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Positional Portfolio Management

Abstract

In this paper we introduce and study positional portfolio management. In a positional allocation strat-

egy, the manager maximizes an expected utility function written on the cross-sectional rank (position)

of the portfolio return. The objective function reflects the goal of the manager to be well-ranked among

his/her competitors. To implement positional allocation strategies, we specify a nonlinear unobserv-

able factor model for the asset returns. The model disentangles the dynamics of the cross-sectional

distribution of the returns and the dynamics of the ranks of the individual assets within the cross-

sectional distribution. We estimate the model on a large set of stocks traded in the NYSE, AMEX

and NASDAQ markets between 1990/1 and 2009/12, and implement the positional strategies for dif-

ferent investment universes. The positional strategies outperform standard momentum, reversal and

mean-variance allocation strategies for most criteria. Moreover, the positional strategies outperform

the equally weighted portfolio for criteria based on position.

JEL Codes: C38, C55, G11.

Keywords: Positional Good, Robust Portfolio Management, Rank, Fund Tournament, Factor Model,

Big Data, Equally Weighted Portfolio, Momentum, Positional Risk Aversion.
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1 Introduction

The management fees of portfolio managers should be designed to reconcile the objectives of these

managers with the objectives of the investors. They depend on the asset under management for mutual

funds, and also on the returns of the portfolio above some benchmark threshold, the so-called high-

water mark, for hedge funds [Brown, Harlow, and Starks (1996), Aragon and Nanda (2012), Darolles

and Gourieroux (2014)]. These designs might be not entirely satisfactory and induce spurious portfolio

management. For instance, the effect of high-water mark can lead managers to take too risky short term

positions and use a high leverage. Similarly, to increase his/her market share, that is the asset under

management, the manager has to get better performance than his/her competitors. In this respect, the

manager might be more interested in relative performance than in absolute performance, especially

when the journals for investors write lead articles or even make their cover page on the ranking of

funds. For instance, “in the Managed and Personal Investing section of the Wall Street Journal Europe,

the Fund Scorecard provides the return of the top fifteen performers in a category” [Goriaev, Palomino,

and Prat (2001)].

The traditional Finance theory assesses the quality of a portfolio management strategy by consid-

ering the expected (indirect) utility of the portfolio value, or of the portfolio return. A portfolio with

10% expected return is preferred to a portfolio with 8% expected return for a given level of risk. How-

ever, this preference ordering can be questioned if we account for the context, that is, for competing

portfolio managements. Do we prefer a 10% return when the competing portfolio return is 20%, or

a 8% return when the competing portfolio return is 5% ? Indeed, with 8% return the portfolio man-

ager is number one, whereas he/she is not with 10% return. Economic theory uses the term positional

good to “denote the good for which the link between context”, i.e., the behaviour of other economic
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agents, “and evaluation is the strongest”, and the term nonpositional good to denote that for which the

link is the weakest [Hirsch (1976), Frank (1991)]. Positional theory has proved useful to explain the

escalation of expenditures in armaments, the race for technology in electronic financial markets [Bi-

ais, Foucault, and Moinas (2013)], the negative association between happiness measures and average

neighbourhood income [Easterlin (1995), Frey and Stutzer (2002)], the sharp increase in the surface

of newly constructed houses in the United States, the labour force participation of married women

[Neumark and Postlewaite (1998)], and the demand for luxury goods [Frank (1999)]. The application

of positional theory in Finance, which is the closest to the topic of this paper, is the competition for tal-

ented agents, especially for CEOs, fund managers, or traders in the finance sector [see e.g. Gabaix and

Landier (2008), Thanassoulis (2012)]. Indeed, the fact that investors look for talented fund managers

might explain the incentive for positioning introduced in the contracts for management fees, as well

as the race of fund managers to be well ranked, i.e. the so-called fund tournament [Goriaev, Palomino,

and Prat (2001), Goriaev, Nijman, and Werker (2005), Chen and Pennacchi (2009), Schwarz (2012)].

The aim of this paper is to introduce the positional concern in portfolio management. The posi-

tional portfolio management is based on the maximization of the expected utility of the future rank (or

position) of the portfolio value, as opposed to the traditional portfolio management which focuses on

the expected utility of the future portfolio value itself. The positional portfolio management leads to

new types of allocations strategies, which we compare theoretically and empirically with traditional

allocation strategies, such as mean-variance, momentum and contrarian (or reversal) strategies, as well

as the naive 1/n portfolio. We measure the ability of positional strategies to yield portfolio returns

that rank well cross-sectionally. A positional strategy diverts resources to be well ranked in the race

among portfolio managers and might diminish the absolute performance compared to nonpositional

strategies. In this respect, such a management does not necessarily act in the interest of investors.
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Therefore, one goal of our analysis is to measure the loss (or gain) of absolute performance due to a

positional strategy.1

In Section 2, we introduce the notion of cross-sectional rank (position). This notion is used to

define a positional portfolio management, and is at the core of the distinction of this management

from the standard management based on the expected utility of future portfolio returns. A positional

strategy can be interpreted as a standard strategy in which the utility function is replaced by a stochastic

utility, which is function of the stochastic future cross-sectional distribution of returns. To implement

the positional portfolio strategy we need an appropriate specification which disentangles the dynamics

of the ranks from those of the cross-sectional distribution of returns. The model for the dynamics of

ranks is introduced in Section 3. The Gaussian ranks follow a conditionally Gaussian autoregressive

process, with the autoregressive coefficient accounting for positional persistence. The latter can depend

on unobservable individual heterogeneities and stochastic dynamic factors. The dynamic model for the

ranks is used in Section 4 to construct a first type of positional portfolio allocation strategies, which are

compared with standard momentum and reversal strategies on a large panel of returns for stocks traded

in the NYSE, AMEX and NASDAQ markets. The investment universe for these positional strategies

consists of about 1000 stocks, which illustrates the big data aspect of our analysis. In Section 5 we

complete the model by introducing an appropriate specification for the dynamics of the cross-sectional

distribution of individual stock returns. The distribution is chosen in the Variance-Gamma family,

with stochastic mean, variance, skewness and kurtosis driven by unobservable common factors, in

order to accommodate time-varying higher-order moments of the cross-sectional returns distribution.

The full vector of macro-factors driving positional persistence and the moments of the cross-sectional

1We do not discuss in this paper the positive or negative effects of such tournaments on the global social welfare, as
possible misuse of resources on the negative side, and acceleration of innovation on the positive side.
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distribution follows a vector autoregressive (VAR) process. The specifications for the dynamics of

positions, cross-sectional distribution and underlying factors define the joint dynamics of returns. The

complete dynamic model is summarized in Scheme 1.

Scheme 1: The model structure

Positional factor Ranks

Returns

Distributional factors Cross-sectional distribution

This complete dynamic model is used in Section 6 to construct efficient positional portfolio allocation

strategies. We compare the performance of the momentum and efficient positional strategies with

the performance of traditional mean-variance, minimum-variance and 1/n strategies. We find that

the positional strategies implemented out-of-sample outperform momentum and reversal strategies,

as well as mean-variance and minimum-variance strategies in terms of average positional utility and

Sharpe ratio. The performance of the positional strategies is similar to that of the equally-weighted

portfolio according to these criteria, but the former outperform the latter in terms of probability to

be well-ranked. Section 7 concludes. Technical proofs and a discussion of the Nash equilibrium of

positional strategies are gathered in Appendices.

6



2 Positional portfolio management

2.1 Returns and positions

Let us consider a set of n risky assets i = 1, . . . , n, which can be either stocks, or fund portfolios,

and a riskfree asset with riskfree rate rf,t. We denote by yi,t the return of risky asset i in period t, for

t = 1, ..., T . At any given date, the observed returns can be used to define the ranks (or positions)

of the assets. For this purpose, it is necessary to distinguish the ex-ante and ex-post notions of rank

(or position). The ex-post ranks are simply obtained by ranking at any given date t the asset returns

from the smallest one to the largest one, and then taking their positions in this ranking (divided by

n). Formally, the ex-post ranks are defined as û∗i,t = Ĥ∗t (yi,t), where Ĥ∗t (·) is the empirical cross-

sectional (CS) cumulative distribution function (c.d.f.) of the returns at date t. In the ex-ante analysis,

the empirical cross-sectional c.d.f. at the current date t is replaced by its theoretical analogue, denoted

by H∗t (·) (see Appendix 1). Then, the ex-ante ranks are given by u∗i,t = H∗t (yi,t). The rank u∗i,t

corresponds to the position of return yi,t ex-ante with respect to the observation of the other asset

returns. The ex-ante ranks have a cross-sectional uniform distribution on the interval [0, 1], whereas

the ex-post ranks have the discrete empirical uniform distribution on {1/n, 2/n, ..., 1}.

Since the ranks are defined up to an increasing transformation, we can also introduce the ex-ante

and ex-post Gaussian ranks. They are obtained from the corresponding uniform ranks by applying the

quantile function of the standard normal distribution:

ui,t = Φ−1(u∗i,t) and ûi,t = Φ−1(û∗i,t), (2.1)

where Φ is the c.d.f. of the standard normal distribution. The ex-ante Gaussian ranks ui,t (resp. the

ex-post Gaussian ranks ûi,t) are standardized to ensure a cross-sectional standard normal distribution
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(resp. a cross-sectional distribution close to the standard normal one for large n). For instance, if asset

i has ex-post rank û∗i,t = 0.95, there are 95% of assets in the sample with a smaller or equal return on

time t, and 5% of assets with a larger return. The corresponding ex-post Gaussian rank is ûi,t = 1.64,

that is the 95% quantile of the standard normal distribution. If an asset i has ex-ante rank ui,t = 0.95,

there is a probability equal to 0.95 that the return at time t of any other asset is smaller or equal to the

return of asset i. The ex-ante Gaussian ranks are related to the returns by the equation ui,t = Ht(yi,t),

where Ht is the compound function Ht = Φ−1 ◦H∗t .

To illustrate the notions of ex-ante and ex-post cross-sectional distributions, we consider the sub-

sample of all Center for Research in Security Prices (CRSP) common stocks 2 traded on the New York

Stock Exchange (NYSE), the American Stock Exchange (AMEX) and the NASDAQ, for which the

monthly holding-period returns are available for the period ranging from January 1990 to December

2009. We exclude from the dataset the stocks for which monthly volume data are either missing, or

equal to 0, at some months. We get a balanced panel for the returns of n = 939 companies, with

T = 240 monthly observations. We compute the empirical cross-sectional distribution of returns Ĥ∗t

at the end of each month of the sample. The associated smoothed probability density functions are

displayed in Figure 1.

[ FIGURE 1: Time series of cross-sectional distributions of monthly CRSP stock returns. ]

We deduce from these distributions the associated 5%, 25%, 50%, 75%, 95% empirical cross-sectional

quantiles, which are time varying. The time series of these quantiles are displayed in Figure 2.

[ FIGURE 2: Time series of quantiles of the CS distributions of monthly CRSP stock returns.]
2Common stocks are stocks with CRSP End of Period Share Code 10 and 11. Therefore, our sample does not include

Certificates, American Depositary Receipts (ADR), Shares of Beneficial Interest (SBI), Units, Exchange-Traded Funds
(ETF), Companies incorporated outside the U.S., Close-ended funds, and Real Estate Investment Trusts (REIT). Stock
prices are denominated in US dollars. The CRSP dataset includes 15044 different common stocks listed in the NYSE, the
AMEX and the NASDAQ, in the period from January 1990 to December 2009.
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The empirical cross-sectional distributions are generally unimodal, with a mode close to the zero

return. They vary over time, mainly in their concentration and tails. As expected, we observe in

Figure 2 an endogenous clustering of these effects: the individual returns are more cross-sectionally

concentrated at some periods of time, and less concentrated at some other ones.

In Figure 3 we consider an hypothetical riskfree asset with a constant monthly return 0.05 and

provide the time series of its ex-post Gaussian ranks.

[ FIGURE 3: Time series of ex-post Gaussian ranks associated with a constant monthly return of

0.05.]

This constant return is below the CS median in some months, and above the 95% CS quantile in other

months. In Figure 3 these effects are reflected by the fact that the ex-post Gaussian rank is smaller

than 0, or larger than 1.64, respectively, at some months.

2.2 Positional management strategies

Let us assume that the investor’s information at date t, denoted by It, includes the current and past

realizations of all asset returns: It = (rf,t, yt), where yt = (yt, yt−1, . . . ) and yt = (y1,t, . . . , yn,t)
′.

The standard (myopic) portfolio management summarizes the preferences of the investor by means of

an increasing concave indirect utility function U written on the future portfolio value. The investor

selects at time t the portfolio allocation which maximizes the expected utility of the future portfolio

value. Let us consider a portfolio invested in both risky and riskfree assets and denote by γ the vector

of dollar allocations in the risky assets, wr = γ′e the budget invested in the risky assets, and e the

n-dimensional unit vector. Then, α = γ/wr is the vector of relative allocations in the risky assets. By
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taking into account the budget constraint, the future portfolio value is equal to:

Wt+1 = Wt(1 + rf,t) + γ′ỹt+1 = Wt(1 + rf,t) + wrα
′ỹt+1,

where Wt is the portfolio value at date t and ỹt+1 = yt+1 − rf,te is the vector of excess returns. The

optimization problem provides the optimal allocations γ̂t by:

γ̂t = arg max
γ

Et (U [Wt(1 + rf,t) + γ′ỹt+1]) , (2.2)

where Et(·) = E(·|It) is the conditional expectation given the available information at time t, and the

allocation γ̂t can depend on this information. The optimal values γ̂t, ŵr,t = γ̂′te and α̂t = γ̂t/ŵr,t are

also solutions of the two equivalent constrained optimization problems:

γ̂t = arg max
γ

Et (U [Wt(1 + rf,t) + γ′ỹt+1]) ,

s.t. γ′e = ŵr,t,

and:

α̂t = arg max
α

Et (U [Wt(1 + rf,t) + ŵr,tα
′ỹt+1]) , (2.3)

s.t. α′e = 1.

Thus, the optimization can be splitted into two parts. In a first step we consider the optimal allocation of

the total budget between the riskfree asset and the set of risky assets, that isWt−ŵr,t and ŵr,t. Then, the

budget ŵr,t is allocated between risky assets. For a CARA indirect utility function and conditionally

Gaussian returns, we get the standard mean-variance efficient allocation [see e.g. Ingersoll (1987),

p. 98]. In this case the quantity ŵr,t depends on the risk aversion and on the conditional distribution of

excess returns, but not on the initial portfolio value Wt. The relative allocations vector α̂t depends on
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the conditional distribution of excess returns only:

α̂t =
1

e′ [Vt(ỹt+1)]
−1Et(ỹt+1)

· [Vt(ỹt+1)]
−1Et(ỹt+1).

