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Tikhonov Regularization for Nonparametric Instrumental Variable Estimators

Abstract

We study a Tikhonov Regularized (TiR) estimator of a functional parameter identified

by conditional moment restrictions in a linear model with both exogenous and endogenous

regressors. The nonparametric instrumental variable estimator is based on a minimum dis-

tance principle with penalization by the norms of the parameter and its derivatives. After

showing its consistency in the Sobolev norm and uniform consistency under an embedding

condition, we derive the expression of the asymptotic Mean Integrated Square Error and the

rate of convergence. The optimal value of the regularization parameter is characterized in

two examples. We illustrate our theoretical findings and the small sample properties with

simulation results. Finally, we provide an empirical application to estimation of an Engel

curve, and discuss a data driven selection procedure for the regularization parameter.

Keywords and phrases: Nonparametric Estimation, Ill-posed Inverse Problems,

Tikhonov Regularization, Endogeneity, Instrumental Variable.

JEL classification: C13, C14, C15, D12.

AMS 2000 classification: 62G08, 62G20.

1



1 Introduction

Kernel and sieve estimators provide inference tools for nonparametric regression in empirical

economic analysis. Recently, several suggestions have been made to correct for endogeneity

in such a context, mainly motivated by functional instrumental variable (IV) estimation of

structural equations. Newey and Powell (NP, 2003) consider nonparametric estimation of a

function, which is identified by conditional moment restrictions given a set of instruments.

Ai and Chen (AC, 2003) opt for a similar approach to estimate semiparametric specifica-

tions. Darolles, Fan, Florens and Renault (DFFR, 2003) and Hall and Horowitz (HH, 2005)

concentrate on nonparametric IV estimation of a regression function. Horowitz (2007) shows

the pointwise asymptotic normality for an asymptotically negligible bias. Horowitz and Lee

(2007) extend HH to nonparametric IV quantile regression (NIVQR). Florens (2003) and

Blundell and Powell (2003) give further background on endogenous nonparametric regres-

sions.

There is a growing recent literature in econometrics extending the above methods and

considering empirical applications. Blundell, Chen and Kristensen (BCK, 2007) investigate

application of index models to Engel curve estimation with endogenous total expenditure.

As argued, e.g., in Blundell and Horowitz (2007), the knowledge of the shape of an Engel

curve is a key ingredient of any consumer behaviour analysis. Chen and Pouzo (2009, 2011)

consider a general semiparametric setting including partially linear quantile IV regression,

and apply their results to sieve estimation of Engel curves. Further, Chen and Ludvigson

(2009) consider asset pricing models with functional specifications of habit preferences; Cher-
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nozhukov, Imbens and Newey (2007) estimate nonseparable models for quantile regression

analysis; Loubes and Vanhems (2004) discuss the estimation of the solution of a differential

equation with endogenous variables for microeconomic applications. Other related works

include Chernozhukov and Hansen (2005), Florens, Johannes and Van Bellegem (2005),

Horowitz (2006), Hoderlein and Holzmann (2011), and Hu and Schennach (2008).

The main theoretical difficulty in nonparametric estimation with endogeneity is overcom-

ing ill-posedness of the associated inverse problem (see Kress, 1999, and Carrasco, Florens

and Renault (CFR), 2007, for overviews). It occurs since the mapping of the reduced form

parameter (that is, the distribution of the data) into the structural parameter (the instru-

mental regression function) is not continuous. We need a regularization of the estimation

to recover consistency. For instance, DFFR and HH adopt an L2 regularization technique

resulting in a kind of ridge regression in a functional setting.

The aim of this paper is to introduce a new minimum distance estimator for a func-

tional parameter identified by conditional moment restrictions in a linear model with both

exogenous and endogenous regressors. We consider a penalized extremum estimator which

minimizes QT (ϕ) +λTG(ϕ), where QT (ϕ) is a minimum distance criterion in the functional

parameter ϕ, G(ϕ) is a penalty function, and λT is a positive sequence converging to zero.

The penalty function G(ϕ) exploits the Sobolev norm of function ϕ, which involves the L2

norms of both ϕ and its derivatives ∇αϕ up to a finite order. The basic idea is that the

penalty term λTG(ϕ) damps highly oscillating components of the estimator. These oscilla-

tions are otherwise unduly amplified by the minimum distance criterion QT (ϕ) because of
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ill-posedness. Parameter λT tunes the regularization. We call our estimator a Tikhonov Reg-

ularized (TiR) estimator by reference to the pioneering papers of Tikhonov (1963a,b) where

regularization is achieved via a penalty term incorporating the function and its derivative

(Groetsch, 1984). The TiR estimator admits a closed form and is numerically tractable. Our

approach relies on the maintained assumption that the functional parameter lives in some

Sobolev space of functions with square integrable derivatives up to a finite order. In many

economic applications, differentiability of the parameter of interest is a natural assumption.

The key contribution of our paper is the computation of an explicit asymptotic expression

for the mean integrated squared error (MISE) of a Sobolev penalized estimator in an NIVR

setting with both exogenous and endogenous regressors. Such a sharp result extends the

asymptotic bounds of HH obtained under a L2 penalty. Our other specific contributions

are consistency of the TiR estimator in the Sobolev norm, and as a consequence uniform

consistency under an embedding condition, and a detailed analytic treatment of two examples

yielding the optimal value of the regularization parameter. The embedding condition states

that the order of the Sobolev norm used for penalization is strictly larger than half the

number of endogenous regressors.

