Q∞ − P∞
¢
can be then computed by implicitly differentiating

(25) in the direction Q∞ − P∞ to get

0 = N 0 ¡P∞¢Ω ¡P∞¢ hN ¡P∞¢Deθ(P∞, Q∞ − P∞) +EQ∞

³
m
³
W,eθ ¡P∞¢´´i ,

i.e.

Deθ(P∞, Q∞−P∞) = − ¡N 0 ¡P∞¢Ω ¡P∞¢N ¡
P∞

¢¢−1
N 0 ¡P∞¢Ω ¡P∞¢EQ∞

³
m
³
W,eθ ¡P∞¢´´ ,
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where we used that P satisfies (5). Inserting this expression into (24) gives up to uniform terms

of order o (η):

√
TU

¡
π,Qη,T

¢
=
√
TU (π,P ) + ηπH

¡
P∞

¢ 1
2

n
EQ(π)

h
m(W,eθ(P∞))i

− R
¡
P∞

¢
EQ∞

³
m
³
W,eθ ¡P∞¢´´o ,

where :

R
¡
P∞

¢
= N

¡
P∞

¢ ¡
N 0 ¡P∞¢Ω ¡P∞¢N ¡

P∞
¢¢−1

N 0 ¡P∞¢Ω ¡P∞¢ .

Moreover, since H
¡
P∞

¢
R
¡
P∞

¢
= H

¡
P∞

¢
, we have H

¡
P∞

¢1/2
R
¡
P∞

¢
= H

¡
P∞

¢1/2
, and we

get:

√
TU

¡
π,Qη,T

¢
=
√
TU (π, P )

+ηπH
¡
P∞

¢ 1
2

n
EQ(π)

h
m(W,eθ(P∞))i − EQ∞

³
m
³
W,eθ ¡P∞¢´´o .

From Theorem 1 we have:

√
TU (π,P )→ π (1− π)H

¡
P∞

¢ 1
2 [µ1 (π)− µ2(π)] , T →∞.

Thus we get:

√
TUT (.) =⇒ Jp (.) + b∗(.),

uniformly in Qη,T ∈ Uε,T , where:

b∗(π) = π (1− π)H
¡
P∞

¢ 1
2 [µ1 (π)− µ2(π)]

+ηπH
¡
P∞

¢ 1
2

n
EQ(π)

h
m(W,eθ(P∞))i − EQ∞

³
m
³
W,eθ ¡P∞¢´´o

= π (1− π)H
¡
P∞

¢ 1
2

n
µ1 (π) + ηEQ(π)

h
m(W,eθ(P∞))i

−µ2 (π)− ηEQ(π)

h
m(W,eθ(P∞))io ,

where we used that Q∞ = πQ (π) + (1− π)Q (π). Points 2., 3. and 4. follow by the Functional

Central Limit theorem.
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7 Appendix 2: Proof of Theorems 3 and 4

Let us prove Theorem 3. Let L
³
., η2

°°d ¡P∞,Q∞¢°°2´, denote the cumulative distribution function
of Z

Π

Q∗p
³
π, η2

°°d ¡P∞, Q∞¢°°2´ dλ (π) .

We have:

lim
T→∞

α
¡
Qη,T

¢
= lim

T→∞
Qη,T (bξaveT > ξ0)

= 1− L
³
ξ0, η

2
°°d ¡P∞, Q∞¢°°2´

= 1− L (ξ0, 0)−
∂L
∂y
(ξ0, 0)

°°d ¡P∞, Q∞¢°°2 η2 + o
¡
η2
¢

= α0 − ∂L
∂y
(ξ0, 0)

°°d ¡P∞, Q∞¢°°2 η2 + o
¡
η2
¢
,

uniformly over the asymptotic neighborhood Uε,T , where ∂L
∂y denotes the derivative of L with

respect to the noncentrality parameter y =
°°d ¡P∞, Q∞¢°°2 η2. The proof of Theorem 4 is similar.

8 Appendix 3: Computation of the robust GMM estimator
of the ARCH(1) model

In this Appendix we discuss some computational issues involved with the computation of the

robust GMM estimator (eα0, eα1)0 in the ARCH(1) model of Section 4.2. The estimator (eα0, eα1)0 ,
the shift factors τ (yt−1), t = 1, ..., T, and the normalization matrix A have to be computed by

an iterative algorithm. We first discuss the single steps necessary for computing τ (yt−1), A and

(eα0, eα1)0 , respectively, and then present the complete algorithm.
8.1 The shift factors

The first condition in (23) is satisfied for τ (yt−1) defined by

τ (yt−1) =
1

σ2t

 τ∗ (yt−1)

y2t−1τ
∗ (yt−1)
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if τ∗ (yt−1) is such that

EP0

£¡
u2t − 1− τ∗ (yt−1)

¢
wt | yt−1

¤
= 0 , (26)

where

wt := wc

µ
Axt
σ2t

¡
u2t − 1− τ∗ (yt−1)

¢¶
and xt =

¡
1, y2t−1

¢0
. Equation (26) is equivalent to the implicit equation:

τ∗ (yt−1) =
EP0

£¡
u2t − 1

¢
wt | yt−1

¤
EP0 [wt | yt−1] . (27)

Therefore, we can focus on iterative procedures for the computation of the numerator and the

denominator of τ∗ (yt−1). Let values
³
A
0
A
´0

, eα0, τ∗0 (yt−1), t = 1, ..., T , be given on the RHS of
(27). Let further z1,t ≤ z2,t denote the two solutions of the equation:

°°°°A0xtσ2t

¡
z − 1− τ∗0 (yt−1)

¢°°°° =
q
x
0
t (A

0A)
0
xt

σ2t

¯̄
z − 1− τ∗0 (yt−1)

¯̄
= c,

where σ2t = x
0
teα0. Then, if z1,t ≤ 0 ≤ z2,t =: d

2
2,t, as it is the case for any parameter choice we

have investigated, the denominator in (27) becomes:

EP0 [wt | yt−1] = 2
Z d2,t

0

Φ (du) +
cσ2tq

x
0
t (A

0A)
0
xt

Z ∞
d2,t

1

u2 − 1− τ∗0 (yt−1)
Φ (du)

 .