The objective of a fund manager could be, for instance, to provide a high portfolio (excess) return,

or perhaps to provide a better (excess) return than his competitors. In the latter case, he can prefer

to be in the “top ten”, whatever the return levels are. Such a positional strategy can be developed for

the whole portfolio including both riskfree and risky assets, or only for the risky part of the portfolio

once the budgets for the riskfree and risky parts of the portfolio have been fixed. We follow the

second approach, that is, we derive the optimal positional allocations vector γ subject to the constraint

γ′e = wr, for wr given. We keep the same definition of the ranks as in Section 2.1, that is, we compare

the position of portfolios with the positions of each individual stock. Thus, in a first step we consider as

exogenous competitors portfolios invested in single assets. We show in Appendix 2 i) that the optimal

positional strategy is γ∗t = wrα
∗
t , where:

α∗t = arg max
α: α′e=1

Et [U (Ht+1(α
′yt+1))] (2.4)

= arg max
α: α′e=1

Et

[
U

(
Ht+1

(
n∑
i=1

αiH
−1
t+1(ui,t+1)

))]
, (2.5)

where U (·) is a utility function written on the Gaussian rank Ht+1(α
′yt+1) of the future return α′yt+1

of the risky part of the portfolio. Equation (2.5) leads to three remarks. First, the optimal positional

relative allocations vector α∗t is independent of wr, i.e., it can be computed for a risky portfolio of

unitary value 1. The reason is that a positional strategy is not interested in the levels of the portfolio

values, but only on their comparison. Second, the ranks are computed on the returns. Indeed, the

ranks computed on the returns, or on the excess returns, are the same. Third, in equation (2.5) the
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future portfolio rankHt+1

(
n∑
i=1

αiH
−1
t+1(ui,t+1)

)
is a nonlinear aggregate of the individual future ranks

[see Appendix 2 ii)]. The nonlinear aggregation scheme involves the stochastic future cross-sectional

distribution of returns H∗t+1 via function Ht+1 = Φ−1 ◦H∗t+1.

By comparing equations (2.3) and (2.4), we note that the positional utility function U is different

from the rescaled indirect utility function Ut, with Ut(r) = U [Wt(1 + rf,t) + ŵr,tr], written on the

portfolio excess return r = α′ỹt+1 of the risky part of the portfolio. In particular, the argument of the

rescaled indirect utility function Ut admits the unit: $ at time t+ 1 over $ at time t, while the argument

of the positional utility function U is dimensionless. A positional strategy replaces the increasing and

concave rescaled utility function Ut by an endogenous stochastic utility function Ut+1 = U ◦ Ht+1,

which is strictly increasing, but non-concave in general. The positional portfolio management depends

on the choice of the positional utility function U , but also on the selected definition of ranks, that can

be uniform or Gaussian, and on the universe of stocks used to compute these ranks. Moreover, the

optimal allocation α∗t of the fund manager is defined by considering in a first step the function Ht+1

as exogenous. In particular, we have chosen the return distribution of portfolios invested in single

assets as such exogenous benchmark. When the rank is computed with respect to the performance

of other managed portfolios, the future “portfolio returns” distribution has also to account for the

possible reactions of the other fund managers, who also want to be in the “top ten”. In this case, all

portfolios associated with the funds would be optimized jointly. Thus, the performance of the fund is

seen as a public good [see e.g. Hirsch (1976), Frank (1991)]. In other words, if we considered the

positional equilibrium condition as the analogue of the standard CAPM, the equilibrium would be with

respect to the prices, information set and also to the cross-sectional distribution Ht+1. In Appendix

2 iii) we describe the Nash equilibrium for the positional allocation problem of fund managers in
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such a complex framework. The objective function in equation (2.4) would involve the behaviours

of the other fund managers. Therefore, our analysis is related to the literature on social interactions

[see e.g. Davezies, D’Haultfoeuille, and Fougère (2009) and Blume, Brock, Durlauf, and Jayaraman

(2013)], especially the part of this literature interested in strategic complementarities in production

[Calvo-Armengol, Patacchini, and Zenou (2009)]. However, it differs from this literature because of

the more sophisticated objective function which is considered 3. In particular, at the equilibrium we do

not get bilateral effects only, i.e. peer effects only. In our framework the individual decision involves

in a complicated way the complete distribution of other managers’ decisions. The extension to an

endogenous benchmark Ht+1 is not considered further in the main body of the paper.

The preferences based on expected positional utility satisfy some axioms of the expected utility

theory introduced by von Neumann and Morgenstern (1944), but not all of them. For instance, the

expected positional utility is a linear function of the probability of the future state including in our

case the returns of all assets. However, the compatibility with the second-order stochastic dominance

for the portfolio returns is clearly not satisfied, since the preferences also involve the distributions of

the other stock returns.4

In order to implement the positional strategies defined in (2.5) and to compare them with the

standard allocation strategies based on the expected utility of future portfolio values, we need an

appropriate dynamic model for both the rank processes and the transformed cross-sectional distribution

3In the standard social interaction models, the individual utility functions are quadratic functions of the individual
actions (i.e. the portfolio allocations). They depend on these individual actions by summaries interpretable as cross-
sectional portfolio values up to a change of probability. This leads to linear models for the Bayesian-Nash equilibrium
strategies.

4In this respect our approach differs from the theory of anticipated utility, also called rank dependent expected utility
theory. This theory introduced by Quiggin (1982) [see also Kahneman and Tversky (1992) for the extension to prospect
theory] is using some ranks to overweigh rare extreme events. In this approach, the rank would be computed as the rank of
the portfolio value across states of nature, that is, with respect to the (conditional) distribution of the portfolio return. In our
framework the rank is computed with respect to the cross-sectional distribution of the stock returns. Thus, the benchmark
distribution used to compute the rank varies with the state of nature.
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Ht linking the returns and the ranks. An illustrative example is discussed below and is extended in the

next sections to accommodate the empirical features of the return processes.

2.3 A toy-model of cross-sectional Gaussian returns

Let us consider a simple joint dynamic model for returns and Gaussian ranks, in which the returns are

cross-sectionally Gaussian and the ranks are serially persistent. We use this toy-model to provide a

simple intuition for positional portfolio allocation, and will extend it for empirical analysis.

The model is defined in two steps, by specifying first the dynamics of the Gaussian ranks and

then the link between the individual asset returns and their ranks. The ex-ante Gaussian ranks ui,t are

assumed such that:

ui,t = ρui,t−1 +
√

1− ρ2εi,t, (2.6)

where the idiosyncratic disturbance terms εi,t are independent and identically distributed (i.i.d.) stan-

dard normal variables. The autoregressive coefficient ρ has a modulus smaller than 1 in order to ensure

the stationarity of the process of Gaussian ranks. The unconditional distribution of ui,t coincides with

the theoretical cross-sectional distribution and is standard normal. When coefficient ρ increases, the

position of any asset features more serial persistence.

Suppose that the returns are defined from the Gaussian ranks by an affine stochastic transformation:

yi,t = σtui,t + µt, (2.7)

where the scale and drift coefficients define the macro-dynamic factor Ft = (µt, σt)
′. The scale σt, that

is the cross-sectional standard deviation, is a strictly positive process. Then, the cross-sectional return

distribution at date t is Gaussian N(µt, σ
2
t ). The function Ht mapping returns into Gaussian ranks is
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given by Ht(y) = (y − µt)/σt. It simply consists in cross-sectionally demeaning and standardizing

the returns. The individual return processes are not Gaussian, since they feature stochastic mean and

variance due to factors µt and σt.

Let us now consider a portfolio invested in both risky and riskfree assets, with relative risky allo-

cation vector α. The future return of the risky part of the portfolio is given by:

α′yt+1 = σt+1α
′ut+1 + µt+1,

since α′e = 1, and the corresponding excess return is:

α′ỹt+1 = σt+1α
′ut+1 + µt+1 − rf,t.

The future position of return α′yt+1 is:

Ht+1(α
′yt+1) =

(σt+1α
′ut+1 + µt+1)− µt+1

σt+1

= α′ut+1. (2.8)

Thus, the position of the future return of the risky part of the portfolio is a linear combination of the

Gaussian ranks of the individual risky assets, with weights equal to the relative risky allocations α.

This property is a consequence of the linearity of the (transformed) quantile function Ht+1(·), that is,

of the Gaussian assumption for the CS distribution, and holds for any dynamics of the ranks. By taking

into account the dynamics (2.6) of the Gaussian ranks, we get:

α′ỹt+1 = σt+1ρα
′ut + σt+1

√
1− ρ2α′εt+1 + µt+1 − rf,t, (2.9)

and:

Ht+1(α
′yt+1) = ρα′ut +

√
1− ρ2α′εt+1. (2.10)

In the standard approach to portfolio management, we assume a CARA indirect utility function
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U(W ;A) = − exp(−AW ) written on the portfolio value, where A > 0 is the absolute risk aversion

of the investor. From (2.3) and (2.9) the expected utility is:

−E[exp(−AWt(1 + rf,t)− Awrα′ỹt+1)|Ft, yt]

= − exp(−AWt(1 + rf,t))E
{
E[exp(−Awrα′ỹt+1)|Ft+1, yt]|Ft, yt

}
= − exp(−A(Wt + (Wt − wr)rf,t))E

{
exp(−Awrσt+1ρα

′ut − Awrµt+1 +
A2

2
w2
rσ

2
t+1(1− ρ2)α′α)|Ft, yt

}
.

The optimal portfolio is obtained by maximizing the above expected utility with respect to wr and

α subject to α′e = 1. The optimal allocation depends on the joint dynamics of the cross-sectional

mean and cross-sectional variance. If these dynamics are Markovian and exogenous with respect to

the ranks, the optimal allocation depends on the current factor values (µt, σt) and ranks vector ut. The

allocations γ̂t and α̂t in the risky assets are independent of the initial portfolio value Wt.

In the positional approach, we assume a CARA utility function U (v; A ) = − exp(−A v) written

on the Gaussian rank of the future return of the risky part of the portfolio, with a positional risk aversion

parameter A > 0. By using equation (2.10), the expected positional utility is:

−E[exp(−AHt+1(α
′yt+1))|Ft, yt] = − exp

(
−A ρα′ut +

A 2

2
(1− ρ2)α′α

)
.

The expected positional utility is independent of the factor values at time t and depends on the returns

histories by means of the current positions vector ut only. The optimal positional portfolio allocation

is derived by maximizing A ρα′ut −
A 2

2
(1 − ρ2)α′α with respect to vector α subject to the budget

constraint α′e = 1. We get the optimal relative positional allocation in the risky assets:

α∗t =
1

n
e+

1

A

ρ

1− ρ2
(ut − ūte), (2.11)

where ūt = u′te/n denotes the cross-sectional average of the Gaussian ranks at date t. This cross-
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sectional average tends to 0, which is the mean of the standard normal distribution, when the number

of assets n tends to infinity. The optimal relative positional allocation α∗t is a linear combination of two

popular portfolios. The first one is the equally weighted portfolio, with weight 1/n in each asset [see

e.g. DeMiguel, Garlappi, and Uppal (2009) and Beleznay, Markov, and Panchekha (2012)]. We see

from (2.10) that this portfolio minimizes the conditional variance of future portfolio rank. For large

n, the 1/n portfolio ensures the risk free median rank, but its return is still risky due to the effect of

macro-factors. The second portfolio is an arbitrage portfolio (zero-cost portfolio) with dynamic allo-

cations proportional to the current ranks of the assets in deviation from their cross-sectional average.

The weight of the arbitrage portfolio in the relative risky allocation α∗t is increasing with respect to the

persistence ρ of the ranks, and decreasing with respect to the positional risk aversion coefficient A of

the investor. The optimal positional allocation α∗t deviates from the 1/n portfolio by overweighting the

assets with larger (resp. smaller) current ranks, when the persistence parameter is positive (resp. neg-

ative)5. Thus, in this example the optimal positional allocation strategy combines the 1/n portfolio

with momentum (resp. reversal) kind of strategies. The term ρ(ut − ūte) in equation (2.11) is equal to

the vector of expected future ranks in deviation from their cross-sectional average. Thus, we can also

interpret the arbitrage portfolio in (2.11) as a portfolio investing long in assets with large expected fu-

ture rank and short in assets with small expected future rank, irrespective of the sign of the persistence

parameter. This interpretation applies to more general specifications of the individual ranks dynamics,

as shown in the next section.
5Even if the model of the example is symmetric in the individual assets, the portfolio allocation is not symmetric in the

assets, since they have different returns, and then ranks, at date t.
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3 The dynamics of positions

This section extends the toy dynamic model of positions in Section 2.3 to accommodate relevant

empirical features. The main issue is that in our sample positional persistence varies across stocks and

time [see Appendix 3 for evidence based on an Analysis of Variance (ANOVA)]. Therefore, we let the

positional persistence depend on both stock-specific random effects and stochastic common dynamic

factors.

3.1 Model specification

The joint dynamics of the individual Gaussian rank processes (ui,t) is now specified as:

ui,t = ρi,tui,t−1 +
√

1− ρ2i,tεi,t, (3.1)

ρi,t = Ψ(βi + γiFp,t), (3.2)

where i) the idiosyncratic shocks (εi,t), the individual random effects δi = (βi, γi)
′, and the macro-

factor Fp,t are mutually independent, ii) the shocks (εi,t) are standard Gaussian white noise processes

independent across assets, and iii) the individual random effects δi are i.i.d. across assets. In equation

(3.1) we assume that the Gaussian rank process (ui,t) of any stock follows a conditionally Gaussian

first-order Auto-Regressive [AR(1)] model. The autoregressive coefficient ρi,t characterizes the po-

sitional persistence of stock i between months t − 1 and t. The dependence of the autoregressive

coefficient ρi,t on the macro-factor and the individual effects is specified in equation (3.2). The single

stochastic factor Fp,t drives the positional persistence over time, that is, it is a positional macro-factor,

whose interpretation has to be discussed jointly with the interpretation of the distributional macro-

factors driving the cross-sectional return distribution (see Section 5). The individual effects βi and γi
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introduce heterogeneity across stocks in the long run average positional persistence and in the sensi-

tivity to the positional persistence factor, respectively. We select function Ψ(s) = (e2s − 1)/(e2s + 1),

for s ∈ R, to guarantee an autoregressive coefficient ρi,t between −1 and 1 and to get a one-to-one

increasing relationship between ρi,t and the positional persistence score βi+γiFp,t. Since Ψ(s) ≈ s for

an argument s close to 0, the positional persistence ρi,t is approximately equal to the score βi + γiFp,t,

when the latter is small in absolute value. The model in equations (3.1)-(3.2) extends specification

(2.6) to individual and time dependent positional persistence. The joint process of individual Gaussian

ranks defined in equations (3.1)-(3.2) satisfies the constraint of a standard Gaussian CS distribution

[see Appendix 4, Subsections i) and ii)].