Our paper is related to different contributions in the literature. To address ill-posedness

NP and AC propose to introduce bounds on the norms of the functional parameter of interest

and of its derivatives. This amounts to set compactness on the parameter space. This

approach does not yield a closed-form estimator because of the inequality constraint on the

functional parameter. In their empirical application, BCK compute a penalized estimator
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similar to ours. Their estimation relies on series estimators instead of kernel smoothers that

we use. Chen and Pouzo (2009, 2011) examine the convergence rate of a sieve approach for

an implementation as in BCK.

In defining directly the estimator on a function space, we follow the route of Horowitz

and Lee (2007) and the suggestion of NP, p. 1573 (see also Gagliardini and Gouriéroux,

2007, Chernozhukov, Gagliardini, and Scaillet (CGS), 2006). Working directly over an

infinite-dimensional parameter space (and not over finite-dimensional parameter spaces of

increasing dimensions) allows us to develop a well-defined theoretical framework which uses

the penalization parameter as the single regularization parameter. In a sieve approach, either

the number of sieve terms, or both the number of sieve terms and the penalization coefficient,

are regularization parameters that need to be controlled (see Chen and Pouzo, 2009, 2011,

for a detailed treatment). As in the implementation of a sieve approach, our computed

estimator uses a projection on a finite-dimensional basis of polynomials. The approximation

error is of a purely numerical nature, and not of a statistical nature as in a sieve approach

where the number of sieve terms can be used as a regularization parameter. The dimension

of the basis should be selected sufficiently large to get a small approximation error. In some

cases, for example when the parameter of interest is close to a line, a few basis functions

are enough to successfully implement our approach. We cannot see our approach as a sieve

approach with an infinite number of terms, and both asymptotic theoretical treatments do

not nest each other (see CGS for similar comments in the quantile regression case). However

we expect an asymptotic equivalence between our approach and a sieve approach under a
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number of sieve terms growing sufficiently fast to dominate the decay of the penalization

term. The proof of such an equivalence is left for future research.

While the regularization approach in DFFR and HH can be viewed as a Tikhonov regular-

ization, their penalty term involves the L2 norm of the function only (without any derivative).

By construction this penalization dispenses from a differentiability assumption of the func-

tion ϕ. To avoid confusion, we refer to DFFR and HH estimators as regularized estimators

with L2 norm. In our Monte-Carlo experiments and in an analytic example, we find that

the use of the Sobolev penalty substantially enhances the performance of the regularized

estimator relative to the use of the L2 penalty. Another advantage of a Sobolev penalty is

in the proof of uniform consistency when embedding holds. Finally CGS focus on a feasible

asymptotic normality theorem for a TiR estimator in an NIVQR setting. Their results can

be easily specialized to the linear setting of this paper, and are not further considered here.

In Section 2 we discuss ill-posedness in nonparametric IV regression. We introduce

the TiR estimator in Section 3. Its consistency in Sobolev norm is proved in Section 4.

We further establish uniform consistency under an embedding condition and discuss the

convergence rate. In Section 5, we derive the exact asymptotic MISE of the TiR estimator.

In Section 6 we discuss optimal rates of convergence in two examples, and provide an analytic

comparison with L2 regularization. We discuss the numerical implementation in Section 7,

and we present the Monte-Carlo results in Section 8. In Section 9 we provide an empirical

example where we estimate an Engel curve nonparametrically, and discuss a data driven

selection procedure for the regularization parameter. Gagliardini and Scaillet (GS, 2006)
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give further simulation results and implementation details. The set of regularity conditions

and the proofs of propositions are gathered in the Appendices. Omitted proofs of technical

Lemmas are collected in a Technical Report, which is available online at our web pages.

2 Ill-posedness in nonparametric regression

Let {(Yt, Xt, Zt) : t = 1, ..., T} be i.i.d. copies of vector (Y,X,Z), where vectors X and Z

are decomposed as X := (X1, X2) and Z := (Z1, X1). Let the supports of X and Z be

X := X1 × X2 and Z := Z1 × X1, where Xi := [0, 1]dXi , i = 1, 2, and Z1 = [0, 1]dZ1 , while

the support of Y is Y ⊂ R. The parameter of interest is a function ϕ0 defined on X which

satisfies the NIVR:

E [Y − ϕ0(X) | Z] = 0. (1)

The subvectors X1 and X2 correspond to exogenous and endogenous regressors, while Z is

a vector of instruments. The conditional moment restriction (1) is equivalent to:

mx1

(
ϕx1,0, Z1

)
:= E

[
Y − ϕx1,0(X2) | Z1, X1 = x1

]
= 0, for all x1 ∈ X1,

where ϕx1,0(.) := ϕ0 (x1, .). For any given x1 ∈ X1, the function ϕx1,0 satisfies a NIVR with

endogenous regressors X2 only. Parameter ϕ0 is such that, for all x1 ∈ X1, the function ϕx1,0

belongs to the Sobolev space H l (X2) of order l ∈ N, i.e., the completion of the linear space{
ψ ∈ C l (X2) | ∇αψ ∈ L2 (X2) , |α| ≤ l

}
with respect to the scalar product 〈ψ1, ψ2〉Hl(X2) :=∑

|α|≤l

〈∇αψ1,∇αψ2〉L2(X2), where 〈ψ1, ψ2〉L2(X2) :=

∫
X2

ψ1(u)ψ2(u)du and α ∈ NdX2 is a multi-

index. The Sobolev space H l (X2) is an Hilbert space w.r.t. the scalar product 〈ψ1, ψ2〉Hl(X2),
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and the corresponding Sobolev norm is denoted by ‖ψ‖Hl(X2) := 〈ψ, ψ〉1/2
Hl(X2)