When d2,t is large enough, the second integral can be approximated by a Laplace approximation

(see for instance Jensen (1995)). In any parameter choice we considered, this approximation

has shown to be very accurate and efficient. A similar analytical approximation can be used to

compute the numerator of (27). Using these approximations, from the RHS of (27) we get updated

values τ∗1 (yt−1), t = 1, ..., T .

Similarly to above, from the second condition in (23), an updated estimate of A0A is given by:

(A0A)1 =

"
1

T

TX
t=1

1

σ4t
w2txtx

0
t

¡
u2t − 1− τ∗0 (yt−1)

¢2#−1
,

where σ2t = x
0
teα0, ut = yt/σt, wt := wc

¡
A0xt

£
u2t − 1− τ∗0 (yt−1)

¤
/σ2t

¢
.
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8.2 Robust GMM estimator as iterated WLS

The robust GMM estimator is the solution bα = (bα0, bα1)0 of the finite sample estimating equation
1

T

TX
t=1

1

σ4t
wtxt

h
y2t − (1 + τ∗ (yt−1))x

0
tα
i
= 0 ,

where σ2t = x
0
tα = α0 + α1y

2
t−1, α = (α0, α1)

0
, wt := wc

¡
Axt

£
u2t − 1− τ∗ (yt−1)

¤
/σ2t

¢
. The

solution bα satisfies the implicit equation:
bα = " TX

t=1

1

σ4t
wt (1 + τ∗ (yt−1))xtx

0
t

#−1
·

TX
t=1

1

σ4t
wtxty

2
t . (28)

Given values bα0, τ∗0 (yt−1), t = 1, ..., T , and ³A0
A
´0
, they can be inserted in the RHS of (28) to

get an updated estimate bα1, which has the form of a WLS estimator.

8.3 The robust GMM estimation algorithm

The algorithm for computing the robust GMM estimator in the ARCH(1) model is as follows:

1. Consider starting values eα0, τ∗0 (yt−1) = 0, t = 1, ..., T , and
(A0A)0 =

"
1

T

TX
t=1

1

σ4t
xtx

0
t

¡
u2t − 1

¢2#−1

where σ2t = x
0
teα0, ut = yt/σt

2. Compute the weights:

wt := wc

µ
A0xt
σ2t

£
u2t − 1− τ∗0 (yt−1)

¤¶

3. Compute the shift and normalization factors τ∗1 (yt−1), t = 1, ..., T , and (A0A)1 by the

approach discussed above:

τ∗1 (yt−1) =
EP0

£¡
u2t − 1

¢
wt | yt−1

¤
EP0 [wt | yt−1] ,

(A0A)1 =

"
1

T

TX
t=1

1

σ4t
w2txtx

0
t

¡
u2t − 1− τ∗0 (yt−1)

¢2#−1
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4. Compute the GMM estimator:

bα1 = " TX
t=1

1

σ4t
wt

¡
1 + τ∗0 (yt−1)

¢
xtx

0
t

#−1
·

TX
t=1

1

σ4t
wtxty

2
t

5. Use τ∗1 (yt−1), t = 1, ..., T , (A0A)
1, bα1 as new starting values

Steps 2 to 5 are iterated until numerical convergence is obtained.
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9 Tables

Table 1a: GMM LM test results for Model 1a: ut v i.i.d.N (0, 1). Parameters: α =

γ = 0, β1 = 1, σu = σe = 1, ρ = 0.5. Break date: t0 = 0.5 · T . Tuning constant for

RGMM: c1 = 3, c2 = 3. p0 = 0.25, 5000 Monte Carlo simulations. The nominal level

of the tests is α0 = 5%.

T = 300 GMM RGMM T = 200 GMM RGMM

(β2−β1)
p
3/2 sup ave sup ave β2−β1 sup ave sup ave

0.0 4.02 5.34 3.94 5.12 0.0 4.16 5.94 3.80 4.80

0.1 9.12 11.7 8.96 11.1 0.1 14.0 18.9 12.0 15.7

0.2 25.7 32.4 23.8 28.8 0.2 44.4 54.6 40.4 48.3

0.3 53.4 61.6 49.1 55.4 0.3 81.0 86.3 76.0 81.5

T = 100 GMM RGMM T = 50 GMM RGMM

(β2−β1)
p
1/2 sup ave sup ave (β2−β1)

p
1/4 sup ave sup ave

0.0 3.92 5.84 3.48 5.06 0.0 2.92 6.72 2.70 4.46

0.1 8.10 12.7 6.72 9.74 0.1 5.86 12.6 4.90 8.04

0.2 21.4 31.1 18.2 25.4 0.2 15.6 29.5 13.2 22.0

0.3 44.6 58.1 39.0 50.3 0.3 34.6 54.4 29.1 42.9

T = 50

Bootstrap

GMM RGMM

(β2−β1)
p
1/4 sup ave sup ave

0.0 4.60 4.84 5.02 5.06

0.1 8.14 9.00 8.28 9.08

0.2 19.0 22.2 18.8 21.8

0.3 36.9 42.2 31.1 41.8
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Table 1b: GMM LM test results for Model 1b: ut v i.i.d.t5/
p
5/3. Parameters:

α = γ = 0, β1 = 1, σu = σe = 1, ρ = 0.5. Break date: t0 = 0.5 · T . Tuning constant

for RGMM: c1 = 3, c2 = 3. p0 = 0.25, 5000 Monte Carlo simulations. The nominal

level of the tests is α0 = 5%.