As usual in latent factor models, the factor values and the factor loadings are identifiable up to a

one-to-one linear (affine) transformation. Indeed, systems (Fp,t, βi, γi) and (cFp,t + d, βi − d/c, γi/c)

are observationally equivalent, for any values of constants c and d, with c 6= 0. Therefore, without loss

of generality, we assume:

E(Fp,t) = 0, E(F 2
p,t) = 1, (3.3)

for identification purpose. Thus, for an asset i with small βi and γi, the historical mean and variance

of the positional persitence are approximately βi and γ2i , respectively.

3.2 Model estimation

Let us now estimate the model of ranks dynamics on the dataset of n = 939 CRSP stocks described in

Section 2.1.

i) Estimation procedure

We estimate the values of the positional persistence factor Fp,t at all months t, and heterogeneities
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βi and γi for all stocks i, by maximizing the Gaussian conditional log-likelihood function of rank

processes (ui,t) after replacing the unobservable ex-ante Gaussian rank ui,t with the empirical ex-post

Gaussian rank ûi,t defined in Section 2. Indeed, the ex-post and ex-ante ranks are close, when the

cross-sectional size n is large6. We treat factor values and individual heterogeneities as unknown

parameters. The fixed effects estimators F̂p,t of the factor values, for t = 1, ..., T , and β̂i, γ̂i of the

heterogeneities, for i = 1, ..., n, are obtained from the maximization problem:

max

Fp,t, t = 1, ..., T

βi, γi, i = 1, ..., n

T∑
t=1

n∑
i=1

{
−1

2
log(1− ρ2i,t)−

(ûi,t − ρi,tûi,t−1)2

2(1− ρ2i,t)

}
, (3.4)

where ρi,t = Ψ(βi + γiFp,t), subject to the constraints:

1

T

T∑
t=1

Fp,t = 0,
1

T

T∑
t=1

F 2
p,t = 1. (3.5)

The constraints (3.5) are the empirical analogues of the identification conditions (3.3). In Appendix

4 iii), we provide a sequential updating algorithm for the iterative computation of the estimates that

are solutions of the constrained maximization problem (3.4)-(3.5). This sequential updating algorithm

avoids the inversion of matrices of dimensions (n, n) or (T, T ) corresponding to the parameter dimen-

sion. Thus, it has a small degree of numerical complexity appropriate in our big data framework.

6This is a consequence of the Law of Large Numbers (LLN) applied cross-sectionally conditionally on the path of
macro-factors.
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ii) Empirical results

We provide in Figure 4 the time series of factor estimates F̂p,t. The estimated serial autocorrelations

are not significant. Thus, we will assume that the factor values Fp,t are independent and identically

distributed over time. This assumption implies the independence across time of common shocks to

positional persistence, but not the absence of positional persistence itself.

[ FIGURE 4 : Time series of positional factor estimates F̂p,t. ]

[ FIGURE 5 : Positional factor vs. CRSP EW index returns. ]

Figure 5 shows a negative association between the estimated positional factor values and the monthly

returns of the equally weighted (EW) CRSP index returns, at least for the months with negative EW

CRSP index returns. This finding is similar to Figure 4 in Moskowitz, Ooi, and Pedersen (2012) who

report a U-shape relationship between their momentum strategy and the S&P 500 index returns.

Let us now consider the estimated heterogeneity parameters β̂i and γ̂i. Their marginal distributions

are displayed in Figure 6, and some insight on their joint distribution is given by the scatterplot in

Figure 7. The marginal distributions are unimodal and the values of β̂i and γ̂i in the support have the

same order of magnitude. The marginal distribution of the β̂i is close to a Gaussian distribution, while

the marginal distribution of γ̂i features right skewness. Thus, for large positive (resp. negative) values

of positional factor Fp,t, we expect a large proportion of stocks with large positive (resp. negative)

positional persistence. Figure 7 shows that the nonparametric regression of γ̂i on β̂i is almost linear. We

observe a significant positive slope in this regression. Hence, the stocks which feature more positional

persistence on average, also feature more time variation in this positional persistence.7

7We find some association between the individual effects (βi, γi) and the industrial sectors. For instance the sector with
the largest average value of sensitivity γi to the positional factor is Energy, and the one with the smallest average value
is Healthcare, Medical Equipment, and Drugs. A standard t-test rejects the null hypothesis that the mean values of the
distributions of the γi in the two sectors are the same.
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[ FIGURE 6 : Histograms of estimated individual effects.]

[ FIGURE 7 : Scatterplot of γ̂i vs. β̂i. ]

The effect of the heterogeneity parameters on positional persistence is rather complex, since it involves

the distribution of individual effects βi and γi including their dependence, the level of the factor Fp,t,

and passes through the nonlinear transformation Ψ. Figure 8 displays the distribution of the positional

persistence for different factor levels.

[ FIGURE 8 : Histograms of positional persistence ρ̂i,t as function of Fp,t. ]

When the positional factor value is negative (resp. positive), we observe a negative (resp. positive)

average value of the positional persistence. When the factor Fp,t gets larger in absolute value, the main

effect comes from the γi distribution and the dispersion of the distribution of positional persistence

increases. When the factor is close to 0, corresponding to the median of its distribution, we observe

mainly the distribution of sensitivities βi. Overall Figures 6 - 8 show that the estimated model accom-

modates for some stocks featuring momentum and others featuring reversal at a given date. Moreover,

a given stock might feature momentum at some dates, and reversal at other dates, depending on the

value of the positional factor Fp,t.

3.3 Efficient positional allocation with Gaussian CS distribution

In this section we derive the optimal positional allocation when the individual positions follow the

autoregressive model (3.1)-(3.2) with stochastic persistence, and the CS distributions of returns are

in the Gaussian family with stochastic mean and variance as in (2.7). Let us consider the CARA

positional utility function U (v) = − exp(−A v), with A > 0. The optimal positional allocation α∗t
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defined in (2.4) is such that [see Appendix 4 iv)]:

α∗i,t = wi,t +
1

A

(
ξi,t − wi,t

n∑
i=1

ξi,t

)
, (3.6)

where:

wi,t = [Eα
t (1− ρ2i,t+1)]

−1/ n∑
i=1

[Eα
t (1− ρ2i,t+1)]

−1, (3.7)

ξi,t =
Eα
t (ρi,t+1)ui,t

Eα
t (1− ρ2i,t+1)

, (3.8)

and Eα
t (·) denotes the conditional expectation under a modified probability distribution such that

Eα
t (ρi,t+1) = E

[
ρi,t+1 exp (−AHt+1(α

∗′
t yt+1)) |Ft, yt

]
/E
[
exp (−AHt+1(α

∗′
t yt+1)) |Ft, yt

]
. The op-

timal positional allocation (3.6) extends the allocation derived in (2.11) to the case of stochastic posi-

tional persistence. This allocation is a linear combination of two portfolios. The first one has positive

weights wi,t, that vary across assets as an increasing function of the modified conditional expecta-

tion Eα
t (ρ2i,t+1) of the squared positional persistence. If the positional persistence were time invariant,

i.e. ρi,t+1 = ρi, this portfolio would be the portfolio with the least risky future rank, conditional on the

current values of the ranks. The second portfolio is an arbitrage portfolio (zero-cost portfolio), with

weights involving the modified conditional expected ranks Eα
t (ρi,t+1)ui,t. Equation (3.6) defines the

optimal positional allocation α∗t in an implicit way, since the RHS of this equation depends on vector

α∗t through the modified conditional expectation of the positional persistence and its square.

Since the positional persistence values for most assets and dates are rather small (see Figure 8),

in order to get more intuition on equation (3.6), we can consider its first-order expansion w.r.t. ρi,t+1.

In this approximation we have wi,t ' 1/n and ξi,t ' Et(ρi,t+1)ui,t [see Appendix 4 vi)], where

Et(ρi,t+1) = E(ρi,t+1|Ft, δi). This yields an explicit formula for the approximate optimal positional
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allocation:

α∗i,t =
1

n
+

1

A

(
Et(ρi,t+1)ui,t −

1

n

n∑
i=1

Et(ρi,t+1)ui,t

)
. (3.9)

Thus, the optimal positional allocation is the linear combination of the equally weighted portfolio

and an arbitrage portfolio, whose weights are given by the conditional expected ranks of the assets in

deviation from their cross-sectional average. Equation (3.9) is the generalization of (2.11), for small

stock-specific and time varying positional persistence.

4 Momentum strategies based on ranks

In this section we compare simple (suboptimal) positional allocation strategies which are based on the

ranks of the assets and their dynamics, only.

4.1 Investment universe versus positioning universe

When analyzing a positional strategy, it is important to precisely define the investment universe, that

is the set of assets potentially introduced in the portfolio, and the positional universe, that is the set

of assets and portfolios used to define the rankings. For instance, for a fund (resp. fund of funds)

manager, the investment universe may be a fraction of the stocks (resp. funds), whereas the positioning

universe can be the set of all stocks (resp. all funds, or all funds including the funds of funds). The

dynamic model for positions developed in Section 3 is appropriate for an investment universe nested

in the positioning universe. In this section, we consider simple positional strategies for which both the

positioning universe and the investment universe are the set of 939 stocks in our balanced panel from

CRSP.
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4.2 Positional momentum strategies

As a first illustration of positional strategies, let us consider momentum and contrarian (reversal) ap-

proaches [see e.g. Lehmann (1990), Jegadeesh and Titman (1993), Chan, Jegadeesh, and Lakonishok

(1996)]. These strategies will be applied on the complete universe of stocks. We consider below the

nine following strategies:

i) The (positional) momentum strategies denoted by PMS1 (resp. PMS2), which select an equally

weighted portfolio including all stocks whose current return is in the upper 5% quantile of the CS

distribution (resp., between the upper 10% and 5% quantiles), i.e. the past winners. The current (ex-

post) Gaussian ranks of these stocks are such that ûi,t ≥ 1.64 (resp., 1.64 ≥ ûi,t ≥ 1.28). These

strategies are similar to standard momentum strategies, but are based on the rank of the return on the

current month, instead of the rank of the return over a longer period in the past. It is commonly believed

that many stocks feature reversal in returns at a short monthly horizon [see e.g. Jegadeesh (1990) and

Avramov, Chordia, and Goyal (2006)], likely due to overreaction of some investors to news8 [De Bondt

and Thaler (1985)]. Therefore, we also consider (positional) reversal strategies PRS1 (resp. PRS2),

which select an equally weighted portfolio including all stocks with current rank in the lowest 5%

quantile (resp., between the lower 10% and 5% quantiles), i.e. the past losers.

ii) The expected positional momentum strategies EPMS1 IN and EPMS1 OUT (resp. EPMS2 IN

and EPMS2 OUT) based on the information on the rank histories. These strategies select equally

weighted portfolios including the stocks with the 5% largest expected future ranks at each month

(resp., the stocks with expected future ranks between the 5% and 10% upper quantiles). The estimated

model in Section 3 is used to compute the conditional expectation of the future ranks given the current

8More precisely, Chan, Jegadeesh, and Lakonishok (1996) report reversal in stock returns at short horizons smaller than
6 months, and for periods between 3 and 5 years, but momentum in returns between 6 months and 3 years.
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information. As the positional factor (Fp,t) is assumed i.i.d. over time, the expected future rank of

asset i is given by Et(ui,t+1) = ρ̄iui,t, where the expected positional persistence ρ̄i = E[Ψ(βi +

γiFp,t+1)|βi, γi] involves the expectation with respect to the historical distribution of Fp,t+1. In our

numerical implementation, the expectation is replaced by a sample average over the factor estimates

F̂p,t+1, the stock-specific effects are replaced by the estimates β̂i and γ̂i, and the ex-ante current rank

is replaced by the ex-post rank ûi,t. For the in-sample strategies EPMS1 IN and EPMS2 IN the entire

available sample of returns from January 1990 to December 2010 is used to estimate the factor model.

On the other hand, in order to assess the out-of-sample performance, for the out-of-sample strategies

EPMS1 OUT and EPMS2 OUT the model is re-estimated at each month using a rolling window of 10

years of data. The expected future ranks determining the EPMS allocation are computed using these

rolling estimates.

iii) As a benchmark, we also consider the market portfolio defined as the equally weighted portfolio

computed on all stocks.

We provide in Figure 9 the ex-post properties of these portfolios over the period from January 2000

to December 2009.

[ FIGURE 9 : Ex-post properties of the portfolio strategies, 2000-2009. ]

Panel (a) provides the evolution of the Gaussian ranks for the management strategies PMS2, PRS1,

EPMS1 OUT, EPMS2 OUT, and the equally weighted portfolio, and panels (b) and (c) the evolution of

their excess returns and cumulated returns over the period. The series of Gaussian ranks of the equally

weighted portfolio is less disperse than the others. For ease of comparison, we provide historical

summary statistics of Gaussian ranks and returns in Table 1.

[ TABLE 1 : Ex-post properties of the portfolio strategies, 2000-2009. ]
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Even if the standard financial theory suggests that the market portfolio has some efficiency properties,

we observe that it is not systematically well ranked, or with the highest return. The historical average

of the Gaussian ranks of the equally weighted portfolio and momentum strategies PMS1 and PMS2

are slightly larger than 0. Thus, on average, the return of these strategies is slightly above the CS

median, while the historical averages of the ranks of the reversal and expected positional momentum

strategies are larger. The largest average Gaussian rank is featured by the positional strategy EPMS1

IN, and is equal to 0.22, followed by PRS1, EPMS2 IN and EPMS2 OUT with 0.20, 0.17 and 0.14,

respectively. As expected from the discussion in Section 3.3, the equally weighted portfolio is close

to the median rank. The Sharpe ratios of the expected positional momentum strategies in sample are

the largest ones (both higher than 1.10), while PRS1 has a Sharpe ratio (0.96) only slightly larger than

EMPS2 OUT (0.94). All positional strategies based on the 5%-10% quantile range are less volatile than

the corresponding positional strategies based on the first 5% quantile since they avoid extreme effects.