. We denote the

L2 norm by ‖ψ‖L2(X2) := 〈ψ, ψ〉1/2L2(X2). The Sobolev embedding theorem (see Adams and

Fournier (2003), Theorem 4.12) states that the Sobolev space H l (X2) is embedded in the

space of continuous functions on X2 equipped with the sup norm, and hence in space L2 (X2)

as well, when 2l > dX2 . This implies that ‖ψ‖L2(X2) ≤ supx2∈X2
|ψ (x2)| ≤ C ‖ψ‖Hl(X2) for

ψ ∈ H l (X2) and a constant C, when 2l > dX2 . With a single endogenous regressor (dX2 = 1),

the embedding condition is satisfied for any l.

We assume the following identification condition.

Assumption 1: ϕx1,0 is the unique function ϕx1 ∈ H l (X2) that satisfies the conditional

moment restriction mx1

(
ϕx1 , Z1

)
= 0, for all x1 ∈ X1.

We refer to NP, Theorems 2.2-2.4, for sufficient conditions ensuring Assumption 1. We work

below with a penalized quadratic criterion in the parameter of interest, which yields a closed

form expression for the estimator. Hence, we do not need to restrict the parameter set

by imposing further assumptions, such as boundedness or compactness. See Chen (2007),

Horowitz and Lee (2007), and Chen and Pouzo (2009, 2011) for similar noncompact settings.

Let us now consider a given x1 ∈ X1 and a nonparametric minimum distance approach

for ϕx1,0. This relies on ϕx1,0 minimizing

Qx1,∞(ϕx1) := E
[
Ωx1,0(Z1)mx1

(
ϕx1 , Z1

)2 | X1 = x1

]
, ϕx1 ∈ H

l (X2) , (2)

where Ωx1,0 is a positive function on Z1. The conditional moment function mx1

(
ϕx1 , z1

)
can
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be written as:

mx1

(
ϕx1 , z1

)
=
(
Ax1ϕx1

)
(z1)− rx1 (z1) =

(
Ax1∆ϕx1

)
(z1) , (3)

where ∆ϕx1 := ϕx1 − ϕx1,0, linear operator Ax1 is defined by
(
Ax1ϕx1

)
(z1) :=∫

ϕx1(x2)fX2|Z(x2|z)dx2 and rx1 (z1) :=

∫
yfY |Z(y|z)dy, where fX2|Z and fY |Z are the condi-

tional densities of X2 given Z, and Y given Z. Assumption 1 on identification of ϕx1,0 holds if

and only if operator Ax1 is injective for all x1 ∈ X1. Further, we assume that Ax1 is a bounded

operator from L2 (X2) to L2
x1

(Z1), where L2
x1

(Z1) denotes the L2 space of square integrable

functions of Z1 defined by scalar product 〈ψ1, ψ2〉L2
x1

(Z1) = E [Ωx1,0(Z1)ψ1 (Z1)ψ2 (Z1) |X1 = x1] .

The limit criterion (2) becomes

Qx1,∞(ϕx1) = 〈Ax1∆ϕx1 , Ax1∆ϕx1〉L2
x1

(Z1) (4)

= 〈∆ϕx1 , A
∗
x1
Ax1∆ϕx1〉Hl(X2) = 〈∆ϕx1 , Ãx1Ax1∆ϕx1〉L2(X2),

whereA∗x1 , resp. Ãx1 , denotes the adjoint operator ofAx1 w.r.t. the scalar products 〈., .〉Hl(X2),

resp. 〈., .〉L2(X2), and 〈., .〉L2
x1

(Z1).

Assumption 2: The linear operator Ax1 from L2 (X2) to L2
x1

(Z1) is compact for all x1 ∈ X1.

Assumption 2 on compactness of operator Ax1 holds under mild conditions on the conditional

density fX2|Z and the weighting function Ωx1,0 (see Assumptions B.3 (i) and B.6 in Appendix

1). Then, operator A∗x1Ax1 is compact and self-adjoint in H l (X2), while Ãx1Ax1 is compact

and self-adjoint in L2 (X2). We denote by
{
φx1,j : j ∈ N

}
an orthonormal basis in H l (X2) of

eigenfunctions of operator A∗x1Ax1 , and by νx1,1 ≥ νx1,2 ≥ · · · > 0 the corresponding eigen-

values (see Kress, 1999, Section 15.3, for the spectral decomposition of compact, self-adjoint
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operators). Similarly,
{
φ̃x1,j : j ∈ N

}
is an orthonormal basis in L2 (X2) of eigenfunctions

of operator Ãx1Ax1 for eigenvalues ν̃x1,1 ≥ ν̃x1,2 ≥ · · · > 0. By compactness of A∗x1Ax1 and

Ãx1Ax1 , the eigenvalues are such that νx1,j, ν̃x1,j → 0, as j → ∞, for any given x1 ∈ X1.