T = 300 GMM RGMM T = 200 GMM RGMM

(β2−β1)
p
3/2 sup ave sup ave β2−β1 sup ave sup ave

0.0 3.74 5.06 4.26 5.06 0.0 4.70 6.12 4.28 5.02

0.1 9.62 12.0 10.2 12.3 0.1 9.44 13.4 9.02 12.5

0.2 26.9 33.3 29.8 36.1 0.2 27.3 35.2 27.7 34.3

0.3 54.8 62.9 59.1 66.1 0.3 53.5 61.9 55.9 63.2

T = 100 GMM RGMM T = 50 GMM RGMM

(β2−β1)
p
1/2 sup ave sup ave (β2−β1)

p
1/4 sup ave sup ave

0.0 3.16 6.26 3.14 4.90 0.0 3.24 7.62 1.92 3.64

0.1 8.36 13.8 7.74 11.5 0.1 6.46 14.2 4.96 9.66

0.2 24.8 35.5 23.9 32.2 0.2 19.2 34.8 16.5 26.8

0.3 50.2 61.7 49.5 59.8 0.3 40.1 58.9 36.1 50.3

T = 50

Bootstrap

GMM RGMM

(β2−β1)
p
1/4 sup ave sup ave

0.0 5.02 5.42 4.88 5.46

0.1 9.34 10.4 9.08 10.4

0.2 21.4 24.3 22.7 25.8

0.3 41.6 45.5 44.1 48.5
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Table 1c: GMM LM test results for Model 1c: ut v i.i.d.t3/
√
3. Parameters: α =

γ = 0, β1 = 1, σu = σe = 1, ρ = 0.5. Break date: t0 = 0.5 · T . Tuning constant for

RGMM: c1 = 3, c2 = 3. p0 = 0.25, 5000 Monte Carlo simulations. The nominal level

of the tests is α0 = 5%.

T = 300 GMM RGMM T = 200 GMM RGMM

(β2−β1)
p
3/2 sup ave sup ave β2−β1 sup ave sup ave

0.0 5.34 6.60 4.42 5.16 0.0 4.76 8.14 3.80 4.96

0.1 11.7 15.1 12.4 16.6 0.1 13.5 18.2 12.8 16.4

0.2 33.6 40.5 41.0 47.9 0.2 35.1 43.2 39.6 47.3

0.3 63.5 69.2 76.2 81.0 0.3 63.8 71.1 73.0 79.4

T = 100 GMM RGMM T = 50 GMM RGMM

(β2−β1)
p
1/2 sup ave sup ave (β2−β1)

p
1/4 sup ave sup ave

0.0 5.04 8.68 3.18 4.26 0.0 4.36 9.78 2.54 4.64

0.1 11.7 17.5 9.64 13.6 0.1 8.88 18.4 7.26 12.3

0.2 32.9 43.2 31.7 41.3 0.2 26.3 43.9 22.8 35.8

0.3 60.8 70.4 63.2 72.9 0.3 51.8 68.9 47.3 62.4

T = 50

Bootstrap

GMM RGMM

(β2−β1)
p
1/4 sup ave sup ave

0.0 4.90 4.94 5.22 5.40

0.1 17.7 19.3 18.8 21.5

0.2 48.7 52.2 53.9 59.8

0.3 75.9 78.2 81.2 85.0
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Table 1d: GMM LM test results for Model 1d: ut v i.i.d.CN (0.05, 0, 3) /
√
1.4.

Parameters: α = γ = 0, β1 = 1, σu = σe = 1, ρ = 0.5. Break date: t0 = 0.5 · T .

Tuning constant for RGMM: c1 = 3, c2 = 3. p0 = 0.25, 5000 Monte Carlo simulations.

The nominal level of the tests is α0 = 5%.

T = 300 GMM RGMM T = 200 GMM RGMM

(β2−β1)
p
3/2 sup ave sup ave β2−β1 sup ave sup ave

0.0 4.72 5.98 4.44 5.12 0.0 4.00 5.48 4.00 4.70

0.1 10.5 14.2 10.1 12.8 0.1 8.54 12.1 8.74 11.7

0.2 28.1 34.9 29.6 35.8 0.2 26.3 34.7 26.4 33.9

0.3 56.0 63.3 59.6 66.6 0.3 54.1 63.4 55.3 63.5

T = 100 GMM RGMM T = 50 GMM RGMM

(β2−β1)
p
1/2 sup ave sup ave (β2−β1)

p
1/4 sup ave sup ave

0.0 3.76 6.50 2.70 3.96 0.0 2.78 6.86 2.34 4.50

0.1 8.16 13.8 7.16 11.1 0.1 6.42 14.4 5.64 11.3

0.2 24.4 35.1 22.7 31.9 0.2 19.3 35.0 17.4 28.0

0.3 51.1 62.9 50.0 59.5 0.3 41.1 59.9 37.1 51.4

T = 50

Bootstrap

GMM RGMM

(β2−β1)
p
1/4 sup ave sup ave

0.0 4.58 4.92 4.30 4.46

0.1 13.4 16.1 14.4 17.0

0.2 39.5 43.8 42.7 48.7

0.3 68.6 72.6 71.4 76.4
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Table 1e: GMM LM test results for Model 1e: ut v i.i.d.CN (0.1, 0, 3) /
√
1.8.