However, while this fact results in a larger Sharpe ratio for EPMS2 OUT compared to EPMS1 OUT, for

strategies based on expected future ranks in-sample and reversal strategies, considering the upper 5%-

10% quantile range yields a smaller Sharpe ratio than considering the upper 5% quantile. The ranks

of the reversal strategy PRS1 are the most volatile ones. Moreover, the series of excess returns of the

reversal strategies are negatively skewed and feature the largest negative values, as can be deduced by

the historical 5% quantile. To summarize, the out-of-sample expected positional momentum strategy

based on the 5%-10% quantile range performs almost as good as the reversal strategy PRS1 in terms

of Sharpe ratio, but has substantially smaller downside risk. This is made possible by the combination

of momentum and reversal type of allocations across stocks, that is implicit in this strategy. Moreover,

the in- and out-of-sample expected positional momentum strategies outperform the equally weighted

portfolio, both in terms of average Gaussian rank and Sharpe ratio.

27



Finally, panel (d) in Figure 9 and the bottom part of Table 1 give some insight on the asset turnover

of the portfolio strategies. The asset turnover is measured by the unweighted proportion of selected

stocks which are not kept in the portfolio between two consecutive dates. This unweighted measure

of asset turnover provides an information on the potential transaction costs of the portfolio updating.

However, this information is rather crude, since it does not account for the variation in the quantities

of assets included in the portfolio. For instance, there is no unweighted asset turnover in the equally

weighted portfolio, but the transaction costs are not zero for this portfolio, as rebalancing is required

to keep the relative allocations in value constant at 1/n. Among the eight reversal and momentum

strategies, the ones based on expected future ranks in the first 5% quantile, both in-sample and out-of-

sample, have the smallest average asset turnover.

5 The full-fledged model

The positional portfolio strategies implemented in Section 4 rely on the dynamics of the individual

ranks only. However, the optimal positional allocation defined in Section 2 generally involves the entire

distribution of the return histories. In fact, the portfolio rank is a nonlinear aggregate of the individual

ranks depending on the cross-sectional return distribution. Two features have to be considered in

order to pass from the dynamics of the ranks to the dynamics of the returns (see Scheme 1 in the

Introduction). First, we have to specify the cross-sectional distribution in a flexible way. This cross-

sectional distribution varies in time as a function of macro factors. Second, we have to explain how

these macro factors, that impact the cross-sectional distribution, are linked to the positional factor, that

drives the persistence of ranks dynamics. To get a tractable model, we assume in Section 5.1 that the

cross-sectional distributions belong to the Variance-Gamma (VG) family (see Appendix 5 for a review
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on the VG family). The macro factors are time varying parameters characterizing the distributions

in this family. Next, in Section 5.2 we specify the joint dynamics of the positional and distributional

macro-factors by a Gaussian Vector Autoregressive (VAR) model.

5.1 Specification of the cross-sectional distributions

Let us first complete the analysis of Section 2 by investigating if the empirical CS distributions are

close to Gaussian distributions, and studying how empirical CS summary statistics, such as mean,

standard deviation, skewness and kurtosis, vary over time. In Figures 10 and 11, we provide the

empirical CS distributions and their Gaussian approximations at some months. In particular, in Figure

11 we focus on the period around the 2008 Lehman Brothers bankruptcy.

[ FIGURE 10: Cross-sectional distributions of monthly CRSP stock returns. ]

[ FIGURE 11: Cross-sectional distributions around the 2008 Lehman Brothers bankruptcy. ]

The comparison between the panels in Figure 10 shows that the empirical CS distribution may be

close to a Gaussian in some months (e.g. August 1998), may feature rather fat tails (e.g. July 1995,

December 2006), or be asymmetric (e.g. November 2000). In Figure 11, we see that in July and August

2008, before the Lehman Brothers crisis, the CS distribution is non-normal, with a peak close to 0 and

is slightly right-skewed. Instead, in October 2008, the month after Lehman Brothers filed for Chapter

11 bankruptcy protection (September 15, 2008), the CS distribution is close to Gaussian with a large

negative mean of about −18%.

The above empirical evidence shows that it is necessary to choose the cross-sectional distributions

in an extended family including the Gaussian family as a special case, and to introduce additional

macro-factors accounting for time-varying higher-order moments. We consider in our analysis the
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Variance-Gamma (VG) family. The distributions in this family are indexed by four parameters, that

are in a one-to-one relationship with the mean µt, the log-volatility log σt, the skewness st and the log

excess kurtosis log k∗t , where k∗t = kt− 3(1 + s2t/2) and kt denotes the kurtosis (see Appendix 5). The

excess kurtosis k∗t is a measure of the fatness of the tails of the CS distribution of returns at month t,

in excess of 3(1 + s2t/2). The latter value is the minimum admissible kurtosis for a VG distribution

with skewness parameter st. Since the above four transformed parameters can vary independently on

the entire real line, they are chosen to define the vector of distributional macro-factors:

Fd,t = (µt, log σt, st, log k∗t )
′. (5.1)

We provide in Figure 12 the time series of estimated distributional macro-factor values F̂d,t, obtained

from the empirical CS moments, along with their asymptotic (large n) pointwise 95 % confidence

bands 9.

[ FIGURE 12: Time series of estimated distributional macro-factors. ]

The series of the cross-sectional mean (Panel (a)) is rather close to the return series of the CRSP

Equally Weighted Index (not shown). The log CS standard deviation (Panel (b)) is larger around crisis

periods, namely in 1991 (Gulf crisis), 1998 (LTCM crisis), 2000-2001 (tech bubble) and 2008-2009

(the subprime crisis). A value of factor log σt close to -2 corresponds to a standard deviation of the CS

distribution of returns of about 13.5%. The CS skewness is mostly positive, that is, the CS distributions

are often right skewed. The log excess kurtosis varies between 1 and -6, which correspond to excess

kurtosis values close to 3 and 0 respectively. The series of CS skewness and kurtosis can be used to

compute the Jarque-Bera statistic for the CS distribution of returns for each month. Crisis periods are

among the months characterized by the smallest values of the CS Jarque-Bera statistic, that are months
9The asymptotic standard errors of the distributional macro-factors are computed with the results in Bai and Ng (2005).
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in which the CS distribution is closer to a Gaussian one [see panel (b) of Figure 10 for August 1998

(LTCM Crisis), and Panel (d) of Figure 11 for October 2008 (Lehman Brothers crisis)]. This feature

has already been noted by the econophysics literature for daily returns [see e.g. Borland (2012)].

5.2 The factor dynamics

Let us now specify the factor dynamics. We assume that the joint vector of distributional and positional

macro-factors Ft = (F ′d,t, Fp,t)
′ follows a 5-dimensional Gaussian Vector Autoregressive process of

order 1 [VAR(1)]:

Ft = a+ AFt−1 + ηt, ηt ∼ IIN(0,Σ), (5.2)

where a is the vector of intercepts, A is the matrix of autoregressive coefficients, and Σ is the variance-

covariance matrix of the innovations. We estimate parameters a, A and Σ in the joint VAR dynamics

in equation (5.2) after replacing the unobservable values of the positional and distributional macro-

factors with their estimates F̂t = (F̂ ′d,t, F̂p,t)
′, where F̂d,t is defined in Section 5.1 and F̂p,t is defined in

equations (3.4)-(3.5).

In Table 2 we present the parameter estimates for the macro-factor VAR dynamics with their stan-

dard errors in parentheses. We also provide the estimated correlation matrix of the innovations vector.

[ TABLE 2 : Estimates of the VAR (1) model for the macro-factor process. ]

Five coefficients in the estimated autoregressive matrix are statistically significant (at the 1% level). As

expected, the autoregressive coefficient of the log CS standard deviation is significant and large (0.84)

pointing to a strong serial persistence in the dispersion of the CS distribution. The CS mean also

features positive serial persistence, with estimated autoregressive coefficient 0.32. This multivariate

regression coefficient has to be compared with the univariate autoregressive coefficient of the monthly
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return series of the CRSP Equally Weighted Index, that is equal to 0.28 in our sample period. We

find a strong evidence for the analog of the Black leverage effect [Black (1976)], namely a negative

regression coefficient of the current log CS standard deviation on the past CS mean return equal to

-0.79. The estimated coefficient -0.61 of log CS excess kurtosis on lagged log CS standard deviation

suggests that the tails in the CS distribution get thinner after a month characterized by a positive shock

on the CS dispersion. This effect is likely related to the finding that the CS distribution is close to

Gaussian in crisis periods. The multivariate autoregressive coefficient for the log CS excess kurtosis in

Table 2 is not statistically significant. However, from the clustering in fat tails of the CS distributions

observed in Figures 1 and 2, the CS (excess) kurtosis features serial persistence. Indeed, the univari-

ate autoregressive coefficient of log CS excess kurtosis is equal to 0.37 and is statistically significant.

The difference between the univariate and multivariate autoregressive coefficients is explained by the

dynamic link between log excess CS kurtosis and log CS standard deviation, and by the contempora-

neous correlation between the innovations on these two series. The autoregressive coefficient of the

positional factor, and its regression coefficients on the lagged values of the cross-sectional factor, are

not statistically significant. This finding is compatible with the marginal white noise property of the

positional factor found empirically in Section 3.2 and used in Section 4. The eigenvalues of the esti-

mated autoregressive matrix are 0.811, and two pairs of complex conjugate eigenvalues with modulus

0.187 and 0.071, respectively. Thus, the modulus of all eigenvalues is smaller than 1, which implies

the stationarity of the estimated VAR process of the macro-factors driving both the dynamics of ranks

and the dynamics of the cross-sectional distribution.

All the estimated contemporaneous covariances of the shocks are significantly different from 0. In

particular, we observe a negative contemporaneous correlation equal to -0.32 between the shocks on

CS mean and the positional persistence factor. Thus, a small cross-sectional mean of returns tends
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to be associated with a large positional persistence for those stocks having positive loadings on the

positional factor. Such stocks are the majority in our sample (see Figure 6). The factor Fd,t driving the

univariate CS distributions and the factor Fp,t driving the positional persistence are not independent.

10

6 Efficient positional strategies

Let us now implement the efficient positional strategies defined in Section 2.2 using the complete

dynamic model. Since the efficient positional or mean-variance management strategies demand the

inversion of a n-by-n matrix, they can only be applied with a limited number n of assets, significantly

smaller than 939. We apply these strategies to an investment universe corresponding to the n =

57 stocks in the industrial sector of utilities. The strategies are the following ones: i) The efficient

positional strategy (EPS), with CARA positional utility function and positional risk aversion A =

3. We implement the EPS strategy both in-sample (EPS IN) by using the entire available sample

of returns from January 1990 to December 2010 to estimate the factor model, and out-of-sample

(EPS OUT) by using an expanding window of past returns for estimation from January 1990 to the

investment date; ii) The positional momentum strategy (PMS) based on the 20 stocks with the largest

current ranks; iii) The positional reversal strategy (PRS) based on the 20 stocks with the smallest

current ranks; iv) An expected positional momentum strategy (EPMS) based on the 20 stocks with

the largest expected future ranks; v) The sectoral equally weighted (EW) portfolio; vi) The standard

mean-variance (MV) strategy based on the unconditional moments. The financial literature reports

poor out-of-sample properties for the MV strategy, which is often outperformed by the minimum-

10The point estimate of the conditional variance of factor Fp,t is slightly larger than 1. By taking into account the
standard deviation of the estimate, this is compatible with the normalization of unconditional variance equal to 1.
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variance portfolio strategy [see e.g. Jagannathan and Ma (2003)]. For this reason, we include also

the unconditional minimum-variance (MinV) strategy in our comparison. We implement strategies

EMPS, MV and MinV out-of-sample 11.

We give in Appendix 6 a numerical algorithm to solve the constrained maximization problem

(2.4) defining the EPS strategy. The algorithm involves the inversion of a n × n Hessian matrix,

and computational costs grow quadratically in the number of stocks n in the investment universe.

This explains the choice to restrict the investment universe compared to Section 4. An alternative

optimization algorithm with linearly growing computational costs could be obtained by replacing the

above Hessian matrix with a diagonal matrix having the same diagonal elements.

We provide in Figure 13 the time series of cumulated portfolio excess returns for the above strate-

gies. Summary statistics of the Gaussian ranks and excess returns series are presented in Table 3.

[TABLE 3 : Ex-post properties of the portfolio strategies, utilities sector, 2000-2009.]

[FIGURE 13 : Time series of cumulative returns of the portfolio strategies, utilities sector,

2000-2009.]

We consider different criteria to compare the performances of the strategies. They include: i) the

mean and standard deviation of the Gaussian ranks, and the average positional utility; ii) the frequency

of returns above a certain cross-sectional quantile of the investment universe; iii) summary statistics

and Sharpe ratios of the excess returns. The in-sample EPS strategy outperforms the other allocation

strategies according to most criteria. This finding is also confirmed by the series of the cumulated

returns in Figure 13. The EPS strategy implemented out-of-sample outperforms the PMS, PRS, MV
11Given the relatively large cross-sectional dimension, we use a shrinkage estimator for the variance-covariance matrix

of excess returns in both the mean-variance and minimum-variance strategies, as proposed by Ledoit and Wolf (2003).
This estimator consists in an optimally weighted average of the sample covariance matrix of the excess returns and a
single-index covariance matrix.
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and MinV strategies according to both the average positional utility and Sharpe ratio. Along those

dimensions, EPS OUT and the equally weighted portfolio perform similarly, but the former ensures

larger probabilities to be well-ranked. For instance, the returns of the EPS OUT strategy is about 60%

of the times above the CS median of the returns in the investment universe, and about 10% of the times

above the CS 60% quantile. Instead, the equally weighted portfolio is above the CS 60% quantile

only in 3% of the months. The standard (positional) momentum and reversal strategies PMS and

PRS ensure large probabilities to be well ranked, but feature Gaussian ranks that are among the most

volatile ones. A similar remark can be done for the MV strategy, which provides a large probability

to be in the top 30%, but a very small value of the expected positional utility. In fact the MV strategy

alternates very high ranks and very low ranks and appears as very risky. These remarks explain the low

average positional utility of the PMS, PRS and MV strategies. Similarly as in Section 4, the EPMS

strategy outperforms the PMS along all criteria, and features the largest Sharpe ratio. The EPMS

overperforms also the PRS concerning the expected positional utility and the Sharpe ratio. In fact,

the reversal strategy PRS, which is found to perform rather well for the larger investment universe in

Section 4, features the smallest Sharpe ratio among the positional strategies for the investment universe

of the utilities. The overperformance of the EPMS compared to traditional momentum and reversal

strategies is likely due to the ability of the former strategy to exploit the time-varying and stock-

specific positional persistence (see Figures 6 and 7). Indeed, the traditional momentum (resp. reversal)

strategies implicitly assume that all stocks feature a positive (resp. negative) positional persistence,

that is constant through time. Instead, the EPMS provides a combination of momentum and reversal

strategies based on the stock-specific and time-specific information.