Moreover, under Assumptions B.3 (i) and B.6, φ̃x1,j ∈ H l (X2) for any j. Then, the limit

criterion Qx1,∞(ϕx1) can be minimized by a sequence ϕx1,n in H l (X2) such that

ϕx1,n = ϕx1,0 + εφ̃x1,n, n ∈ N, (5)

for ε > 0, which does not converge to ϕx1,0 in L2-norm ‖.‖L2(X2) . Indeed, we have

Qx1,∞(ϕx1,n) = ε2〈φ̃x1,n, Ãx1Ax1φ̃x1,n〉L2(X2) = ε2ν̃x1,n → 0 as n→∞, but
∥∥ϕx1,n − ϕx1,0∥∥L2(X2)

= ε, ∀n. Since ε > 0 is arbitrary, the usual “identifiable uniqueness” assumption (e.g., White

and Wooldridge (1991))

inf
ϕx1∈H

l(X2):R≥‖ϕx1−ϕx1,0‖L2(X2)
≥ε
Qx1,∞(ϕx1) > 0 = Qx1,∞(ϕx1,0), for R > ε > 0, (6)

is not satisfied. In other words, function ϕx1,0 is not identified as an isolated minimum of

Qx1,∞. This is the identification problem of minimum distance estimation with functional

parameter and endogenous regressors. Failure of Condition (6) despite validity of Assump-

tion 1 comes from 0 being a limit point of the eigenvalues of operator Ãx1Ax1 (and A∗x1Ax1).

This shows that the minimum distance problem for any given x1 ∈ X1 is ill-posed. The

minimum distance estimator of ϕx1,0 which minimizes the empirical counterpart of criterion

Qx1,∞(ϕx1) over H l (X2), or some bounded noncompact subset of it, is not consistent w.r.t.

the L2-norm ‖.‖L2(X2).

To conclude this section, let us further discuss the link between function ϕ0 and func-
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tions ϕx1,0, x1 ∈ X1. First, ϕ0 ∈ L2 (X ). Indeed, the set P :=
{
ϕ : ϕx1 ∈ H

l (X2) ,∀x1 ∈ X1,

sup
x1∈X1

∥∥ϕx1∥∥Hl(X2)
<∞

}
is a subset of L2 (X ), since ‖ϕ‖2

L2(X ) =

∫
X1

∥∥ϕx1∥∥2

L2(X2)
dx1. Sec-

ond, Assumption 1 implies identification of ϕ0 ∈ P . Third, minimizing Qx1,∞ w.r.t. ϕx1 ∈

H l (X2) for all x1 ∈ X1 is equivalent to minimizing the global criterion Q∞(ϕ) :=

E
[
Ω0(Z)m (ϕ,Z)2] = E

[
QX1,∞(ϕX1

)
]
, w.r.t. ϕ ∈ P , wherem (ϕ, z) := E [Y − ϕ(X) | Z = z]

and Ω0(z) = Ωx1,0(z1). Under Assumptions B.3 (i), ill-posedness of the minimum distance

approach for ϕx1 , x1 ∈ X1, transfers by Lebesgue theorem to ill-posedness of the minimum

distance approach for ϕ. Indeed, the sequence ϕn induced by (5) yields Q∞(ϕn) → 0 and

ϕn 9 ϕ0 as n → ∞. Compactness (Assumption 2) cannot hold for the conditional expec-

tation operator of X given Z per se. Indeed, as discussed in DFFR, this operator is not

compact in the presence of exogenous regressors treated as random variables and not fixed

values. This explains why we work x1 by x1 as in HH to estimate ϕ0. Finally, we assume

the following uniform behaviour needed to show the asymptotic properties of the estimator.

Assumption 3: The true function ϕ0 satisfies sup
x1∈X1

∥∥ϕx1,0∥∥Hl(X2)
<∞.

3 The Tikhonov Regularized (TiR) estimator

We address ill-posedness by Tikhonov regularization (Tikhonov, 1963a,b; see Kress, 1999,

Chapter 16). We consider a penalized criterion Lx1,T (ϕx1) := Qx1,T

(
ϕx1
)

+λx1,T
∥∥ϕx1∥∥2

Hl(X2)
,

where Qx1,T

(
ϕx1
)

is an empirical counterpart of Qx1,∞
(
ϕx1
)

defined by

Qx1,T

(
ϕx1
)

=

∫
Z1

Ω̂x1 (z1) m̂x1

(
ϕx1 , z1

)2
f̂Z1|X1(z1|x1)dz1, (7)
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and Ω̂x1 is a sequence of positive functions converging in probability to Ωx1,0. In (7) we

estimate the conditional moment nonparametrically with

m̂x1

(
ϕx1 , z1

)
=

∫
ϕx1 (x2) f̂X2|Z (x2|z) dx2 −

∫
yf̂Y |Z (y|z) dy =:

(
Âx1ϕx1

)
(z1)− r̂x1 (z1) ,

where f̂X2|Z and f̂Y |Z denote kernel estimators of the density of X2 given Z, and Y given Z.

We use a common kernel K and two different bandwidths hT for Y , X2, Z1, and hx1,T for

X1.

Definition 1: The Tikhonov Regularized (TiR) minimum distance estimator for ϕx1,0 is

defined by

ϕ̂x1 := arginf
ϕx1∈H

l(X2)

Lx1,T (ϕx1), (8)

where λx1,T > 0 and λx1,T → 0, for any x1 ∈ X1. The TiR estimator ϕ̂ for ϕ0 is defined by

ϕ̂ (x) := ϕ̂x1(x2), x ∈ X .

To emphasize the difference between ϕ̂x1 for a given x1 ∈ X1, and ϕ̂, we refer to the former

as a local estimator, and to the latter as a global estimator.