Parameters: α = γ = 0, β1 = 1, σu = σe = 1, ρ = 0.5. Break date: t0 = 0.5 · T .

Tuning constant for RGMM: c1 = 3, c2 = 3. p0 = 0.25, 5000 Monte Carlo simulations.

The nominal level of the tests is α0 = 5%.

T = 300 GMM RGMM T = 200 GMM RGMM

(β2−β1)
p
3/2 sup ave sup ave β2−β1 sup ave sup ave

0.0 4.56 6.22 4.72 5.24 0.0 4.08 5.40 3.76 4.56

0.1 10.6 14.1 11.1 14.1 0.1 8.96 12.8 9.62 13.0

0.2 28.7 35.1 33.4 39.4 0.2 27.4 35.4 30.3 36.9

0.3 56.0 63.3 64.7 71.0 0.3 56.1 64.9 61.3 68.5

T = 100 GMM RGMM T = 50 GMM RGMM

(β2−β1)
p
1/2 sup ave sup ave (β2−β1)

p
1/4 sup ave sup ave

0.0 3.82 7.12 2.72 4.38 0.0 3.12 7.42 2.40 4.22

0.1 8.92 15.3 7.66 11.9 0.1 7.70 15.4 6.08 11.9

0.2 26.2 36.9 26.0 35.3 0.2 22.7 37.7 19.2 30.0

0.3 52.8 64.5 54.4 64.1 0.3 44.5 61.8 40.4 55.0

T = 50

Bootstrap

GMM RGMM

(β2−β1)
p
1/4 sup ave sup ave

0.0 4.58 5.48 4.40 4.74

0.1 11.0 11.3 11.3 12.5

0.2 26.9 29.3 30.0 33.9

0.3 50.0 54.0 56.1 61.0
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Table 1f: GMM LM test results for Model 1f: the observations from a sample of

Model 1a are replaced with probability 0.05 by an outlier yt v N (0, 3). Parameters:

α = γ = 0, β = 1, σu = σe = 1. Break date: t0 = 0.5 ·T . Tuning constant for RGMM:

c1 = 3, c2 = 3. p0 = 0.25, 5000 Monte Carlo simulations. The nominal level of the

tests is α0 = 5%.

T = 300 GMM RGMM T = 200 GMM RGMM

(β2−β1)
p
3/2 sup ave sup ave β2−β1 sup ave sup ave

0.0 4.86 6.08 4.08 5.00 0.0 4.36 6.52 3.44 4.72

0.1 7.78 10.2 7.72 9.60 0.1 7.90 11.0 6.92 9.32

0.2 19.2 24.1 20.2 25.2 0.2 18.0 23.9 18.4 24.0

0.3 37.3 43.8 41.4 49.0 0.3 36.5 43.5 39.0 47.0

T = 100 GMM RGMM T = 50 GMM RGMM

(β2−β1)
p
1/2 sup ave sup ave (β2−β1)

p
1/4 sup ave sup ave

0.0 3.52 6.84 2.56 4.10 0.0 3.92 9.14 2.44 4.48

0.1 7.26 11.3 5.60 8.52 0.1 5.72 12.5 3.78 6.64

0.2 16.9 24.9 14.6 22.1 0.2 11.6 23.4 9.76 16.4

0.3 34.3 45.7 33.0 44.1 0.3 21.6 36.2 19.5 31.2

T = 50

Bootstrap

GMM RGMM

(β2−β1)
p
1/4 sup ave sup ave

0.0 5.32 5.90 5.16 5.14

0.1 8.06 9.32 9.18 9.86

0.2 18.1 21.0 20.6 23.8

0.3 33.3 37.5 39.6 43.8
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Table 2a: GMM LM test results for Model 2a: ut v i.i.d.N (0, 1). Parameters:

α0 = 0.01, α1 = 0.6. Break date: t0 = 0.5 · T . Tuning constant for RGMM: c = 6.18.

p0 = 0.45, 5000 Monte Carlo simulations. The nominal level of the tests is 5%.

T = 1000 T = 500

GMM RGMM GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp sup ave exp sup ave exp

0.0 2.60 5.30 4.48 4.06 4.80 4.60 1.82 4.48 3.82 3.40 4.48 4.20

0.1 6.90 12.9 11.3 9.82 11.9 11.5 5.04 11.4 9.72 7.96 10.6 10.2

0.2 23.4 34.7 31.9 27.8 31.6 31.6 17.6 30.4 27.4 24.0 28.7 28.2

0.3 46.9 60.6 57.9 52.8 57.8 57.4 38.4 55.6 51.6 46.2 53.2 52.6

T = 250 T = 125

GMM RGMM GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp sup ave exp sup ave exp

0.0 1.06 4.42 3.42 2.64 4.26 4.04 0.54 2.46 1.98 1.48 2.62 2.52

0.1 3.02 9.46 7.80 6.46 9.42 8.92 1.00 5.68 4.40 2.98 5.96 5.70

0.2 10.6 24.6 21.5 17.4 24.5 23.7 3.60 15.1 12.0 8.10 15.5 15.0

0.3 24.6 45.6 40.6 35.0 44.7 43.9 8.90 28.5 24.8 17.4 29.4 29.1

T = 125 Bootstrap

GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp

0.0 5.10 4.74 4.94 5.48 5.66 5.48

0.1 7.32 9.00 8.78 8.76 9.66 9.68

0.2 18.1 21.4 21.2 18.7 22.1 21.9

0.3 33.4 38.4 37.7 33.8 38.3 37.6
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Table 2b: GMM LM test results for Model 2b: ut v i.i.d.t7/
p
7/5. Parameters:

α0 = 0.01, α1 = 0.6. Break date: t0 = 0.5 · T . Tuning constant for RGMM: c = 6.18.

p0 = 0.45, 5000 Monte Carlo simulations. The nominal level of the tests is 5%.