In order to better understand the similarities in the performances of the efficient positional strategy

and the EW portfolio, in Figure 14 we display the relative discrepancy between the allocation vectors
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implied by these strategies overtime.

[FIGURE 14: Observed measure of relative discrepancy of optimal positional allocation from EW

portfolio for the subsample of utilities]

The relative discrepancy at a given month t is measured as n

√√√√ 1

n

n∑
i=1

(α∗i,t − 1/n)2, where the α∗i,t

are the efficient positional allocations in (2.4). This measure corresponds to the ratio between the

standard deviation

√√√√ 1

n

n∑
i=1

(α∗i,t − 1/n)2 and the mean 1/n of the allocations across assets in the

efficient positional portfolio. The relative discrepancy varies overtime between 0.4 and 1.2. In panel

(b) of Figure 14 we see that the discrepancy increases when the predicted value E(Fp,t+1|Ft) of the

positional factor Fp,t+1, based on the full vector of macro-factors Ft, becomes larger in absolute value.

We can understand qualitatively the pattern in panel (b) of Figure 14 by means of equation (3.9), which

provides an approximation of the efficient positional allocation when the CS distribution of returns is

close to Gaussian and the positional persistence is small. From (3.9), the quantity
1

n

n∑
i=1

(α∗i,t − 1/n)2

is equal to the empirical cross-sectional variance of the conditional expected ranks, divided by A 2.

When the investment universe is large, i.e. n tends to infinity, the Law of Large Numbers (LLN)

implies that this empirical cross-sectional variance converges to its theoretical counterpart, and we get

[see Appendix 4 vii)]:

1

n

n∑
i=1

(α∗i,t − 1/n)2 ' 1

A 2
E[(βi + γiE(Fp,t+1|Ft))2 |Ft], (6.1)

where the expectation in the RHS is w.r.t. the distribution of the random effects (βi, γi). We get a

quadratic function of the conditional expectation E(Fp,t+1|Ft) of the positional factor. This quadratic

function is minimized when the macro-factor vector Ft is such that E(Fp,t+1|Ft) = −E[βiγi]/E[γ2i ].

From Figures 6 and 7, the individual effect βi has a mean close to zero, and the covariance between the
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individual effects βi and γi is positive, which explains why the minimum of the discrepancy measure

in panel (b) of Figure 14 is attained for a negative value of the predicted positional factor.

Finally, Table 3 also provides information on the turnover of the strategies. The measure of the

turnover is now weighted to account for the different weights introduced in an efficient portfolio, and

is defined as follows: Turnovert =
∑57

i=1 |αi,t − αi,t−1|, where αi,t is the relative weight of stock i at

date t for a certain strategy. Among the positional strategies, EPS OUT has the lowest and less volatile

turnover.

7 Conclusions

In this paper we introduce different positional portfolio allocation strategies, that are the expected po-

sitional momentum strategies (EPMS) and the efficient positional strategies (EPS). We consider these

allocation strategies in a big data framework, in which the investment universe consists of hundreds,

or even thousands, of stocks. The implementation of expected positional momentum strategies simply

requires a dynamic model for the ranks. This model is used to detect at each date the stocks with high

expected future ranks, and the ones with low expected future ranks. This information is implicitly used

in the EPMS strategies to mix in an efficient way momentum and reversal (or contrarian) strategies and

leads to a closed-form characterization of the EPMS portfolios. The implementation of the efficient

positional strategies is more demanding, since these strategies require a complete dynamic model for

both the ranks and the cross-sectional distributions of returns. Moreover, the necessity of solving a

constrained optimization problem implies that EPS can be applied only with more limited number of

assets (57 in our example). As expected, these positional strategies have good properties in terms of

the position of the portfolio returns. More surprising are their rather nice properties concerning the

37



portfolio returns themselves. The main reason is that these strategies based on positions are robust to

abnormal returns. It is well known that the standard mean-variance allocation strategy is very sensitive

to outliers, especially when it is applied with a large number of assets. In particular, its performance

can be much worse than the performance of the naive equally weighted portfolio, or 1/n-strategy,

giving the impression that sophisticated allocation strategies are not useful. Our analysis shows that,

indeed, the equally weighted portfolio is difficult to outperform for portfolios invested in stocks. For

instance, the 1/n-strategy is clearly competitive with other strategies as the basic momentum, rever-

sal and min-variance strategies. However, the positional strategies outperform the equally-weighted

portfolio for performance criteria based on positions.

The positional strategies considered in this paper can be extended in various ways. For instance,

we can consider a fund manager interested jointly in different rankings. Then, he or she will optimize

a positional utility function depending on these different ranks associated with different universes. It is

possible to manage jointly the ranking among the funds of the same management style and the ranking

among all funds, and to weight differently the two associated universes. In the perspective of an

analysis applied to funds managers’ behaviors, it would be interesting to develop inference methods to

test if the managers follow positional strategies, and to estimate their selected positioning universes and

positional risk aversion parameters. Moreover, as noted in the mutual fund literature, if the rankings

are published at the end of each year, the fund managers compete in annual tournaments that begin in

January and end in December. They could follow a standard management at the beginning of the year

and pass to a positional management with more risk in the second part of the year, if they performed

poorly in the first part of the year [see Brown, Harlow, and Starks (1996), Chen and Pennacchi (2009)

and Schwarz (2012)]. These questions are left for future research. Likely, the analysis will encounter

an identification problem, especially if several fund managers follow such endogenous strategies [see
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the reflection problem highlighted by Manski (1993)].
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TABLES

Table 1: Ex-post properties of the portfolio strategies, 2000-2009.

PMS1 PMS2 PRS1 PRS2 EPMS1 EPMS2 EPMS1 EPMS2 EW
IN IN OUT OUT

Gaussian ranks
Mean 0.0276 0.0258 0.2043 0.1318 0.2171 0.1703 0.1105 0.1360 0.0646
St. dev. 0.4591 0.3574 0.4783 0.3748 0.4762 0.3181 0.4179 0.2587 0.1059

Excess returns
Mean 0.0061 0.0059 0.0228 0.0158 0.0230 0.0184 0.0138 0.0155 0.0088
St. dev. 0.0690 0.0566 0.0818 0.0709 0.0681 0.0565 0.0680 0.0573 0.0490
Sharpe ratio (ann.) 0.3041 0.3587 0.9667 0.7736 1.1706 1.1295 0.7017 0.9357 0.6244
Skew. 0.1896 0.4073 -0.0891 -0.5103 0.2988 0.0581 0.1986 -0.1735 -0.6151
Exc. kurt. 1.1989 1.9350 1.1367 1.7235 1.1672 1.8834 1.5131 1.6940 2.2703
Quant. 5% -0.1208 -0.0751 -0.1405 -0.1161 -0.0783 -0.0762 -0.1042 -0.0809 -0.0898
Quant. 25% -0.0343 -0.0334 -0.0185 -0.0144 -0.0152 -0.0136 -0.0284 -0.0176 -0.0171
Quant. 50% 0.0106 0.0054 0.0214 0.0159 0.0203 0.0196 0.0141 0.0195 0.0093
Quant. 75% 0.0492 0.0488 0.0717 0.0573 0.0587 0.0508 0.0572 0.0498 0.0418
Quant. 95% 0.1010 0.0801 0.1445 0.1216 0.1372 0.1042 0.1119 0.1030 0.0737

Turnover
Turn mean 0.8971 0.9415 0.8931 0.9356 0.8214 0.9080 0.8248 0.9094 0.0000
Turn std 0.0962 0.0933 0.1070 0.0927 0.1073 0.0931 0.0988 0.0940 0.0000

The table provides summary statistics for the monthly series of the Gaussian ranks, and of the excess returns,
for the eight portfolio allocation strategies PMS1, PMS2, PRS1, PRS2, EPMS1 IN, EPMS2 IN, EPMS1 OUT
and EPMS2 OUT, and for the equally weighted portfolio (EW), in the period 2000/1 - 2009/12. Strategy PMS1
(resp. PMS2) selects an equally weighted portfolio of all stocks whose current return is in the upper 5% quantile
of the CS distribution (resp. between the upper 10% and 5% quantiles). Strategy PRS1 (resp. PRS2) selects an
equally weighted portfolio of all stocks whose current return is in the lower 5% quantile of the CS distribution
(resp. between the lower 10% and 5% quantiles). Strategy EMPS1 IN (resp. EPMS2 IN) selects an equally
weighted portfolio of all stocks with the 5% largest expected future rank (resp., with the expected future rank
between the upper 5% and 10% quantiles), with the parameters of the model estimated on the full sample
(1990/1-2009/12). Strategy EMPS1 OUT (resp. EPMS2 OUT) selects an equally weighted portfolio of all
stocks with the 5% largest expected future rank (resp., with the expected future rank between the upper 5% and
10% quantiles), with the parameters of the model estimated on the available sample up to the investment date.
The investment universe consists of all the n = 939 NYSE, AMEX and NASDAQ stocks in our sample (see
Section 2 for a description). The ranks are computed w.r.t. the CS distribution of the monthly returns of all
the stocks in our sample. The Sharpe ratio is annualized. The table also provides the mean and the standard
deviation of turnover. The turnover is measured by the proportion of selected stocks which are not kept in the
portfolio between two consecutive dates.
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Table 2: Estimates of the VAR (1) model for the macro-factor process.

The model for the dynamics of the factor Ft = (µt, log σt, st, log k∗t , Fp,t )′ is the Gaussian VAR(1) process:

Ft = a+AFt−1 + ηt, ηt ∼ IIN(0,Σ) .

The estimates for the period 1990/01 - 2010/12 are given by:

â =



0.0005
(0 .0342 )
−0.3834∗∗∗

(0 .0948 )
0.1084
(0 .3787 )
−0.8249∗∗∗

(0 .2729 )
−0.1230
(0 .8227 )


, Â =



0.3156∗∗∗ −0.0076 −0.0096 −0.0117 −0.0026
(0 .0914 ) (0 .0155 ) (0 .0080 ) (0 .0091 ) (0 .0029 )
−0.7889∗∗∗ 0.8406∗∗∗ −0.0128 0.0369 0.0066
(0 .2532 ) (0 .0430 ) (0 .0221 ) (0 .0251 ) (0 .0080 )
2.9916∗∗∗ −0.0966 0.0023 −0.0911 −0.0252
(1 .0113 ) (0 .1718 ) (0 .0882 ) (0 .1004 ) (0 .0321 )
0.2588 −0.6060∗∗∗ −0.0427 −0.0211 −0.0294

(0 .7290 ) (0 .1238 ) (0 .0636 ) (0 .0723 ) (0 .0232 )
−0.3748 −0.0341 −0.2034 0.1702 −0.0112
(2 .1973 ) (0 .3732 ) (0 .1917 ) (0 .2181 ) (0 .0698 )


,

Σ̂ =



0.0017∗∗∗

(0 .0001 )
0.0009∗∗∗ 0.0134∗∗∗

(0 .0002 ) (0 .0009 )
0.0128∗∗∗ 0.0125∗∗∗ 0.2134∗∗∗

(0 .0011 ) (0 .0025 ) (0 .0138 )
−0.0015∗∗ −0.0153∗∗∗ −0.0359∗∗∗ 0.1109∗∗∗

(0 .0006 ) (0 .0019 ) (0 .0072 ) (0 .0072 )
−0.0135∗∗∗ 0.0177∗∗∗ −0.0574∗∗∗ −0.0416∗∗∗ 1.0073∗∗∗

(0 .0020 ) (0 .0054 ) (0 .0213 ) (0 .00154 ) (0 .0650 )


,

with standard errors in parentheses. The asterisks ∗∗∗, ∗∗, ∗ denote that the coefficient is significant at the 1%,
5%, and 10% levels, respectively. The correlation matrix corresponding to the estimated variance-covariance
matrix Σ̂ is: 

1.0000
0.1892 1.0000
0.6614 0.2348 1.0000
−0.1075 −0.3979 −0.2336 1.0000
−0.3211 0.1528 −0.1238 −0.1246 1.0000

 .
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Table 3: Ex-post properties of the portfolio strategies, utilities sector, 2000-2009.

EPS IN EPS OUT PMS PRS EPMS EW MV MinV

Gaussian ranks
Mean 0.0906 0.0534 0.0484 0.0589 0.0678 0.0566 -0.0556 0.0119
St. dev. 0.4090 0.4034 0.4406 0.4437 0.4224 0.4043 0.7532 0.4252
E(pos. utility) -1.6012 -1.7596 -2.0378 -1.9668 -1.9388 -1.7471 -22.6449 -2.2134

Top positions
> 50% quant. 0.7000 0.6083 0.4833 0.6083 0.5833 0.6167 0.4000 0.4667
> 60% quant. 0.1750 0.0917 0.1917 0.2833 0.2667 0.0333 0.3000 0.2750
> 70% quant. 0.0250 0.0083 0.0667 0.0667 0.0500 0.0000 0.2500 0.2083

Excess returns
Mean 0.0104 0.0076 0.0076 0.0076 0.0083 0.0079 0.0006 0.0052
St. dev. 0.0424 0.0410 0.0414 0.0476 0.0433 0.0414 0.0611 0.0339
Sharpe Ratio (ann.) 0.8529 0.6436 0.6371 0.5532 0.6614 0.6593 0.0353 0.5344
Skew. -0.5238 -0.7922 -0.4227 -0.8576 -0.8488 -0.7210 0.1965 -0.2710
Exc. kurt. 1.9679 1.3576 1.3186 1.1699 1.6654 1.1882 2.2707 3.4109
Quant. 5% -0.0759 -0.0720 -0.0735 -0.0818 -0.0754 -0.0703 -0.1074 -0.0503
Quant. 25% -0.0090 -0.0111 -0.0135 -0.0099 -0.0100 -0.0138 -0.0320 -0.0137
Quant. 50% 0.0142 0.0124 0.0134 0.0142 0.0134 0.0141 -0.0013 0.0066
Quant. 75% 0.0381 0.0327 0.0321 0.0355 0.0358 0.0326 0.0336 0.0219
Quant. 95% 0.0701 0.0702 0.0706 0.0719 0.0683 0.0692 0.1028 0.0527

Turnover
Mean 0.5745 0.4825 1.2379 1.1833 1.1818 0.0000 0.4398 0.0862
St. dev. 0.1559 0.1192 0.2378 0.2230 0.2953 0.0000 0.2636 0.1109

The table provides summary statistics for the monthly series of the Gaussian ranks, and of the excess returns,
for the eight portfolio allocation strategies with investment universe being 57 stocks in the utilities sector in
the period 2000/1 - 2009/12. The efficient positional strategy EPS IN uses the model estimated on the full
sample (1990/1-2009/12). EPS OUT is the efficient positional strategy based on the model estimated on the
available sample up to the investment date. The positional utility is a CARA function with positional risk
aversion parameter A = 3. The strategy PMS (resp. PRS) selects an equally weighted portfolio of the 20
stocks with largest current ranks (resp., smallest current ranks). The strategy EPMS selects an equally weighted
portfolio of the 20 stocks with largest expected future ranks. The ranks are computed w.r.t. the CS distribution
of the monthly returns of all the NYSE, AMEX and NASDAQ stocks in our sample. Strategies MV and MinV
are mean-variance and minimum-variance strategies implemented using a shrinkage estimator for the variance-
covariance matrix of excess returns. E(pos. utility) is the time series average of the positional utility of the
portfolio returns. In the panel denoted “Top positions” we report the observed frequency of portfolio returns
above a certain cross-sectional quantile of the stock returns in the investment universe. The Sharpe ratio is
annualized. The table also provides the mean and the standard deviation of turnover, computed at each month t
as follows: Turnovert =

∑n
i=1 |αi,t − αi,t−1|, where αi,t is the weight of stock i at date t.
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FIGURES

Figure 1: Time series of cross-sectional distributions of monthly CRSP stock returns.

