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This supplementary material provides in Section 1 the computation of the term structures of con-

ditional first- and second-order moments of liquidation counts. In Section 2 we present the figures of

the term structures of conditional volatility and overdispersion of liquidation counts under the three

stressing scenarios described in Section 3.6 of the paper.

1 Term structures of conditional moments of liquidation counts

Let us consider the dynamic Poisson model with Autoregressive Gamma frailty (see Sections 2.3 and

3.4):

Yk,t ∼ P(ak + bkFt + c′kYt−1), k = 1, ..., K.

The size adjustments are γk,t = 1, for all t and k. Since the joint process (Yt, Ft) is affine, the

conditional mean and variance of vector (Y ′
t+1, Ft+1)

′ given (Yt, Ft) are linear affine functions of vector

(Y ′
t , Ft)

′. This implies that the vector including the elements of Yt, Ft, their squares and cross-terms:

ξt = (Ft, Y
′
t , F

2
t , FtY

′
t , vec(YtY

′
t )

′)′, (b.1)

is such that the conditional expectation Et[ξt+1] is a linear affine function of ξt. 1 Therefore:

Et[ξt+1] = E[ξt] + Ψ(ξt −E[ξt]), (b.2)

for a matrix Ψ, given in Proposition A.1 below. The unconditional mean E[ξt] can be computed from

Proposition 1 and equation (a.3) in the paper:

E[ξt] =
(
1, μ′, 1 + δ−1,Γ′, vec(M2)

′)′ , (b.3)

where μ = (Id−C)−1(a+ b), Γ = δ−1(Id− ρC)−1b+ μ, and the matrix M2 = E[YtY
′
t ] is such that:

vec(M2) = (Id− C ⊗ C)−1vec
[
diag(μ) + δ−1bb′ + δ−1ρC(Id− ρC)−1bb′

+δ−1ρbb′(Id− ρC ′)−1C ′] + μ⊗ μ,

1We could use vech(YtY
′
t ) instead of vec(YtY

′
t ) to include in vector ξt only the different elements of the symmetric

matrix YtY
′
t . However, our choice simplifies the expression of matrix Ψ in Proposition A.1.
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where δ is the degree of freedom of the gamma stationary distribution of the frailty, ρ is its first-order

autocorrelation, and ⊗ denotes the Kronecker product. By the Law of Iterated Expectation, we deduce:

Et[ξt+τ ] = E[ξt] + Ψτ (ξt − E[ξt]), (b.4)

for any horizon τ ≥ 1. This equation allows to compute the term structure of conditional first- and

second-order moments of process (Yt, Ft). We use equation (b.4) to compute the term structures of

expected liquidation counts in Figures 12-14 of the paper, and the term structures of volatility and

overdispersion of liquidation counts in Figures 15-20 in Section 2 of this supplementary material.

Proposition A.1: The matrix Ψ is given by:

Ψ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ 0 0 0 0

ρb C 0 0 0

ψ31 0 ρ2 0 0

ρa+ ψ31b (1 − ρ)C ρ2b ρC 0

ψ51 ψ52 ρ2b⊗ b ρ(b⊗ C + C ⊗ b) C ⊗ C

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (b.5)

in a block form corresponding to the block form of vector ξt in equation (b.1), where:

ψ31 = 2ρ(1 − ρ)(1/δ + 1),

ψ51 = ρ[vec(diag(b)) + a⊗ b+ b⊗ a] + ψ31b⊗ b,

ψ52 = C̃ + [a + (1 − ρ)b] ⊗ C + C ⊗ [a+ (1 − ρ)b],

and C̃ is the K2 ×K matrix whose i-th column is equal to vec(diag(ci)), where ci is the i-th column

of C.

Proof: Let us compute the conditional expectation of the elements of vector ξt+1.

a) From Appendix 1 i), the conditional mean of Ft+1 given (Yt, Ft) is:

Et[Ft+1] = 1 + ρ(Ft − 1). (b.6)

b) From Appendix 2 ii), the conditional mean of Yt+1 given (Yt, Ft) is:

Et[Yt+1] = a + bEt[Ft+1] + CYt = μ+ ρb(Ft − 1) + C(Yt − μ). (b.7)

c) Let us now consider the conditional mean of F 2
t+1 given (Yt, Ft). From Appendix 1 i) we have:

Vt[Ft+1] = ν2δ + 2ην2Ft =
1 − ρ2

δ
+ 2

ρ(1 − ρ)

δ
(Ft − 1), (b.8)
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where we use ρ = νη and ν = (1 − ρ)/δ. From equation (b.6) we get:

Et[F
2
t+1] = 1/δ + 1 + ρ2(F 2

t − 1/δ − 1) + 2ρ(1 − ρ)(1/δ + 1)(Ft − 1). (b.9)

d) Let us now consider the conditional mean of Yt+1Ft+1 given (Yt, Ft). From Appendix 2 iii) we have:

Et[Yt+1Ft+1] = aEt[Ft+1] + bEt[F
2
t+1] + C(1 − ρ+ ρFt)Yt. (b.10)

From equations (b.6) and (b.9) we get:

Et[Yt+1Ft+1] = a+ (1/δ + 1)b+ [ρa + 2ρ(1 − ρ)(1/δ + 1)b](Ft − 1) + ρ2b(F 2
t − 1/δ − 1)

+(1 − ρ)CYt + ρCYtFt.

We can write the conditional expectation Et[Yt+1Ft+1] as a linear affine function of the zero-mean

processes Ft − 1, F 2
t − 1/δ − 1, Yt − μ and YtFt − Γ. Then, the constant in such an equation must be

the unconditional expectation Γ, and we get:

Et[Yt+1Ft+1] = Γ + [ρa + 2ρ(1 − ρ)(1/δ + 1)b](Ft − 1) + ρ2b(F 2
t − 1/δ − 1)

+(1 − ρ)C(Yt − μ) + ρC(YtFt − Γ). (b.11)

e) Finally, let us consider the conditional mean of Yt+1Y
′
t+1 given (Yt, Ft). From Appendix 2 iii) we

have:

Et[Yt+1Y
′
t+1] = diag(a+ bEt[Ft+1] + CYt) + bb′Vt[Ft+1]

+(a+ bEt[Ft+1] + CYt)(a+ bEt[Ft+1] + CYt)
′.

From equations (b.6) and (b.8) we get:

Et[Yt+1Y
′
t+1] = diag(a+ (1 − ρ)b+ ρbFt + CYt) +

1 − ρ2

δ
bb′ + 2

ρ(1 − ρ)

δ
bb′(Ft − 1)

+[a + (1 − ρ)b][a + (1 − ρ)b]′ + ρ[a + (1 − ρ)b]b′Ft + [a+ (1 − ρ)b]Y ′
tC

′

+ρb[a + (1 − ρ)b]′Ft + ρ2bb′F 2
t + ρbFtY

′
tC

′

+CYt[a + (1 − ρ)b]′ + ρCYtFtb
′ + CYtY

′
tC

′.

Therefore, by gathering in the RHS the terms with the zero-mean processes Ft − 1, F 2
t − 1/δ − 1,

Yt − μ, YtFt − Γ and YtY
′
t −M2, we get:

Et[Yt+1Y
′
t+1] = M2 + {ρ[diag(b) + ab′ + ba′] + 2ρ(1 − ρ)(1/δ + 1)bb′} (Ft − 1)

+diag[C(Yt − μ)] + C(Yt − μ)[a+ (1 − ρ)b]′ + [a+ (1 − ρ)b](Yt − μ)′C ′

+ρ2bb′(F 2
t − 1/δ − 1) + ρC(YtFt − Γ)b′ + ρb(YtFt − Γ)′C ′ + C(YtY

′
t −M2)C

′.
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Let us now compute the vec of both sides of the equation, by using that vec(ABC) = (C ′⊗A)vec(B)

for conformable matrices A,B,C, vec(ab′) = b ⊗ a for vectors a, b, and vec(diag[C(Yt − μ)]) =

C̃(Yt − μ) [see e.g. Magnus, Neudecker (2007)]. We get:

Et[vec(Yt+1Y
′
t+1 −M2)] = {ρ[vec(diag(b)) + a⊗ b+ b⊗ a] + 2ρ(1 − ρ)(1/δ + 1)b⊗ b} (Ft − 1)

+
(
C̃ + [a + (1 − ρ)b] ⊗ C + C ⊗ [a+ (1 − ρ)b]

)
(Yt − μ)

+ρ2b⊗ b(F 2
t − 1/δ − 1) + ρ(b⊗ C + C ⊗ b)(YtFt − Γ)

+(C ⊗ C)vec(YtY
′
t −M2). (b.12)

From equations (b.6), (b.7), (b.9), (b.11) and (b.12) the conclusion follows. �

2 Term structures of conditional volatilities and overdispersion of

liquidation counts under stress scenarios

In Figures 15 and 16 we display the term structures of the volatility of the liquidation counts, and of

their overdispersion, respectively, under stressing of the factor value (stress scenario S.1 defined in

Section 3.6).