To get the intuition on why advocating the Sobolev norm as a penalty, let us consider the

case of a single endogenous explanatory variable, i.e. dX2 = 1, and let the parameter set be

the Sobolev space H1 (X2), i.e. l = 1. From the proof of Proposition 1 in CGS, we know that

bounded sequences
(
ϕx1,n

)
such that Qx1,∞(ϕx1,n)→ 0 and ϕx1,n 9 ϕx1,0 have the property

lim sup
n→∞

∥∥∇ϕx1,n∥∥L2(X2)
=∞. This explains why we prefer in definition (8) to use a Sobolev

penalty λx1,T
∥∥ϕx1∥∥2

H1(X2)
instead of an L2 penalty λx1,T

∥∥ϕx1∥∥2

L2(X2)
to dampen the highly

oscillating components in the estimated function. Without penalization oscillations are
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unduly amplified, since ill-posedness yields a criterion Qx1,T (ϕx1) asymptotically flat along

some directions. This intuition generalizes to the case where l > 2dX2 because of the Sobolev

embedding theorem (see Section 2), and sequences
(
ϕx1,n

)
such that Qx1,∞(ϕx1,n) → 0 and

ϕx1,n 9 ϕx1,0 have the property lim sup
n→∞

∥∥ϕx1,n∥∥Hl(X2)
=∞. The tuning parameter λx1,T in

Definition 1 controls for the amount of regularization, and how this depends on point x1 and

sample size T . Its rate of convergence to zero affects the one of ϕ̂x1 .

The TiR estimator admits a closed form expression. The objective function in (8) can

be rewritten as (see Lemma A.2 (i) in Appendix 2)

Lx1,T (ϕx1) = 〈ϕx1 , Â
∗
x1
Âx1ϕx1〉Hl(X2) − 2〈ϕx1 , Â

∗
x1
r̂x1〉Hl(X2) + λx1,T 〈ϕx1 , ϕx1〉Hl(X2), (9)

up to a term independent of ϕx1 , where operator Â∗x1 is such that

〈
ϕ, Â∗x1ψ

〉
Hl(X2)

=

∫
Ω̂x1(z1)

(
Âx1ϕ

)
(z1)ψ (z1) f̂Z1|X1 (z1|x1) dz1

for any ϕ ∈ H l (X2) and ψ ∈ L2
x1

(Z1). When l = 1 we have

Â∗x1 = D−1 ˜̂Ax1 , (˜̂
Ax1ψ

)
(x2) :=

∫
Z1

Ω̂x1 (z1) f̂X2,Z1|X1(x2, z1|x1)ψ (z1) dz1, (10)

where D−1 denotes the inverse of operator D : H2
0 (X2)→ L2 (X2) with D := 1−

dX2∑
i=1

∇2
i . Here

H2
0 (X2) = {ψ ∈ H2 (X2) | ∇iψ(x2) = 0 for x2,i = 0, 1, and i = 1, ..., dX2} is the subspace of

H2 (X2) consisting of functions with first-order derivatives vanishing on the boundary of X2.

Operators Â∗x1 and
˜̂
Ax1 are the empirical counterparts of A∗x1 and Ãx1 , which are linked by

A∗x1 = D−1Ãx1 . The boundary conditions ∇iψ(x2) = 0 for x2,i = 0, 1 and i = 1, ..., dX2 ,

in the definition of H2
0 (X2) are not restrictive since they concern the estimate ϕ̂x1 , whose
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properties are studied in L2 or pointwise, but not the true function ϕx1,0. The sole purpose of

the boundary conditions is to guarantee a unique characterization of operator D−1 yielding

the solution of a partial differential equation (PDE; see Appendix 2 for the proof of the above

statements and the characterization of Â∗x1 and A∗x1 in the general case l ≥ 1). Propositions

1-4 below hold independently whether ϕx1,0 satisfy these boundary conditions or not (see

also Kress (1999), Theorem 16.20). From Lemma A.2 (ii), operator Â∗x1Âx1 is compact, and

hence λT + Â∗x1Âx1 is invertible (Kress (1999), Theorem 3.4). Then, Criterion (9) admits a

global minimum ϕ̂x1 on H l (X2), which solves the first order condition

(
λx1,T + Â∗x1Âx1

)
ϕx1 = Â∗x1 r̂x1 . (11)

This is an integro-differential Fredholm equation of Type II (see e.g. Mammen, Linton and

Nielsen, 1999, Linton and Mammen, 2005, Gagliardini and Gouriéroux, 2007, Linton and

Mammen, 2008, and the survey by CFR for other examples). The transformation of the

ill-posed problem (1) in the well-posed estimating equation (11) is induced by the penalty

term involving the Sobolev norm. The TiR estimator of ϕx1,0 is the explicit solution of

Equation (11):

ϕ̂x1 =
(
λx1,T + Â∗x1Âx1

)−1

Â∗x1 r̂x1 . (12)
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4 Consistency

Equation (12) can be rewritten as (see Appendix 3):

ϕ̂x1 − ϕx1,0 =
(
λx1,T + A∗x1Ax1

)−1
A∗x1ψ̂x1 + Brx1,T +

(
λx1,T + A∗x1Ax1

)−1
A∗x1ζx1 +Rx1,T

=: Vx1,T + Brx1,T + Bex1,T +Rx1,T , (13)

where

ψ̂x1(z1) :=

∫
(y − ϕx1,0(x2))

f̂W,Z(w, z)− E
[
f̂W,Z(w, z)

]
fZ(z)

dw,

ζx1(z1) :=

∫
(y − ϕx1,0(x2))

E
[
f̂W,Z(w, z)

]
− fW,Z(w, z)

fZ(z)
dw, (14)

and W := (Y,X2) ∈ W := Y × X2. In Equation (13) the first three terms Vx1,T ,

Brx1,T :=
(
λx1,T + A∗x1Ax1

)−1
A∗x1Ax1ϕx1,0 − ϕx1,0 =: ϕx1,λ − ϕx1,0, and Bex1,T are the leading

terms asymptotically, while Rx1,T is a remainder term given in (26). The stochastic term

Vx1,T has mean zero and contributes to the variance of the estimator. The deterministic term

Bex1,T corresponds to kernel estimation bias. The deterministic term Brx1,T corresponds to the

regularization bias in the theory of Tikhonov regularization (Kress, 1999, Groetsch, 1984).