The figure displays the time series of cross-sectional distributions of monthly CRSP stock returns from
January 1990 to December 2009. The monthly returns are computed as yi,t = pi,t/pi,t−1 − 1, where
pi,t is the price of stock i at month t. The returns are not annualized and not in percentage. The CS
probability density function (p.d.f.) are kernel estimates with Gaussian kernel and bandwidths selected
by the rule of thumb in Silverman (1986).
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Figure 2: Time series of quantiles of the CS distributions of monthly CRSP stock returns.
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The figure displays the time series of the 5% CS quantile (lower dash-dotted line), the 25% CS quantile (lower
solid line), the CS median (bold solid line), the 75% CS quantile (upper solid line), the 95% CS quantile (upper
dash-dotted line).
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Figure 3: Time series of ex-post Gaussian ranks associated with a constant monthly return of 0.05.
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The solid bold line is the time series of ex-post Gaussian ranks of an asset with constant 0.05 monthly return.
The dashed-dotted, thin solid and dotted horizontal lines represent the Gaussian ranks of a constant position at
the 5%, 50% and 95% quantile of the cross-sectional distribution at each month, respectively.

50



Figure 4: Time series of positional factor estimates F̂p,t.
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Monthly time series of estimates of the positional factor F̂p,t, obtained via the estimator in Equation (3.4),
computed as described in Appendix A.4.
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Figure 5: Positional factor vs. CRSP EW index returns.
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The figure displays a scatterplot of the estimates F̂p,t of the positional factor versus the monthly returns of
the equally weighted (EW) CRSP index. The solid and dashed lines correspond to a linear regression fit, and
a nonparametric regression curve, respectively. The nonparametric regression curve is obtained as a kernel
smoothing regression using a Gaussian kernel, with bandwidth equal to 0.0617, selected using the rule-of-thumb
suggested by Bowman and Azzalini (1997).
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Figure 6: Histograms of estimated individual effects.
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The figure displays the histograms of the estimated individual effects β̂i and γ̂i in panels (a) and (b), respectively.
The estimates are obtained via the estimator in Equation (3.4), computed as described in Appendix A.4.
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Figure 7: Scatterplot of γ̂i vs. β̂i.
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The figure displays the scatterplot of γ̂i vs. β̂i, as well as the fitted linear regression line (solid) and the kernel
smoothing regression line (dashed) corresponding to the regression of γ̂i on β̂i. The smoothing regression is
performed using a Gaussian kernel, with bandwidth equal to 0.0248, selected using the rule-of-thumb suggested
by Bowman and Azzalini (1997).
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Figure 8: Histograms of positional persistence ρ̂i,t as function of Fp,t.
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(b) Fp,t = −1.2298
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(c) Fp,t = −0.6365
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(d) Fp,t = 0.0417
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(e) Fp,t = 0.5985
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(f) Fp,t = 1.2018
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(g) Fp,t = 1.6792

The figure displays the histograms of the positional persistence ρ̂i,t = Ψ(β̂i+γ̂iFp,t) across stocks i, for different
values of the positional factor Fp,t. These values of Fp,t correspond to the 5%, 10%, 25%, 50%, 75%, 90% and
95% quantiles of the historical distribution of the positional factor in panels (a), (b), (c), (d), (e), (f) and (g),
respectively.
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Figure 10: Cross-sectional distributions of monthly CRSP stock returns.
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(a) Cross-sectional distribution on July 1995.
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(b) Cross-sectional distribution on August 1998.
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(c) Cross-sectional distribution on November 2000.
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(d) Cross-sectional distribution on December 2006.

Each panel displays the kernel estimator of the CS density of the CRSP stock returns for a particular month
(solid line), and compares it with a Gaussian distribution N(µ̂t, σ̂

2
t ) (dashed line), where µ̂t and σ̂2t are the

cross-sectional mean and variance:

µ̂t =
1

n

n∑
i=1

yi,t , σ̂2t =
1

n

n∑
i=1

(yi,t − µ̂t)2.
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Figure 11: Cross-sectional distributions around the 2008 Lehman Brothers crisis.
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(a) Cross-sectional distribution on July 2008.
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(b) Cross-sectional distribution on August 2008.
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(c) Cross-sectional distribution on September 2008.
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(d) Cross-sectional distribution on October 2008.

Each panel displays the kernel estimator of the CS density of the CRSP stock returns for a particular month
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Figure 14: Observed measure of relative discrepancy of optimal positional allocation from EW port-
folio for the subsample of utilities.
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Panel (a) displays the time series of the observed measure of relative discrepancy of the optimal positional
allocation from the EW portfolio n

√
1
n

∑n
i=1(a

∗
i,t −

1
n)2 for the subsample of utilities. Panel (b) displays the

scatterplot of n
√

1
n

∑n
i=1(a

∗
i,t −

1
n)2 vs. E(Fp,t+1|Ft), as well as the 5-th order polynomial fit of the data (solid

blue line). The conditional expectation E(Fp,t+1|Ft) is computed by using the estimated VAR(1) model of the
macro-factor process (see Section 5.2).
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APPENDIX A

Appendix A.1: The factor model of stock returns and the ex-ante

ranks

In this appendix we describe more formally the factor structure of stock returns introduced in Section

2, and give the definition of ex-ante ranks. We assume a factor structure for asset returns as in the

assumption below.

Assumption A. 1. i) The individual return histories yi = (yi,t), with i = 1, . . . , n, are independent

and identically distributed (i.i.d.) conditionally on the path of an unobservable factor (Ft).

ii) The conditional distribution of the return yi,t given the past return history yi,t−1 = (yi,t−1, yi,t−2, ...)

and the entire factor path (Ft) depends on the latter by means of the current and past factor values

Ft = (Ft, Ft−1, ...) only.

The factor Ft can be multidimensional and corresponds to systematic, or common, risks. When the

unobservable factor path (Ft) is integrated out, the individual asset returns histories become dependent.

Under Assumption A.1 i), the factor process (Ft) fully captures the dependence across assets returns.

Assumption A.1 ii) implies that the conditional distribution of Ft given the past histories of the factor

Ft−1 and the returns yi,t−1, i = 1, ..., n, is independent of the latter, that is, the factor process is

exogenous.

The unconditional distribution of assets returns is exchangeable, that is, invariant to asset permuta-

tions. This property corresponds to the ex-ante homogeneity of the population of assets. However, the

assets are ex-post heterogeneous, as they have different distributions conditional on the past return his-

tories. Indeed, under Assumption A.1, the model is compatible with assets having different individual

unobservable characteristics (such as the factor sensitivities and idiosyncratic volatilities for stocks, or

the manager’s skill for fund portfolios) and the past return histories are informative for these individual

unobservable characteristics.

Assumption A. 2. The process (Ft) is strictly stationary and Markov.
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Under Assumption A.1, the returns at date t, that are y1,t, . . . , yn,t, are conditionally i.i.d. variables

admitting a cumulative distribution function (c.d.f.) H∗t defined by H∗t (y) = P(yi,t ≤ y|Ft). The

distributionH∗t is conditional on the current and past realizations Ft = (Ft, Ft−1, . . . ) of the systematic

factor.

Assumption A. 3. The cross-sectional returns c.d.f. H∗t is continuous and strictly increasing.

Under Assumption A.3, at any date t there is a one-to-one mapping between the stock returns and

the ex-ante ranks, that are defined next.

Definition 1. i) The uniform ex-ante ranks are defined as u∗i,t = H∗t (yi,t).

ii) The Gaussian ex-ante ranks are defined as ui,t = Φ−1(u∗i,t) = Ht(yi,t), where Φ denotes the

c.d.f. of the standard normal distribution, and Ht = Φ−1 ◦H∗t .

The ex-ante uniform ranks (resp. the ex-ante Gaussian ranks) at a given date are conditionally i.i.d. vari-

ables with cross-sectional uniform distribution on the interval [0, 1] (resp. a standard Gaussian distri-

bution).

The model introduced in Sections 2-5 can be cast in the framework of Assumptions A.1 - A.3 with

multiple factor Ft = (F ′d,t, F
′
p,t)
′. The specification is such that the CS distribution H∗t (·) depends on

the current value of component Fd,t, and belongs to the Variance-Gamma family (Section 5.1 and Ap-

pendix A.5). The component Fp,t drives the positional persistence of the Gaussian ranks (Section 3.1).

The unobservable characteristics δi = (βi, γi)
′ introduce heterogeneity in the positional persistence of

stocks (Section 3.1).

Appendix A.2: Positional management strategies

i) Derivation of the optimal positional allocation

In this section we derive the optimal positional allocation. For given budget wr allocated in the risky

assets, the future value of the risky part of the portfolio is wr + γ′yt+1 = wr(α
′yt+1 + 1), where

the dollar allocations vector γ (resp., the relative allocations vector α) is such that γ′e = wr (resp.,

α′e = 1). The rank of this future portfolio value has to be computed with respect to the cross-sectional
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distribution of the values at month t+ 1 of portfolios with budget wr invested at month t in any single

risky asset i. These values are wr(yi,t+1 + 1) and their cross-sectional distribution is:

H̃t+1(w) = P[wr(yi,t+1 + 1) ≤ w|Ft+1] = P[yi,t+1 ≤ w/wr − 1|Ft+1] = H∗t+1(w/wr − 1),

where H∗t+1 is the cross-sectional distribution of stock returns at month t+ 1. Thus, the Gaussian rank

of the future value of the risky part of the portfolio with dollar allocation γ is given by:

Φ−1
[
H̃t+1(wr + γ′yt+1)

]
= Φ−1

[
H∗t+1(γ

′yt+1/wr)
]

= Ht+1(γ
′yt+1/wr) = Ht+1(α

′yt+1).

The optimal positional dollar allocation γ∗t is obtained by maximizing the expected positional utility

of the Gaussian rank of the future portfolio value subject to the budget constraint:

γ∗t = arg max
γ: γ′e=wr

Et [U (Ht+1(γ
′yt+1/wr))] .

The solution is γ∗t = wrα
∗
t , where the optimal positional relative allocation α∗t is given in equation

(2.4).

ii) Aggregation of ranks

In this section we discuss the criterion function for positional allocation in terms of aggregation of

ranks. There exist two ways to aggregate ranks. a) Let us consider a set of weights π1, . . . , πn with πi ≥

0, for i = 1, . . . , n, and
n∑
i=1

πi = 1. It is usual to aggregate ranks by considering either the quantity

n∑
i=1

πiu
∗
i,t, or the quantity

n∑
i=1

πiui,t. This ad-hoc approach is frequently used, for instance for selecting

the stocks to include in a market index with a given number of assets in order to account jointly for

the capitalization of the last month, the capitalization of the last three months and different liquidity

measures. It has also been suggested in the latest draft released by the Basel Committee on Banking

Supervision (BCBS, 2013) to aggregate the scores for five categories of importance of risks: size,

cross-jurisdictional activity, interconnectedness, substitutability/financial institution infrastructure and
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complexity. b) An alternative consists in considering the rank of the associated weighted returns:

H∗t

( n∑
i=1

πiyi,t

)
= H∗t

( n∑
i=1

πiH
∗−1
t (u∗i,t)

)
, (A.1)

or:

Ht

( n∑
i=1

πiyi,t

)
= Ht

( n∑
i=1

πiH
−1
t (ui,t)

)
. (A.2)

We get H∗t - and Ht-means of the individual ranks, respectively, instead of the time independent arith-

metic means used in the first approach.

The second definition is more appealing in our framework. Indeed the set of weights πi, i =

1, . . . , n can be considered as a portfolio allocation, for instance a portfolio of stocks, or a fund of

funds. The average return
n∑
i=1

πiyi,t is the portfolio (resp. fund of funds) return and is used to rank the

new portfolio among the initial assets, that are the basic stocks (resp. funds). Moreover, definitions

(A.1) and (A.2) are easily extended to negative πi, or to πi which are not summing up to 1. This

is not the case with the first definition, since
n∑
i=1

πiu
∗
i,t might be outside the unit interval [0, 1] for

negative weights for instance. It is seen that the second definition of rank aggregation corresponds to

the criterion function in equation (2.5).

iii) Nash equilibrium with endogenous cross-sectional distribution

In this section we describe the Nash equilibrium for the positional asset allocation problem. The

cross-sectional distribution that defines the position of the portfolio value of a given investor is no

more considered as exogenous. Instead, this distribution becomes endogenous and is determined at

the equilibrium by the portfolio allocations of the population of investors.

Let us consider a continuum of portfolio managers, indexed by j, with j ∈ [0, 1]. To simplify the

exposition, let us assume that these managers have the same budget, normalized to 1, but different

positional risk aversion parameters Aj . These parameters admit a distribution Q(dA ). Each manager

j allocates her budget in a portfolio of risky assets, with allocation vector αj and portfolio return α′jyt.

We denote by G(dyt) the (exogenous) conditional distribution of the vector of asset returns, where for

expository purpose we omit the time index t− 1 of the conditional information. The distribution G is

defined by the joint model of the assets returns (see Assumptions A.1-A.2 in Appendix A.1).

When solving the asset allocation problem, a given manager j considers the expected positioning
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of her portfolio with respect to the distribution of the portfolio values of the other managers. In the

Nash equilibrium, the portfolio allocations of the other managers are considered as given by manager j.