T = 1000 T = 500

GMM RGMM GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp sup ave exp sup ave exp

0.0 1.68 4.26 3.48 3.46 3.86 3.80 1.44 4.04 3.26 3.34 4.28 4.26

0.1 3.66 8.08 6.82 6.78 8.14 8.02 2.78 7.92 6.52 6.06 8.06 7.94

0.2 9.56 18.4 15.9 16.3 19.6 19.0 7.20 16.5 14.4 13.8 17.7 17.3

0.3 19.9 34.5 31.2 31.7 36.7 36.2 15.5 30.0 26.7 26.4 32.4 31.8

T = 250 T = 125

GMM RGMM GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp sup ave exp sup ave exp

0.0 0.64 3.22 2.40 2.24 3.62 3.36 0.42 1.72 1.30 1.40 2.54 2.46

0.1 1.30 5.42 4.14 3.38 6.10 5.78 0.32 3.10 2.00 1.64 4.12 3.72

0.2 3.04 12.7 9.92 8.68 14.4 13.7 0.88 6.70 5.14 3.54 8.64 8.12

0.3 7.66 22.3 19.1 18.3 25.6 24.9 1.98 12.3 9.20 7.20 15.4 14.8

T = 125 Bootstrap

GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp

0.0 4.88 4.98 4.94 5.26 5.06 4.96

0.1 5.90 7.08 6.86 6.40 7.66 7.34

0.2 11.0 13.5 13.3 13.0 14.9 14.6

0.3 18.0 21.7 21.1 19.8 23.4 23.0
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Table 2c: GMM LM test results for Model 2c: ut v i.i.d.t5/
p
5/3. Parameters:

α0 = 0.01, α1 = 0.6. Break date: t0 = 0.5 · T . Tuning constant for RGMM: c = 6.18.

p0 = 0.45, 5000 Monte Carlo simulations. The nominal level of the tests is 5%.

T = 1000 T = 500

GMM RGMM GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp sup ave exp sup ave exp

0.0 1.54 4.18 3.06 3.76 4.60 4.40 1.16 3.94 2.98 3.20 4.32 4.08

0.1 2.50 6.80 5.64 6.02 7.36 7.18 2.04 6.22 5.10 4.96 6.62 6.52

0.2 6.06 13.5 11.9 12.4 16.1 15.6 4.48 12.4 10.3 10.8 14.8 14.3

0.3 13.0 23.8 21.4 25.1 29.2 28.8 9.28 21.4 18.3 21.2 27.0 26.5

T = 250 T = 125

GMM RGMM GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp sup ave exp sup ave exp

0.0 0.54 3.10 2.24 2.84 4.16 3.72 0.34 1.52 1.10 1.04 2.60 2.44

0.1 0.82 4.58 3.30 3.44 5.92 5.54 0.40 2.66 1.84 1.50 3.90 3.66

0.2 1.94 8.82 6.84 7.48 11.6 10.9 0.48 4.92 3.38 2.88 7.00 6.74

0.3 4.22 16.5 13.0 14.0 21.3 20.1 1.14 8.64 6.48 5.16 12.0 11.4

T = 125 Bootstrap

GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp

0.0 4.62 4.70 4.64 4.94 5.26 5.30

0.1 5.32 6.50 6.24 5.56 6.52 6.52

0.2 8.24 10.5 10.2 9.86 11.5 11.3

0.3 13.3 16.9 16.5 16.9 19.6 19.3
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Table 2d: GMM LM test results for Model 2d: ut v i.i.d.CN (0.05, 0, 3) /
√
1.4.

Parameters: α0 = 0.01, α1 = 0.6. Break date: t0 = 0.5 · T . Tuning constant for

RGMM: c = 6.18. p0 = 0.45, 5000 Monte Carlo simulations. The nominal level of the

tests is 5%.

T = 1000 T = 500

GMM RGMM GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp sup ave exp sup ave exp

0.0 1.22 4.32 3.24 3.56 4.48 4.18 0.76 3.44 2.50 2.94 4.02 3.82

0.1 2.02 6.14 5.16 6.68 8.22 8.04 1.30 5.70 4.38 5.34 7.84 7.62

0.2 5.04 12.0 10.1 14.7 18.0 17.5 3.94 11.5 9.22 13.6 17.2 17.0

0.3 10.0 21.0 18.7 29.7 33.9 33.7 7.64 20.0 17.2 25.0 30.8 30.1

T = 250 T = 125

GMM RGMM GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp sup ave exp sup ave exp

0.0 0.58 2.52 1.66 2.32 3.58 3.22 0.30 1.46 1.06 1.20 2.24 2.06

0.1 0.62 4.06 5.02 3.66 6.02 5.62 0.40 2.32 1.56 1.54 4.14 3.90

0.2 1.98 9.04 6.48 8.92 13.9 13.3 0.56 4.78 3.56 3.50 7.78 7.40

0.3 4.42 16.0 12.9 17.3 24.7 23.8 1.56 8.98 6.88 6.60 14.1 13.5

T = 125 Bootstrap

GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp

0.0 4.56 4.56 4.70 4.62 4.38 4.50

0.1 5.62 6.60 6.40 6.68 7.50 7.50

0.2 9.38 11.6 11.4 11.7 14.1 14.2

0.3 14.8 17.6 17.6 19.4 21.9 22.0
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Table 2e: GMM LM test results for Model 2e: ut v i.i.d.CN (0.1, 0, 3) /
√
1.8.