Indeed, function ϕx1,λ minimizes the penalized limit criterion Qx1,∞
(
ϕx1
)

+λx1,T
∥∥ϕx1∥∥2

Hl(X2)

w.r.t. ϕx1 ∈ H
l (X2). Thus, Brx1,T is the asymptotic bias term arising from introducing the

penalty λx1,T
∥∥ϕx1∥∥2

Hl(X2)
in the criterion. To control Brx1,T we introduce a source condition

(see DFFR).

Assumption 4: The function ϕx1,0 satisfies
∞∑
j=1

〈
φx1,j, ϕx1,0

〉2

Hl(X2)

ν
2δx1
x1,j

<∞ for δx1 ∈ (0, 1].
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As in the proof of Proposition 3.11 in CFR, Assumption 4 implies:

∥∥Brx1,T∥∥Hl(X2)
= O

(
λ
δx1
x1,T

)
. (15)

By bounding the Sobolev norms of the other terms Vx1,T , Bex1,T , and Rx1,T (see Appendix

3), we get the following consistency result. The relation aT � bT , for positive sequences aT

and bT , means that aT/bT is bounded away from 0 and ∞ as T →∞.

Proposition 1: Let the bandwidths hT � T−η and hx1,T � T−ηx1 and the regularization

parameter λx1,T � T−γx1 be such that:

η > 0, ηx1 > 0, γx1 > 0, (16)

γx1 + dX1ηx1 + (dZ1 + dX2) η < 1, (17)

and:

γx1 < min

{
mηx1 ,mη,

1− dX1ηx1 − ηmax {dZ1 , dX2}
2

}
, (18)

where m ≥ 2 is the order of differentiability of the joint density of (W,Z). Under Assump-

tions 1-4 and B.1-B.3, B.6, B.7 (i)-(ii):
∥∥ϕ̂x1 − ϕx1,0∥∥Hl(X2)

= op(1).

Proposition 1 shows that the powers γx1 , ηx1 , and η need to be sufficiently small for large

dimensions dX1 , dX2 , and dZ and small order of differentiability m to ensure consistency.

An analysis of γx1 , ηx1 , and η close to the origin reveals that conditions (16)-(18) are not

mutually exclusive, and that these conditions do not yield an empty region. Consistency of

ϕ̂x1 in the Sobolev norm H l(X2) implies consistency of both ϕ̂x1 and ∇αϕ̂x1 for |α| ≤ l in
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the norm L2 (X2). When 2l > dX2 , the Sobolev embedding theorem (see Section 2) implies

uniform consistency of ϕ̂x1 , i.e., supx2∈X2
|ϕ̂x1(x2) − ϕx1,0(x2)| = op(1), for a given x1 ∈ X1.

When dX2 = 1 (single endogenous regressor) uniform consistency is valid for any order l since

the embedding condition is always satisfied. Uniform consistency without the embedding

condition, i.e., when 2l ≤ dX2 , is a conjecture left for future research.

Building on the bounds for terms Vx1,T , Bex1,T , and Rx1,T in the proof of Proposition 1,

we can further derive a result on the consistency rate uniformly in x1 ∈ X1 if we introduce

a strengthening of the source condition.

Assumption 4 bis: The function ϕ0 satisfies sup
x1∈X1

∞∑
j=1

〈
φx1,j, ϕx1,0

〉2

Hl(X2)

ν
2 δx1
x1,j

< ∞, for δx1 ∈

(0, 1] with x1 ∈ X1, and δ := inf
x1∈X1

δx1 > 0.

Assumption 4 bis implies:

sup
x1∈X1

∥∥Brx1,T∥∥2

Hl(X2)
= O

(
sup
x1∈X1

λ
2δx1
x1,T

)
, (19)

and we get the next uniform consistency result.

Proposition 2: Let the bandwidths hT � T−η and hx1,T � T−ηx1 and the regularization

parameter λx1,T � T−γx1 be such that η ≤ ηx1 ≤ η̄ and γ ≤ γx1 ≤ γ̄ for all x1 ∈ X1, where

η, η, γ > 0, γ̄+dX1 η̄+(dZ1 + dX2) η < 1, and γ̄ < min

{
mη,mη,

1− dX1 η̄ − ηmax {dZ1 , dX2}
2

}
.

Under Assumptions 1-4 bis and B.1-B.3, B.6, B.7 (i)-(ii): sup
x1∈X1

∥∥ϕ̂x1 − ϕx1,0∥∥Hl(X2)
=

Op

(
(log T )T−κ

)
where κ > 0 is given by

κ = min

{
1− dX1 η̄ − γ̄ −min {γ̄, dZ1η}

2
, 1− dX1 η̄ − γ̄ − η (dZ1 + dX2) ,mmin

{
η, η
}
− γ̄

2
, δγ

}
.
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Again from the Sobolev embedding theorem, when 2l > dX2 , Proposition 2 yields a

uniform consistency rate of the global estimator ϕ̂: supx∈X |ϕ̂(x)−ϕ0(x)| = Op ((log T )T−κ).