Let us denote by Hj the cumulative distribution function of the portfolio values of the other managers.

The portfolio allocation problem of manager j becomes:

α∗j = arg max
α:α′e=1

EG [U (Hj(α
′yt); Aj)]

= arg max
α:α′e=1

∫
U (Hj(α

′yt); Aj)G(dyt). (A.3)

Let us further assume that all managers have the same prior on the portfolio strategies of their competi-

tors. Since any manager is negligible compared to the totality of the other managers, this assumption

implies that the distribution Hj = H is independent of j. Then, the solution of the constrained

maximization problem (A.3) is such that:

α∗j = α∗(Aj, G,H ), say,

for some given function α∗ of the positional risk aversion parameter, the asset returns distribution and

the cross-sectional portfolio values distribution.

Let us now derive the Nash equilibrium condition.12 The future portfolio value for manager j

is α∗(Aj, G,H )′yt. This portfolio value is stochastic due to its dependence on the positional risk

aversion Aj , with distribution Q, and on the asset returns vector yt, with distribution G. Then, the

distribution V , say, of the portfolio value in the population of managers is:

V (w) = PQ,G[α∗(Aj, G,H )′yt ≤ w] =

∫
1{α∗(Aj, G,H )′yt ≤ w}Q(dAj)G(dyt).

This distribution depends on Q, G and H , and let us make this dependence explicit by writing

V (·;Q,G,H ), say. Then, the Nash equilibrium condition requires that the prior distribution H

corresponds to the distribution derived ex-post, that is:

H = V (·;Q,G,H ). (A.4)

The equilibrium distribution H ∗ = H ∗(Q,G) is obtained by solving the functional fixed-point equa-

12Our approach can be compared with the equilibrium defined for two periods and two fund managers in Goriaev,
Palomino, and Prat (2001).
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tion (A.4). The discussion of the existence and uniqueness of the solution is beyond the scope of this

paper.

Appendix A.3: ANOVA on Gaussian ranks

In order to motivate empirically the dynamic model for the Gaussian ranks with time variation and

individual heterogeneity in positional persistence introduced in Section 3, let us perform a descriptive

analysis of the empirical Gaussian rank processes. We consider the two-way panel regression:

ûi,t = a+ bi + ct + ei,t, (A.5)

where the empirical Gaussian ranks are explained in terms of a constant a, individual specific effects

bi, time specific effects ct and disturbances ei,t. For identification purpose, we set
n∑
i=1

bi =
T∑
t=1

ct = 0.

The importance of individual and time effects to explain cross-sectional and time series variation of

the Gaussian ranks can be assessed by testing the null hypotheses H1
0 : {bi = 0 for all i} , H2

0 :

{ct = 0 for all t}, and the joint hypothesis H3
0 : {bi = 0 and ct = 0 for all i and t}. The values of the

Fisher statistics F for the three hypotheses are provided below along with their corresponding critical

values F ∗ at 95% level.

Eq. (A.5) H1
0 H2

0 H3
0

F 0.725 0.005 0.578
F ∗ 1.077 1.155 1.069

The Fisher statistics fail to reject the three null hypotheses H1
0 , H2

0 and H3
0 . This descriptive analysis

suggests that the rank processes feature neither individual, nor time effects in their levels. The estimate

of parameter a is 0.0014. The absence of time effects, and a small estimate of parameter a, were

expected since the cross-sectional distribution of the Gaussian ranks ui,t is standard Gaussian at every

date t.

In order to test for individual and time effects in positional persistence, we next consider the re-

gression:

(ûi,t − ¯̂ui,·)(ûi,t−1 − ¯̂ui,·,−1) = a+ bi + ct + ei,t, (A.6)
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where ¯̂ui,· =
1

T

T∑
t=1

ûi,t is the time average of the Gaussian ranks of stock i, and similarly for ¯̂ui,·,−1.

The explained variable in this regression is the cross-product of demeaned individual ranks at consecu-

tive dates. We test the three hypotheses H1
0 , H2

0 and H3
0 . The results for the test statistics are displayed

next and show the presence of both individual and time effects in positional persistence.

Eq. (A.6) H1
0 H2

0 H3
0

F 1.433 6.088 2.375
F ∗ 1.077 1.155 1.069

Thus, in Section 3 we focus on the modelling of the positional persistence parameters.

Appendix A.4: The dynamics of ranks

i) Strict stationarity of the rank processes

Let us consider the rank dynamics in equations (3.1) and (3.2), and assume that the common factor

(Fp,t) is a strictly stationary process (see Assumption A.2). Then, for any asset i, the rank process

(ui,t) is strictly stationary. Indeed, conditionally on any value δi = (βi, γi)
′ of the random individual

effect, the strict stationarity condition for a stochastic autoregressive process [see e.g. Bougerol and

Picard (1992)], namely: E [ log |ρi,t| | δi] < 0, is satisfied.

ii) Cross-sectional distribution of the ranks

Let us now verify that the cross-sectional distribution of the Gaussian ranks ui,t, for i varying at date

t, implied by equations (3.1) and (3.2) is standard Gaussian. By solving backward the autoregressive

equation (3.1), we get an infinite-order Moving Average MA(∞) representation for process ui,t, that

is,

ui,t =
∞∑
`=0

πi,t(`)εi,t−`,

where the moving average coefficients πi,t(0) = ρi,t and πi,t(`) = ρi,tρi,t−1...ρi,t−`+1

√
1− ρ2i,t−`, for

` ≥ 1, are time-varying and stock-specific. Since the disturbances (εi,t) are independent Gaussian
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white noises and
∞∑
`=0

πi,t(`)
2 = 1, we get that variable ui,t admits a standard Gaussian N(0, 1) distri-

bution conditional on the factor path (Ft) and individual heterogeneity δi. This implies that ui,t admits

a standard Gaussian distribution conditional on the factor path only.

iii) A simple sequential updating procedure for numerical computation of the

fixed effects estimators in equations (3.4)-(3.5)

Let us now provide an algorithm with a small degree of numerical complexity for computing of the

fixed effects estimates of the factor values Fp,t, for t = 1, ..., T , and the individual effects βi and γi for

i = 1, ..., n defined in equations (3.4)-(3.5). The Lagrangian function of the constrained maximization

problem is:

L =
T∑
t=1

n∑
i=1

φ(ûi,t, ûi,t−1; ρi,t)− λ
T∑
t=1

Fp,t − µ
T∑
t=1

F 2
p,t,

where:

φ(z, w; ρ) = −1

2
log(1− ρ2)− (z − ρw)2

2(1− ρ2)
,

ρi,t = Ψ(βi + γiFp,t) = Ψ(δ′ixt), with δi = (βi, γi)
′ and xt = (1, Fp,t)

′, as in equation (3.2), and

λ and µ are the Lagrange multipliers for the constraints in (3.5). The first-order conditions for Fp,t,

t = 1, ..., T and δi, i = 1, ..., n are given by:

n∑
i=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρi,t)ψi,tγi − λ− 2µFp,t = 0, t = 1, ..., T, (A.7)

T∑
t=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρi,t)ψi,txt = 0, i = 1, ..., n, (A.8)

respectively, where ψi,t = Ψ′(βi + γiFp,t) and the partial derivative of the function φ w.r.t. ρ is given

by:
∂φ

∂ρ
(z, w; ρ) =

1

1− ρ2

{
(z − ρw)w − ρ

[
(z − ρw)2

1− ρ2
− 1

]}
.

By summing the equations in (A.7) over t = 1, ..., T , we get:

n∑
i=1

T∑
t=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρi,t)ψi,tγi − Tλ− 2µ

T∑
t=1

Fp,t = 0.
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The first term (resp. the third term) in the equation is equal to 0 from (A.8) [resp. from (3.5)]. It

follows that λ = 0. Similarly, by multiplying both sides of equation (A.7) by Fp,t and summing again

over t = 1, ..., T , we get:

n∑
i=1

T∑
t=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρi,t)ψi,tFp,tγi − 2µ

T∑
t=1

F 2
p,t = 0.

The first term in the equation is equal to 0 from (A.8), while we have
T∑
t=1

F 2
p,t = T from (A.8). It

follows that µ = 0. The Lagrange multipliers are zero since the maximized function value is the same

with or without the constraints (3.5). Thus, the estimators can be computed from the equations:

n∑
i=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρi,t)ψi,tγi = 0, t = 1, ..., T, (A.9)

T∑
t=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρi,t)ψi,txt = 0, i = 1, ..., n, (A.10)

imposing the identification constraints (3.5). We solve the system of equations (A.9) - (A.10) by a

Newton-Raphson method, in which the updating is performed sequentially with respect to time and

individual effects. In contrast to the joint updating, which would require the inversion of matrices of

dimension (2n + T, 2n + T ) and has a large degree of numerical complexity, the sequential updating

simplifies considerably the computation, since it allows to update the values of the effects Fp,t, and δi

independently across dates and individuals without matrix inversions. Specifically, let F (q)
p,t , δ(q)i denote

the values of the parameters at step q satisfying the constraints (3.5), and let x(q)t , ρ(q)i,t and ψ(q)
i,t be the

corresponding values of xt, ρi,t and ψi,t. Let us expand equation (A.9) for date t w.r.t. Fp,t around the

solution at step q. We have:

n∑
i=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρ

(q)
i,t )ψ

(q)
i,t γ

(q)
i

+

[
n∑
i=1

(
∂2φ

∂ρ2
(ûi,t, ûi,t−1; ρ

(q)
i,t )[ψ

(q)
i,t ]2[γ

(q)
i ]2 +

∂φ

∂ρ
(ûi,t, ûi,t−1; ρ

(q)
i,t )τ

(q)
i,t [γ

(q)
i ]2

)]
(Fp,t − F (q)

p,t ) ' 0,
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where τ (q)i,t = Ψ′′(β
(q)
i + γ

(q)
i F

(q)
p,t ). By solving the above approximate equation, the new values of the

time effects up to an additive constant and a multiplicative scale are given by:

F̃
(q+1)
p,t = F

(q)
p,t −

[
n∑
i=1

(
∂2φ

∂ρ2
(ûi,t, ûi,t−1; ρ

(q)
i,t )[ψ

(q)
i,t ]2 +

∂φ

∂ρ
(ûi,t, ûi,t−1; ρ

(q)
i,t )τ

(q)
i,t

)
[γ

(q)
i ]2

]−1

·

[
n∑
i=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρ

(q)
i,t )ψ

(q)
i,t γ

(q)
i

]
. (A.11)

Similarly, we update at step q + 1 the individual effects by performing a Taylor expansion of the

equations in (A.10) w.r.t. the βi and γi individual by individual, by taking into account the update of

the time effects at step q + 1:

δ̃
(q+1)
i = δ

(q)
i −

[
T∑
t=1

(
∂2φ

∂ρ2
(ûi,t, ûi,t−1; ρ

(q+1/2)
i,t )[ψ

(q+1/2)
i,t ]2

+
∂φ

∂ρ
(ûi,t, ûi,t−1; ρ

(q+1/2)
i,t )τ

(q+1/2)
i,t

)
x
(q+1)
t [x

(q+1)
t ]′

]−1
×

[
T∑
t=1

∂φ

∂ρ
(ûi,t, ûi,t−1; ρ

(q+1/2)
i,t )ψ

(q+1/2)
i,t x

(q+1)
t

]
, (A.12)

where xq+1
t = (1, F̃

(q+1)
p,t )′, ρ(q+1/2)

i,t = Ψ(β
(q)
i + γ

(q)
i F̃

(q+1)
p,t ) and similarly for ψ(q+1/2)

i,t and τ (q+1/2)
i,t .

Finally, we get the estimates at step q + 1 by recentering and rescaling the values in (A.11) - (A.12) to

account for the constraints:

F̂
(q+1)
p,t =

F̃
(q+1)
p,t − 1

T

T∑
t=1

F̃
(q+1)
p,t√√√√ 1

T

T∑
t=1

([
F̃

(q+1)
p,t

]2
− 1

T

T∑
t=1

F̃
(q+1)
p,t

)2
, t = 1, ..., T,

γ̂
(q+1)
i = γ̃

(q+1)
i

√√√√ 1

T

T∑
t=1

([
F̃

(q+1)
p,t

]2
− 1

T

T∑
t=1

F̃
(q+1)
p,t

)2

, i = 1, ..., n,

β̂
(q+1)
i = β̃

(q+1)
i + γ̃

(q+1)
i

1

T

T∑
t=1

F̃
(q+1)
p,t , i = 1, ..., n.
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iv) Proof of equation (3.6)

From the assumption of Gaussian CS distribution, the future position of the risky portfolio return is

[see equation (2.8)]:

Ht+1(α
′yt+1) = α′ut+1

=
n∑
i=1

αiρi,t+1ui,t +
n∑
i=1

αi

√
1− ρ2i,t+1εi,t+1. (A.13)

Then, by using that the (εi,t) are independent Gaussian white noise processes, the expected positional

utility is:

−E
[
exp (−AHt+1(α

′yt+1)) |Ft, yt
]

= −E
{
E
[
exp (−AHt+1(α

′yt+1)) |Ft+1, yt

]
|Ft, yt

}
= −E

[
exp

(
−A

n∑
i=1

αiρi,t+1ui,t +
1

2
A 2

n∑
i=1

α2
i (1− ρ2i,t+1)

)
|Ft, yt

]
.

The Lagrangian function for the maximization of the expected positional utility w.r.t. the portfolio

allocation α subject to the constraint α′e = 1 is:

L = −E

[
exp

(
−A

n∑
i=1

αiρi,t+1ui,t +
1

2
A 2

n∑
i=1

α2
i (1− ρ2i,t+1)

)
|Ft, yt

]
+ λ(α′e− 1),

where λ is the Lagrange multiplier. The first-order condition for αi is:

A E

[(
ρi,t+1ui,t −A (1− ρ2i,t+1)αi

)
exp

(
−A

n∑
i=1

αiρi,t+1ui,t +
1

2
A 2

n∑
i=1

α2
i (1− ρ2i,t+1)

)
|Ft, yt

]
+λ = 0.

In the conditional expectation, the exponential function can be replaced by exp (−AHt+1(α
′yt+1)).

We deduce that the solution α = α∗t satisfies the implicit equation:

α∗i,t =
1

A 2

λ

Eα
t (1− ρ2i,t+1)

+
1

A
ξi,t, (A.14)
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where ξi,t is defined in equation (3.8). From the constraint
n∑
i=1

α∗i,t = 1, we get that the Lagrange

multiplier is such that:

λ

A 2
=

1
n∑
i=1

[Eα
t (1− ρ2i,t+1)]

−1

(
1− 1

A

n∑
i=1

ξi,t

)
.