Parameters: α0 = 0.01, α1 = 0.6. Break date: t0 = 0.5 · T . Tuning constant for

RGMM: c = 6.18. p0 = 0.45, 5000 Monte Carlo simulations. The nominal level of the

tests is 5%.

T = 1000 T = 500

GMM RGMM GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp sup ave exp sup ave exp

0.0 1.08 4.10 3.32 2.76 3.34 3.38 0.68 3.86 2.64 2.72 4.24 4.04

0.1 1.78 5.34 4.18 4.84 6.32 6.04 1.14 5.24 3.88 5.04 6.76 6.62

0.2 3.50 9.20 7.86 10.1 12.1 11.8 2.58 8.92 6.80 9.34 12.1 11.9

0.3 6.78 15.3 13.2 18.5 22.0 21.7 4.66 13.8 11.5 16.1 20.9 20.2

T = 250 T = 125

GMM RGMM GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp sup ave exp sup ave exp

0.0 0.48 2.42 1.72 2.30 3.40 3.16 0.28 1.44 1.12 1.32 2.76 2.54

0.1 0.58 3.30 3.30 2.86 4.88 4.58 0.38 1.50 1.16 1.38 3.14 3.02

0.2 1.00 5.38 5.38 5.50 8.58 8.20 0.42 2.70 1.86 2.22 5.44 5.14

0.3 1.74 8.80 8.80 9.26 14.8 14.4 0.52 4.36 3.10 3.28 8.64 8.28

T = 125 Bootstrap

GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp

0.0 4.66 4.54 4.54 4.70 4.66 4.62

0.1 4.98 5.50 5.50 5.28 6.02 6.00

0.2 6.02 7.54 7.34 8.24 10.2 9.90

0.3 8.92 11.2 11.0 13.0 15.2 14.8
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Table 2f: GMM LM test results for Model 2f: the observations from a sample

of Model 1a are replaced with probability 0.025 by an outlier yt v 4N (0, 0.01/0.4).

Parameters: α0 = 0.01, α1 = 0.6. Break date: t0 = 0.5 · T . Tuning constant for

RGMM: c = 6.18. p0 = 0.45, 5000 Monte Carlo simulations. Nominal size is 5%.

T = 1000 T = 500

GMM RGMM GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp sup ave exp sup ave exp

0.0 1.94 5.34 4.08 3.94 4.70 4.58 1.46 4.38 3.30 3.16 3.78 3.76

0.1 2.96 8.02 6.98 7.36 8.86 8.84 2.20 6.78 5.62 6.16 8.38 7.88

0.2 7.60 14.3 12.8 18.8 22.6 22.1 6.70 14.5 12.7 15.8 20.4 19.9

0.3 15.4 25.9 23.5 37.9 42.7 42.4 13.6 25.1 22.8 32.1 38.0 37.5

T = 250 T = 125

GMM RGMM GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp sup ave exp sup ave exp

0.0 0.84 3.70 2.64 2.42 3.74 3.58 0.92 2.54 2.02 1.62 2.98 2.82

0.1 1.76 7.02 5.50 4.72 7.60 7.20 0.92 4.32 3.48 2.70 5.48 5.38

0.2 5.04 14.5 12.2 11.8 14.3 16.0 1.10 9.72 7.80 6.18 12.1 11.7

0.3 11.1 25.6 22.1 22.7 30.5 29.6 4.16 16.7 13.5 12.1 21.1 20.8

T = 125 Bootstrap

GMM RGMM

α2−α1√
1000/T

sup ave exp sup ave exp

0.0 5.10 5.06 5.08 4.58 4.58 4.50

0.1 7.28 8.86 8.70 7.60 8.72 8.84

0.2 13.3 15.9 15.6 14.2 16.9 16.6

0.3 24.0 27.3 27.1 25.1 28.5 28.1
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Table 3a: GMM LM test results for Model 3a: ui,t v i.i.d.N(0.1). Parameter:

β1 = 1. Break date: t0 = 0.5 · T . Tuning constant for RGMM: c = 4.18. p0 = 0.25,

5000 Monte Carlo simulations. The nominal level of the tests is α0 = 5%.

T = 100 GMM RGMM T = 200 GMM RGMM

β2−β1 sup ave exp sup ave exp (β2−β1) ·
√
2 sup ave exp sup ave exp

0.0 4.42 4.90 5.08 4.14 5.00 5.22 0.0 4.04 4.94 5.14 4.32 5.00 5.14

0.1 11.3 14.3 14.6 11.5 14.4 14.7 0.1 12.1 15.2 14.9 12.6 15.2 14.8

0.2 30.1 38.2 36.7 31.9 39.3 38.3 0.2 37.3 43.8 42.9 37.3 43.8 42.9

0.3 57.3 65.9 64.6 59.7 67.6 67.0 0.3 69.5 75.8 75.5 69.0 75.0 74.5

T = 50 GMM RGMM
T = 50

Bootstrap

GMM RGMM

β2−β1√
2

sup ave exp sup ave exp β2−β1√
2

sup ave exp sup ave exp

0.0 3.28 5.22 4.94 3.18 4.98 4.94 0.0 4.72 4.50 4.54 5.10 4.90 5.02

0.1 7.36 12.2 11.4 8.16 12.9 12.5 0.1 10.4 11.4 11.1 10.7 12.3 11.7

0.2 21.1 29.7 28.9 23.4 32.8 31.7 0.2 25.9 29.2 28.1 27.6 31.4 29.9

0.3 39.7 51.1 49.8 44.6 55.9 55.0 0.3 47.1 51.0 49.5 49.4 54.4 52.7
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Table 3b: GMM LM test results for Model 3a: ui,t v i.i.d.t7/
p
7/5. Parameter:

β1 = 1. Break date: t0 = 0.5 · T . Tuning constant for RGMM: c = 4.18. p0 = 0.25,

5000 Monte Carlo simulations. The nominal level of the tests is α0 = 5%.

T = 100 GMM RGMM T = 200 GMM RGMM

β2−β1 sup ave exp sup ave exp (β2−β1) ·
√
2 sup ave exp sup ave exp

0.0 3.44 4.82 4.84 3.84 4.62 4.40 0.0 4.08 4.96 4.94 3.90 4.60 4.54

0.1 6.94 9.54 9.40 8.42 11.5 11.1 0.1 8.48 10.4 10.3 10.1 12.6 12.3

0.2 18.3 24.8 23.6 23.2 29.5 29.0 0.2 22.4 27.7 26.7 27.6 27.6 31.8

0.3 35.9 44.6 43.6 44.2 55.1 50.7 0.3 44.2 51.5 50.6 52.9 52.9 58.8

T = 50 GMM RGMM
T = 50

Bootstrap

GMM RGMM

β2−β1√
2

sup ave exp sup ave exp β2−β1√
2

sup ave exp sup ave exp

0.0 2.68 4.20 4.40 2.88 4.32 4.44 0.0 5.28 5.42 5.14 4.76 5.14 4.86

0.1 5.50 8.80 8.74 6.12 9.78 9.66 0.1 9.84 10.3 10.3 9.08 9.88 9.62

0.2 13.2 20.0 19.0 16.7 24.9 23.8 0.2 19.9 21.4 21.0 21.8 24.5 24.0

0.3 25.6 35.4 34.0 32.5 43.5 42.6 0.3 32.6 36.5 34.9 39.7 43.3 42.6
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Table 3c: GMM LM test results for Model 3a: ui,t v i.i.d.t5/
p
5/3. Parameter:

β1 = 1. Break date: t0 = 0.5 · T . Tuning constant for RGMM: c = 4.18. p0 = 0.25,

5000 Monte Carlo simulations. The nominal level of the tests is α0 = 5%.

T = 100 GMM RGMM T = 200 GMM RGMM

β2−β1 sup ave exp sup ave exp (β2−β1) ·
√
2 sup ave exp sup ave exp

0.0 3.40 4.94 4.74 3.70 4.42 4.76 0.0 4.26 5.22 5.00 4.36 5.00 5.20

0.1 6.52 9.44 9.24 8.16 11.0 10.7 0.1 7.78 9.48 9.54 9.22 11.3 11.3

0.2 15.4 20.8 20.3 20.6 25.8 25.2 0.2 18.0 22.3 21.3 24.5 29.1 28.1

0.3 30.2 38.0 37.3 39.1 47.0 45.9 0.3 33.9 40.7 39.6 46.3 53.3 52.4

T = 50 GMM RGMM
T = 50

Bootstrap

GMM RGMM

β2−β1√
2

sup ave exp sup ave exp β2−β1√
2

sup ave exp sup ave exp

0.0 3.42 4.92 4.78 3.44 5.16 5.16 0.0 5.52 5.50 5.64 5.28 5.64 5.28

0.1 5.70 8.24 7.96 6.56 9.82 9.88 0.1 8.24 8.56 8.08 8.94 9.82 9.46

0.2 11.8 17.6 17.4 15.9 22.4 21.6 0.2 15.6 17.8 17.3 18.7 21.3 20.1

0.3 21.5 30.5 29.6 29.1 38.2 37.0 0.3 26.6 29.3 28.6 32.6 37.3 35.4
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Table 3d: GMM LM test results for Model 3a: ui,t v i.i.d.CN (0.05, 0, 3) /
√
1.4.

Parameter: β1 = 1. Break date: t0 = 0.5 · T . Tuning constant for RGMM: c = 4.18.

p0 = 0.25, 5000 Monte Carlo simulations. The nominal level of the tests is α0 = 5%.

T = 100 GMM RGMM T = 200 GMM RGMM

β2−β1 sup ave exp sup ave exp (β2−β1) ·
√
2 sup ave exp sup ave exp

0.0 4.08 5.34 5.34 4.36 5.46 5.50 0.0 4.38 5.08 5.26 4.12 5.12 5.06

0.1 6.96 9.14 9.30 9.32 11.7 11.4 0.1 6.82 8.38 8.34 10.3 12.2 12.2

0.2 15.1 20.0 19.6 24.2 29.7 29.0 0.2 15.9 20.7 20.1 28.1 33.5 32.2

0.3 29.3 36.8 35.7 46.1 53.4 52.7 0.3 30.7 37.6 36.7 54.1 60.6 59.7

T = 50 GMM RGMM
T = 50

Bootstrap

GMM RGMM

β2−β1√
2

sup ave exp sup ave exp β2−β1√
2

sup ave exp sup ave exp

0.0 3.30 5.32 5.06 3.32 5.20 5.22 0.0 4.54 4.64 4.82 4.72 5.22 5.06

0.1 5.56 8.82 8.62 7.24 10.4 10.4 0.1 7.86 8.32 8.16 10.3 11.7 11.2

0.2 12.5 18.1 18.0 17.5 24.2 23.7 0.2 16.7 18.9 17.9 23.3 26.3 25.2

0.3 22.9 32.8 31.7 32.5 42.7 41.6 0.3 29.4 32.5 31.3 40.4 45.7 43.6
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Table 3e: GMM LM test results for Model 3a: ui,t v i.i.d.CN (0.1, 0, 3) /
√
1.8.