This in turn implies the L2-consistency rate ‖ϕ̂− ϕ0‖L2(X ) = Op

(
(log T )T−κ

)
.

5 Mean Integrated Square Error

As in AC, Assumption 4.1, we assume the following choice of the weighting matrix.

Assumption 5: The asymptotic weighting matrix is Ω0(z) = V [Y − ϕ0 (X) | Z = z]−1 .

In a semiparametric setting, AC show that this choice of the weighting matrix yields effi-

cient estimators of the finite-dimensional component. Here, Assumption 5 is used to derive

the exact asymptotic expansion of the MISE of the TiR estimator provided in the next

proposition.

Proposition 3: Under Assumptions 1-5, Assumptions B, the conditions (16)-(18) and

1

Th
dX1
x1,T

h
dZ1

+dX2
T

+h2m
x1,T

+h2m
T = o (λx1,T b (λx1,T , hx1,T )) ,

hTh
m−1
x1,T

+ hmT√
λx1,T

= o (b(λx1,T , hx1,T )) ,

(20)

the MISE of ϕ̂x1 is given by

E
[∥∥ϕ̂x1 − ϕx1,0∥∥2

L2(X2)

]
= Mx1,T (λx1,T , hx1,T )(1 + o(1)), (21)

where

Mx1,T (λx1,T , hx1,T ) :=
1

Th
dX1
x1,T

σ2
x1

(λx1,T ) + bx1 (λx1,T , hx1,T )2 , (22)

and: σ2
x1

(λx1,T ) := ω2fX1 (x1)
∞∑
j=1

νx1,j

(λx1,T + νx1,j)
2

∥∥φx1,j∥∥2

L2(X2)
,
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bx1 (λx1,T , hx1,T ) :=
∥∥∥Brx1,T + hmx1,T

(
λx1,T + A∗x1Ax1

)−1
A∗x1Ξx1

∥∥∥
L2(X2)

,

with ω2 =

∫
K(x1)2dx1 and Ξx1(z1) :=

1

m!

∑
|α|=m

∫
(y − ϕx1,0(x2))

∇α
X1
fW,Z(w, z)

fZ(z)
dw.

Proof: See Appendix 3.

The asymptotic expansion (22) of the MISE consists of one bias component and one

variance component which we comment on.

(i) The bias function bx1 (λx1,T , hx1,T ) is the L2 norm of the sum of two contributions,

namely the Tikhonov regularization bias Brx1,T and function hmx1,T
(
λx1,T + A∗x1Ax1

)−1
A∗x1Ξx1 .

The latter contribution corresponds to a population Tikhonov regression applied to function

hmx1,TΞx1 . Function hmx1,TΞx1 arises from smoothing the exogenous regressorsX1 and is derived

by a standard Taylor expansion w.r.t. X1 of the kernel estimation bias E
[
f̂W,Z(w, z)

]
−

fW,Z(w, z) in Bex1,T (see (14)).

(ii) The variance term is Vx1,T :=
1

Th
dX1
x1,T

σ2
x1

(λx1,T ). The ratio 1/
(
Th

dX1
x1,T

)
and the mul-

tiplicative factor ω2fX1 (x1) are standard for kernel regression in dimension dX1 and are

induced by smoothing X1. The coefficient σ2
x1

(λx1,T ) involves a weighted sum of the regular-

ized inverse eigenvalues νx1,j/ (λx1,T + νx1,j)
2 of operator A∗x1Ax1 , with weights

∥∥φx1,j∥∥2

L2(X2)

(since νx1,j/(λx1,T + νx1,j)
2 ≤ νx1,j, the infinite sum converges under Assumption B.8 (ii)

in Appendix 1). To have an interpretation, note that the inverse of operator A∗x1Ax1 corre-

sponds to the standard asymptotic variance matrix
(
QXZV

−1
0 QZX

)−1
of the 2-Stage Least

Square (2SLS) estimator of the finite-dimensional parameter θ in the instrumental regression

Y = X
′
θ+U with E [U |Z] = 0, where QZX = E

[
ZX

′]
and V0 = V

[
U2ZZ

′]
. In the ill-posed

nonparametric setting, the inverse of operator A∗x1Ax1 is unbounded, and its eigenvalues
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1/νx1,j → ∞ diverge. The penalty term λx1,T
∥∥ϕx1∥∥2

Hl(X2)
in the criterion defining the TiR

estimator implies that inverse eigenvalues 1/νx1,j are “ridged” with νx1,j/ (λx1,T + νx1,j)
2.

The coefficient σ2
x1

(λx1,T ) is a decreasing function of λx1,T . Since
∞∑
j=1

ν−1
x1,j

∥∥φx1,j∥∥2

L2(X2)
=

∞, the series σ2
x1

(λx1,T ) diverges as λx1,T → 0. When σ2
x1

(λx1,T ) → ∞ such that

1

Th
dX1
x1,T

σ2
x1

(λx1,T ) → 0, the variance term Vx1,T converges to zero at a slower rate than

the standard nonparametric rate 1/
(
Th

dX1
x1,T

)
. The slower rate is not coming from smooth-

ing variables (W,Z1), but from the ill-posedness of the problem, which implies νx1,j → 0.