[Insert Figure 15: Term structure of liquidation volatility when stressing the current factor value]

[Insert Figure 16: Term structure of liquidation overdispersion when stressing the current factor value]

The term structures of volatility and overdispersion of the liquidation counts under stressing of the

contagion matrix (stress scenario S.2), and under stressing of the frailty persistence (stress scenario

S.3), are displayed in Figures 17-18, and 19-20, respectively.

[Insert Figure 17: Term structure of liquidation volatility when stressing the contagion matrix]

[Insert Figure 18: Term structure of liquidation overdispersion when stressing the contagion matrix]

[Insert Figure 19: Term structure of liquidation volatility when stressing the frailty persistence]

[Insert Figure 20: Term structure of liquidation overdispersion when stressing the frailty persistence]

In Figures 15 and 16, when the current value of the frailty is equal to the historical median q0.5 = 0.520,

the term structures of volatility and overdispersion of the liquidation counts are upward sloping. As
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for the term structure of expected liquidation counts in Figure 12, this is due to the conditioning

information, that includes historically low values of the liquidation counts at the current date, and a

value of the frailty below the historical mean E[Ft] = 1. All management styles feature conditional

overdispersion larger than 1 for all horizons, which is due to the lagged liquidation counts (at horizons

larger than one month) and the unobservable frailty. The shock on the factor value has a temporary

effect on the term structures of volatility and overdispersion of the liquidation counts. Comparing

Figures 15 and 16 with Figure 12, this effect features a larger time lag compared to the effect on the

term structure of expected liquidation counts. In particular, the largest effects on the term structure of

overdispersion are at about 3-6 months after the shock on the frailty. In Figures 17 and 18, the shock

on the contagion matrix is a persistent shock, and the patterns of the effects on the term structures of

volatility and overdispersion of the liquidation counts are rather similar as for the term structure of

expected liquidation in Figure 13. Finally, in Figures 19 and 20, the effects of the shock to the frailty

persistence on the term structures of volatility and overdispersion have different signs depending on

the horizon. Indeed, in the medium/short term (up to 24 months, say), the effect of the shock is to

reduce the volatility and the overdispersion of the liquidation counts, while in the long term the effect

is to increase volatility and overdispersion. This pattern is the result of the combination of two effects

acting in opposite directions. In the short term, the dominating effect of the positive shock on the

frailty persistence is to increase the likelihood of a future frailty value below the historical average.

In the long term, the term structures of volatility and overdispersion converge to the unconditional

values. From equation (b.3), the unconditional volatility and overdispersion of the liquidation counts

are increasing functions of the frailty autocorrelation ρ, as long as the elements of sensitivity vector b

and contagion matrix C are positive. Therefore, the increase of the frailty autocorrelation parameter

corresponds to a persistent shock on the volatility and overdispersion of the liquidation counts. This

explains the impact on their term structures in the long run. Such a long run impact is not observed

in Figure 14, since the unconditional expectation of the liquidation counts is independent of the frailty

persistence.
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Figure 15: Term structure of liquidation volatility when stressing the current factor value

1 12 24
1

1.5

2

2.5

3
Convertible arbitrage

horizon
1 12 24

0.5

1

1.5

2

2.5
Emerging markets

horizon
1 12 24

1

1.5

2

2.5

3
Equity market neutral

horizon

1 12 24
1

2

3

4

5
Event driven

horizon
1 12 24

0

0.5

1

1.5

2

2.5
Fixed income arbitrage

horizon
1 12 24

1

1.1

1.2

1.3

1.4

1.5
Global macro

horizon

1 12 24
2

4

6

8

10
Long/short equity hedge

horizon
1 12 24

1

1.5

2

2.5
Managed futures

horizon
1 12 24

0.5

1

1.5

2

2.5

3
Multi−strategy

horizon

Term structure of conditional volatility V [Yk,t+τ |Yt, Ft]1/2 of liquidation counts for horizon τ = 1, 2, ..., 24 months,

by management style k. Squares and circles correspond to conditioning sets with F t equal to the median and the 95%

quantile, respectively, of the stationary distribution of the frailty. The liquidation counts vector Y t in the conditioning set

corresponds to the observations in June 2009 for both curves. The model is the specification including frailty and contagion,

with intensity parameters as in Tables 5 and 6, and frailty dynamic parameters δ = 0.59 and ρ = 0.74, corresponding to

the estimates of Section 3.4.
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Figure 16: Term structure of liquidation dispersion when stressing the current factor value
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Term structure of conditional dispersion V [Yk,t+τ |Yt, Ft]/E[Yk,t+τ |Yt, Ft] of liquidation counts for horizon τ =