Parameter: β1 = 1. Break date: t0 = 0.5 · T . Tuning constant for RGMM: c = 4.18.

p0 = 0.25, 5000 Monte Carlo simulations. The nominal level of the tests is α0 = 5%.

T = 100 GMM RGMM T = 200 GMM RGMM

β2−β1 sup ave exp sup ave exp (β2−β1) ·
√
2 sup ave exp sup ave exp

0.0 3.92 5.22 5.22 4.44 5.34 5.58 0.0 4.30 5.04 5.18 4.26 5.08 5.12

0.1 5.92 7.70 7.66 8.26 10.6 10.3 0.1 6.02 8.00 7.50 8.48 10.6 10.2

0.2 11.6 15.7 15.2 18.9 23.8 22.9 0.2 12.7 15.9 15.6 22.2 26.3 25.5

0.3 20.8 26.7 26.0 35.7 43.0 42.1 0.3 22.3 28.0 26.8 42.6 48.5 48.1

T = 50 GMM RGMM
T = 50

Bootstrap

GMM RGMM

β2−β1√
2

sup ave exp sup ave exp β2−β1√
2

sup ave exp sup ave exp

0.0 3.28 5.52 5.40 3.68 5.58 5.26 0.0 4.46 4.36 4.30 4.72 5.18 5.18

0.1 4.56 7.72 7.70 6.22 9.10 8.82 0.1 6.46 6.50 6.60 8.70 9.86 9.36

0.2 9.48 14.2 13.7 13.9 19.8 19.4 0.2 12.0 13.0 12.6 18.4 20.8 19.9

0.3 16.2 22.7 22.3 25.4 34.8 34.0 0.3 19.9 22.2 21.8 32.3 36.3 34.5
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Table 3f: GMM LM test results for Model 3f: the observations of components

i = 1,..., 5 from a sample of model 1a are replaced with probability 0.05 by an outlier

Wi,t ∼ (3 ·N(0, 1))2. Parameter: β1 = 1. Break date: t0 = 0.5 · T . Tuning constant

for RGMM: c = 4.18. p0 = 0.25, 5000 Monte Carlo simulations. The nominal level of

the tests is α0 = 5%.

T = 100 GMM RGMM T = 200 GMM RGMM

β2−β1 sup ave exp sup ave exp (β2−β1) ·
√
2 sup ave exp sup ave exp

0.0 3.76 5.04 5.18 3.76 5.12 5.02 0.0 4.06 5.10 4.82 4.28 5.26 5.14

0.1 9.38 12.2 11.9 10.1 13.6 13.1 0.1 9.03 11.9 11.4 11.2 13.7 13.3

0.2 22.8 29.9 28.8 27.5 34.4 33.5 0.2 24.9 31.0 29.9 31.1 36.6 36.0

0.3 44.3 53.4 52.6 51.5 59.7 58.5 0.3 49.1 56.2 55.3 59.7 65.4 64.4

T = 50 GMM RGMM
T = 50

Bootstrap

GMM RGMM

β2−β1√
2

sup ave exp sup ave exp β2−β1√
2

sup ave exp sup ave exp

0.0 3.40 5.34 5.22 3.46 5.10 5.54 0.0 5.04 5.08 5.22 4.82 4.70 4.72

0.1 6.46 10.4 9.96 7.50 11.4 11.1 0.1 9.26 9.92 9.86 10.4 12.0 11.5

0.2 17.2 24.7 23.9 19.3 27.7 26.8 0.2 20.6 23.6 22.7 24.7 27.6 26.5

0.3 32.3 44.0 43.0 38.1 49.0 48.8 0.3 37.2 40.8 40.0 44.1 48.5 46.9

57



Table 3g: GMM LM test results for Model 3g: the observations of components

i = 1,..., 5 from a sample of model 1a are replaced with probability η by an outlier

Wi,t such that Wi,t ∼ (3 ·N(0, 1))2 for t = 1, ..., 0.5 · T . Parameter: β1 = 1. Break

date: t0 = 0.5 ·T . Tuning constant for RGMM: c = 4.18. p0 = 0.25, 5000 Monte Carlo

simulations. The nominal level of the tests is α0 = 5%.

T = 100 GMM RGMM T = 200 GMM RGMM

η sup ave exp sup ave exp η sup ave exp sup ave exp

0.0 57.3 65.9 64.6 59.7 67.6 67.0 0.0 69.5 75.8 75.5 69.0 75.0 74.5

0.025 41.4 49.2 48.3 44.7 53.3 52.4 0.025 39.5 46.9 45.7 47.4 54.1 53.0

0.05 27.8 35.4 34.8 31.8 39.2 38.3 0.05 22.5 27.8 27.3 29.2 35.7 34.6

0.075 18.4 24.9 23.9 20.1 26.7 25.7 0.075 13.5 17.2 16.9 16.5 20.3 19.8

T = 50 GMM RGMM
T = 50

Bootstrap

GMM RGMM

η sup ave exp sup ave exp η sup ave exp sup ave exp

0.0 39.7 51.1 49.8 44.6 55.9 55.0 0.0 47.1 51.0 49.5 49.4 54.4 52.7

0.025 30.3 42.1 40.9 34.4 45.6 44.4 0.025 39.1 42.6 41.4 41.3 45.9 44.3

0.05 24.4 34.4 33.5 26.6 36.8 36.0 0.05 30.6 33.8 33.2 33.0 36.7 35.2

0.075 19.4 28.5 27.3 20.5 29.3 28.3 0.075 25.3 28.0 27.3 25.1 28.7 27.9
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