By replacing this expression into equation (A.14), we get equation (3.6).

v) Portfolio with least risky future rank

In this subsection, we assume that positional persistence is time invariant, i.e. ρi,t = ρi. Then, from

(A.13) the conditional variance of the future portfolio rank given the individual assets ranks is:

V [Ht+1(α
′yt+1) | ut] =

n∑
i=1

α2
i (1− ρ2i ).

By maximizing this conditional variance w.r.t. α subject to the constraint α′e = 1, we get the portfolio

allocation with conditionally least risky future rank:

αi =
(1− ρ2i )−1
n∑
i=1

(1− ρ2i )−1
.

vi) Proof of equation (3.9)

At first-order in the persistence parameter we have:

Eα
t (1− ρ2i,t+1) ' 1,

and:

Eα
t (ρi,t+1) =

E

[
ρi,t+1 exp

(
−A

n∑
i=1

αiρi,t+1ui,t +
1

2
A 2

n∑
i=1

α2
i (1− ρ2i,t+1)

)
|Ft, yt

]

E

[
exp

(
−A

n∑
i=1

αiρi,t+1ui,t +
1

2
A 2

n∑
i=1

α2
i (1− ρ2i,t+1)

)
|Ft, yt

]
' E

[
ρi,t+1|Ft, yt

]
' E [ρi,t+1|Ft, δi] .
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Then, from (3.7) and (3.8) we get wi,t ' 1/n and ξi,t ' Et(ρi,t+1)ui,t. By plugging these approxima-

tions in (3.6), we get equation (3.9).

vii) Proof of approximation (6.1)

From equation (3.9) we have:

1

n

n∑
i=1

(α∗i,t − 1/n)2 =
1

A 2

1

n

n∑
i=1

(
Et(ρi,t+1)ui,t −

1

n

n∑
i=1

Et(ρi,t+1)ui,t

)2

. (A.15)

When n→∞, the strong Law of Large Numbers implies:

1

n

n∑
i=1

(
Et(ρi,t+1)ui,t −

1

n

n∑
i=1

Et(ρi,t+1)ui,t

)2

→ V (Et(ρi,t+1)ui,t|Ft), (A.16)

where the convergence is almost surely. Moreover, we have:

V (Et(ρi,t+1)ui,t|Ft) = E(Et(ρi,t+1)
2u2i,t|Ft) = E(Et(ρi,t+1)

2|Ft), (A.17)

where we use that the Gaussian ranks are such that ui,t ∼ N(0, 1) conditional on Ft, δi, and the

process of the macro-factors is Markov. Let us now approximate the quantity E(Et(ρi,t+1)
2|Ft) for

small positional persistence. By a first-order Taylor expansion of function Ψ(s) = (e2s − 1)/(e2s + 1)

around s = 0, the conditional expected positional persistence is such that:

Et(ρi,t+1) ' Ψ(0) + Ψ′(0)[βi + γiE(Fp,t+1|Ft)] = βi + γiE(Fp,t+1|Ft). (A.18)

By combining (A.15)-(A.18), approximation (6.1) follows.

Appendix A.5: Parametrization of the Variance-Gamma distribu-

tion

The Variance-Gamma (VG) is a parametric family of distributions yielding a flexible yet tractable

specification of third and fourth order moments. The VG distribution was first used in Finance by

Madan and Seneta (1990) to describe the historical distribution of security returns. In our paper, we

use the VG family to model the theoretical CS distribution of CRSP stock returns. The theoretical CS
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p.d.f. h∗t (y) = ∂H∗t (y)/∂y at month t is given by [see Seneta (2004), p. 180]:

h∗t (y) =
2 exp{γt(y − ct)/ωt}√

2πωt(1/λt)λtΓ(λt)

(
|y − ct|√
2ωtλt + γ2t

)λt−1/2

Kλt−1/2

(
|y − ct|

√
2ωtλt + γ2t
ωt

)
,

(A.19)

where Kλ(·) denotes the Bessel function of the third kind 13 with index λ, Γ(·) is the Gamma func-

tion14 and ct ∈ R, ωt > 0, γt ∈ R and λt > 0 are the parameters for month t. The four VG parameters

ct, ωt, γt, λt are time-varying and stochastic. They correspond to transformations of the elements of a

four-dimensional common stochastic factor Fd,t that drives the pattern of the theoretical CS distribu-

tion of stock returns. The VG distribution in equation (A.19) is the distribution of returns yi,t at month

t, for i varying, conditional on the observed factor Fd,t. Since the VG family of distributions can be

parameterized in several alternative ways, vector Fd,t is defined up to a one-to-one transformation. We

select this transformation such that the parameters, i.e. the components of vector Fd,t, admit simple

interpretations and vary without constraints in the domain R4. The latter condition eases the specifi-

cation of a dynamic model for process (Ft) in Section 5.2. To define the parameter transformation, let

us consider the first four standardized cross-sectional power moments at month t. They are given by

[see Seneta (2004)]:

µt = E[yi,t|Fd,t] = ct + γt, (A.20)

σ2
t = V [yi,t|Fd,t] = γ2t /λt + ωt, (A.21)

st =
E[(yi,t − µt)3|Fd,t]

σ3
t

=
γt
λt

2γ2t /λt + 3ωt
(γ2t /λt + ωt)3/2

, (A.22)

kt =
E[(yi,t − µt)4|Fd,t]

σ4
t

= 3 +
3

λt

ω2
t + 4ωtγ

2
t /λt + 2γ4t /λ

2
t

(γ2t /λt + ωt)2
. (A.23)

We have the following result, which is proved at the end of this Appendix.

Lemma A.1. i) In the VG family, the kurtosis kt is lower bounded, with the lower bound depending

on the skewness st:

kt > 3(1 + s2t/2). (A.24)

13The Bessel function of the third kind with index λ is defined as Kλ(x) =
1

2

∫ +∞

0

tλ−1e−
1
2x(t+t

−1)dt, for x > 0.

14The Gamma function is defined as Γ(x) =

∫ +∞

0

tx−1e−tdt, for x > 0.
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ii) Define:

k∗t = kt − 3(1 + s2t/2). (A.25)

Then, the parameters µt ∈ R, σt > 0, st ∈ R and k∗t > 0 vary independently on their domains, and are

jointly in a one-to-one relationship with the original parameters ct ∈ R, ωt > 0, γt ∈ R and λt > 0.

The inequality (A.24) on the third and fourth order moments of the VG distribution is more restric-

tive than the condition valid for any distribution, namely kt > 1 + s2t [see Pearson (1916)]. Moreover,

in the VG model the kurtosis is larger than 3, that is, the kurtosis of a Gaussian distribution. A Gaus-

sian distribution is the limit of the VG distribution when st = 0 and k∗t → 0 [see Seneta (2004)].

Lemma A.1 i) suggests to consider k∗t defined in (A.25) as a measure of excess kurtosis. Then, we

define the factor Fd,t as in equation (5.1), namely Fd,t = (µt, log σt, st, log k∗t )
′. Its components are in

one-to-one relationship with the parameters of the VG family from Lemma A.1 ii), and they are free

to vary in the unbounded domain R4.

Proof of Lemma A.1: We omit the time index of the parameters as it is not relevant here. Define the

parameter transformations:

ξ =
γ/
√
λ√

γ2/λ+ ω
, η =

1√
λ
. (A.26)

The parameters µ ∈ R, σ > 0, ξ ∈ (−1, 1) and η > 0 vary independently on their domains, and are

in a one-to-one relationship with the original parameters c ∈ R, ω > 0, γ ∈ R and λ > 0. Indeed,

the original parameters can be written as c = µ − ξσ/η, ω = σ2(1 − ξ2), γ = ξσ/η and λ = 1/η2.

Moreover, the skewness and kurtosis can be written as:

s = ηξ(3− ξ2), (A.27)

k = 3 + 3η2(1 + 2ξ2 − ξ4), (A.28)

and are functions of parameters η and ξ only. From equation (A.27), when ξ 6= 0 we have η =

s/[ξ(3− ξ2)]. By replacing this expression of η into equation (A.28) we get:

k = 3 + 3s2g(ξ2), (A.29)

where function g is defined by g(z) =
1 + 2z − z2

z(3− z)2
, for z > 0. The function g is monotonic decreasing

79



on the interval (0, 1), with g(z)→∞ as z → 0 and g(1) = 1/2. We deduce inequality (A.24).

Defining k∗ as k∗ = k − 3(1 + s2/2), the parameters µ ∈ R, σ > 0, s ∈ R and k∗ > 0 are in a

one-to-one relationship with the original parameters. Indeed, given the values of s ∈ R and k∗ > 0,

we can determine uniquely the values of η > 0 and ξ ∈ (−1, 1):

i) If s = 0, from equations (A.27), (A.28) and the definition of k∗ it follows ξ = 0 and η =
√
k∗/3.

ii) If s 6= 0, we can use equations (A.29), the definition of k∗, and the monotonicity of function g to get

ξ2 = g−1[k∗/(3s2) + 1/2] ∈ (0, 1). From equation (A.27), the sign of ξ is the same of that of s. Then,

η = s/[ξ(3− ξ2)]. QED.

Appendix A.6: Numerical implementation of efficient positional

strategies

In this appendix we provide a feasible numerical algorithm for the computation of the optimal posi-

tional portfolio allocation defined in equation (2.4). The algorithm consists in the application of the

Newton-Raphson method for the solution of a maximization problem with equality constraints [see,

e.g. Boyd and Vandenberghe (2004)]. Then, the conditional expectations in the gradient and the Hes-

sian of the criterion are computed using the estimated joint model for Gaussian ranks, cross-sectional

distribution and macro-factor dynamics in Sections 3 and 5.

i) Newton-Raphson algorithm with equality constraints

The maximization problem associated with equation (2.4) can be written as:

max
α

Vt(α)

s.t. α′e = 1

where α = (α1, ..., αn)′, e is an n-vector of ones, and

Vt(α) = Et [U (Ht+1(α
′yt+1))] = Et

[
U

(
Ht+1

(
n∑
i=1

αiH
−1
t+1(ui,t+1)

))]
.
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The associated Lagrangian function for the constrained maximization problem is:

Lt(α, λ) = Vt(α) + λ(α′e− 1),

and the first-order conditions are: 
∂Vt(α)

∂α
+ λe = 0

α′e− 1 = 0
.

By applying an extended Newton’s procedure based on the Taylor’s expansion of the first-order con-

ditions with respect to (α′, λ)′, the solution of the problem is obtained by an iterative algorithm with

(q + 1)-th step given by [see, e.g. Boyd and Vandenberghe (2004)]: α(q+1)

λ(q+1)

 =

 α(q)

0

−
 ∂2Vt(α

(q))

∂α∂α′
e

e′ 0


−1  ∂Vt(α

(q))

∂α

α(q)′e− 1

 .
The initial step of the algorithm uses α(0) =

1

n
e, that is, the equally weighted portfolio.

ii) Formulas for the gradient vector and Hessian matrix of the expected CARA

positional utility function

In the case of a CARA positional utility function with U (v; A ) = − exp(−A v), where A > 0 is the

positional risk aversion parameter, written on the Gaussian rank of the portfolio return, the expected

positional utility Vt(α) is:

Vt(α) = −Et [exp {−AHt+1 (α′yt+1)}] .

The gradient vector of the expected CARA positional utility function is:

∂Vt(α)

∂α
= A Et

[
exp {−AHt+1 (α′yt+1)}H ′t+1(α

′yt+1)yt+1

]
, (A.30)

where H ′t+1(y) =
dHt+1(y)

dy
. The Hessian matrix of the expected CARA positional utility function is:

∂2Vt(α)

∂α∂α′
= A Et

[
exp {−AHt+1 (α′yt+1)}

(
−AH ′t+1(α

′yt+1)
2 +H ′′t+1(α

′yt+1)
)
yt+1 y

′
t+1

]
,(A.31)

81



where H ′′t+1(y) =
d2Ht+1(y)

dy2
.

Let us now compute the two functions H ′t+1(y) and H ′′t+1(y). Recall from Definition 1 ii) in Ap-

pendix 1 that:

Ht(y) = Φ−1(H∗t (y)), (A.32)

where H∗t is the cross-sectional c.d.f. of the VG family at date t. Therefore, we have:

H ′t(y) =
1

φ[Φ−1(H∗t (y))]
h∗t (y),

where h∗t (y) ≡ h∗(y|Fd,t) = dH∗t (y)/dy is the VG p.d.f. in equation (A.19) and φ(·) = Φ′(·) is the

p.d.f. of the standard Gaussian distribution. This allows to compute:

H ′′t (y) =
Φ−1(H∗t (y))

(φ[Φ−1(H∗t (y))])2
(h∗t (y))2 +

1

φ[Φ−1(H∗t (y))]

dh∗t (y)

dy
.

Finally, we can re-write equation (A.31) as:

∂2Vt(α)

∂α∂α′
= A Et

[
exp {−AHt+1 (α′yt+1)} ξt+1 (α′yt+1) yt+1 y

′
t+1

]
, (A.33)

where:

ξt (y) = −AH ′t(y)2 +H ′′t (y)

=
Φ−1(H∗t (y))−A

(φ[Φ−1(H∗t (y))])2
(h∗t (y))2 +

1

φ[Φ−1(H∗t (y))]

dh∗t (y)

dy
. (A.34)

iii) Estimation of the gradient vector and Hessian matrix of the expected CARA

positional utility function

Let us finally discuss the estimation of the conditional expectations in the gradient vector and Hessian

matrix of the criterion given in equations (A.30) and (A.33).

The conditioning information at date t includes the past history of assets returns yt and system-

atic factors Ft, and the individual effects δi = (βi, γi)
′ for all assets. We use that functions Ht+1(·)

and ξt+1(·) in equations (A.32) and (A.34) involve the future factor value Ft+1, the asset returns are

yi,t+1 = H−1t+1(ui,t+1), and the joint process (Ft, u1,t, ..., un,t) is Markov conditional on the individual

effects. Then, the conditional expectations in equations (A.30) and (A.31) are taken with respect to
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future factor value Ft+1 and Gaussian ranks ui,t+1, given Ft, ui,t and δi for all assets in the investment

universe. These conditional expectations are computed by Monte Carlo integration by simulating fu-

ture ranks and factor values according to their estimated models in Sections 3 and 5. The current values

of the factor Ft and ranks ui,t, and the individual effects δi in the conditioning set are replaced by their

estimated values.

83