1, 2, ..., 24 months, by management style k. Squares and circles correspond to conditioning sets with F t equal to the

median and the 95% quantile, respectively, of the stationary distribution of the frailty. The liquidation counts vector Y t in

the conditioning set corresponds to the observations in June 2009 for both curves. The model is the specification includ-

ing frailty and contagion, with intensity parameters as in Tables 5 and 6, and frailty dynamic parameters δ = 0.59 and

ρ = 0.74, corresponding to the estimates of Section 3.4.
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Figure 17: Term structure of liquidation volatility when stressing the contagion matrix
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Term structure of conditional volatility V [Yk,t+τ |Yt, Ft]1/2 of liquidation counts for horizon τ = 1, 2, ..., 24 months,

by management style k. Squares and circles correspond to models with contagion matrices C s = Ĉ and Cs = 2Ĉ,

respectively, where Ĉ is the matrix of estimates in Table 6. The intercepts and frailty sensitivities are as in Table 5, and the

frailty dynamic parameters are δ = 0.59 and ρ = 0.74, corresponding to the estimates of Section 3.4. The factor value F t

in the conditioning set corresponds to the median of the stationary distribution of the frailty, while the liquidation counts

vector Yt in the conditioning set corresponds to the observations in June 2009 for both curves.
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Figure 18: Term structure of liquidation dispersion when stressing the contagion matrix

1 12 24
1

2

3

4
Convertible arbitrage

horizon
1 12 24

0

2

4

6
Emerging markets

horizon
1 12 24

1

2

3

4
Equity market neutral

horizon

1 12 24
0

2

4

6
Event driven

horizon
1 12 24

0

5

10
Fixed income arbitrage

horizon
1 12 24

1

1.05

1.1

1.15

1.2
Global macro

horizon

1 12 24
2

4

6

8
Long/short equity hedge

horizon
1 12 24

1

1.5

2
Managed futures

horizon
1 12 24

1

2

3

4
Multi−strategy

horizon

Term structure of conditional dispersion V [Yk,t+τ |Yt, Ft]/E[Yk,t+τ |Yt, Ft] of liquidation counts for horizon τ =

1, 2, ..., 24 months, by management style k. Squares and circles correspond to models with contagion matrices C s = Ĉ

and Cs = 2Ĉ, respectively, where Ĉ is the matrix of estimates in Table 6. The intercepts and frailty sensitivities are as

in Table 5, and the frailty dynamic parameters are δ = 0.59 and ρ = 0.74, corresponding to the estimates of Section 3.4.

The factor value Ft in the conditioning set corresponds to the median of the stationary distribution of the frailty, while the

liquidation counts vector Yt in the conditioning set corresponds to the observations in June 2009 for both curves.
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Figure 19: Term structure of liquidation volatility when stressing the frailty persistence
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Term structure of conditional volatility V [Yk,t+τ |Yt, Ft]1/2 of liquidation counts for horizon τ = 1, 2, ..., 24 months, by

management style k. Squares and circles correspond to models with frailty autocorrelation ρ s = 0.74 (corresponding to the

estimate in Section 3.4) and ρs = 0.90, respectively. The intensity parameters are as in Tables 5 and 6, and the parameter

characterizing the stationary distribution of the frailty is δ = 0.59, corresponding to the estimate of Section 3.4. The factor

value Ft in the conditioning set corresponds to the median of the stationary distribution of the frailty, while the liquidation

counts vector Yt in the conditioning set corresponds to the observations in June 2009 for both curves.
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Figure 20: Term structure of liquidation dispersion when stressing the frailty persistence
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Term structure of conditional dispersion V [Yk,t+τ |Yt, Ft]/E[Yk,t+τ |Yt, Ft] of liquidation counts for horizon τ =

1, 2, ..., 24 months, by management style k. Squares and circles correspond to models with frailty autocorrelation

ρs = 0.74 (corresponding to the estimate in Section 3.4) and ρ s = 0.90, respectively. The intensity parameters are as

in Tables 5 and 6, and the parameter characterizing the stationary distribution of the frailty is δ = 0.59, corresponding

to the estimate of Section 3.4. The factor value F t in the conditioning set corresponds to the median of the stationary

distribution of the frailty, while the liquidation counts vector Y t in the conditioning set corresponds to the observations in

June 2009 for both curves.
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