The weighting matrix Ω0 (Assumption 5) impacts in a non-trivial way both the asymptotic

variance and the asymptotic bias of the estimator through the adjoint operator A∗x1 . Under

a generic weighting matrix Ω0, the asymptotic variance component Vx1,T involves a double

sum over the spectrum of A∗x1Ax1 . The notion of efficiency of the functional estimator and

the associated optimal choice of Ω0 is out of the scope of the present paper.

The asymptotic expansion of the MISE of estimator ϕ̂x1 given in Proposition 3 involves

the conditional distribution of the endogenous regressor X2 given Z1 and X1 = x1, and the

conditional variance of the error U := Y − ϕ0(X) given Z1 and X1 = x1 (see Assumption

5), by means of operator A∗x1Ax1 . It also involves the joint distribution of U, X2 and Z by

means of the estimation bias contribution Ξx1 . The asymptotic expansion of the MISE does

not involve the bandwidth hT for smoothing (W,Z1), as long as Conditions (20) are satisfied.

The variance term is asymptotically independent of hT since the asymptotic expansion of

ϕ̂x1 − ϕx1,0 involves the kernel density estimator integrated w.r.t. (W,Z1) (see term Vx1,T in

Equation (13)). The integral averages the localization effect of the bandwidth hT (but not
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that of hx1,T ). On the contrary, kernel smoothing for both (W,Z1) and X1 does impact on

bias. However, the second condition in (20) implies that the estimation bias from smoothing

(W,Z1) is asymptotically negligible compared to the regularization bias (see Lemma A.7 in

Appendix 3). The other restrictions on the bandwidth hT in (20) are used to control higher

order terms in the MISE (see Lemma A.5).

The set of Assumptions B in Appendix 1 used to prove Proposition 3 includes regularity

conditions on the eigenfunctions of operator A∗x1Ax1 (Assumption B.8), which are more

restrictive than the conditions used e.g. in HH, DFFR and BCK. These assumptions are

required to derive the sharp asymptotic expansion of the MISE, a result stronger than the

rates of convergence derived in HH, DFFR and BCK (see also the discussion in Appendix

1).

When there are no exogenous regressors, the asymptotic MISE of the estimator ϕ̂ reduces

to:

MT (λT ) =
1

T

∞∑
j=1

νj

(λT + νj)
2

∥∥φj∥∥2

L2(X2)
+
∥∥(λT + A∗A)−1A∗Aϕ0 − ϕ0

∥∥2

L2(X2)
. (23)

The bias term comes solely from Tikhonov regularization, and no contribution from kernel

smoothing appears under the conditions of Proposition 3.

Finally, it is also possible to derive an exact asymptotic expansion of the MISE for the

estimator ϕ̃x1 regularized by the L2 norm:

E
[∥∥ϕ̃x1 − ϕx1,0∥∥2

]
= M̃x1,T (λx1,T , hx1,T )(1 + o(1)),

M̃x1,T (λx1,T , hx1,T ) =
ω2fX1 (x1)

Th
dX1
x1,T

∞∑
j=1

ν̃x1,j

(λx1,T + ν̃x1,j)
2 + b̃x1 (λx1,T , hx1,T )2 , (24)
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where b̃x1 (λx1,T , hx1,T ) =

∥∥∥∥B̃rx1,T + hmx1,T

(
λx1,T + Ãx1Ax1

)−1

Ãx1Ξx1

∥∥∥∥
L2(X2)

and

B̃rx1,T :=
(
λT + Ãx1Ax1

)−1

Ãx1Ax1ϕx1,0 − ϕx1,0.

This simplifies to M̃T (λT ) =
1

T

∞∑
j=1

ν̃j

(λT + ν̃j)
2 +

∥∥∥∥(λT + Ã∗Ã
)−1

Ã∗Ãϕ0 − ϕ0

∥∥∥∥2

L2(X2)

when

only endogenous regressors are present. A similar formula has been derived by Carrasco and

Florens (2011) for the density deconvolution problem. Such a characterization is new in the

nonparametric IV regression setting.

6 Examples

In the general framework, the derivation of the optimal regularization parameter λx1,T , the

optimal bandwidth hx1,T , and the optimal MISE is difficult because Expression (21) involves

the spectrum of operator A∗x1Ax1 . In this section, for illustrative purpose, we consider two

examples where the spectrum of A∗x1Ax1 is characterized explicitly. In Section 6.1 we consider

an example with a Gaussian distribution similar to NP yielding a mixed geometric-hyperbolic

decay of the spectrum (severe ill-posedness). In Section 6.2 we consider an example with

trigonometric eigenfunctions similar to HH yielding an hyperbolic decay of the spectrum

(mild ill-posedness). In both examples we work on Sobolev spaces with l = dX2 = 1.

6.1 Gaussian distribution

Let the errors U and V, and the instruments X1 and Z1, admit a joint Gaussian distribution,

with zero means, unit variances and correlation 0.5 between U and V . The endogenous
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regressor X2 is given by X2 =
Z1 + V√

2
. The variable Y is given by Y = ϕ̄0 (X1 +X2) + U,

where ϕ̄0 is a differentiable function on R. To ease the notation, the variables X1 and X2

are not transformed to have compact support, and we keep X1 = X2 = R. Accordingly,

in this example the L2 and Sobolev norms are such that ‖ϕ‖2
L2(X2) =

∫
ϕ (x2)2 φ (x2) dx2

and ‖ϕ‖2
H1(X2) =

∫
ϕ (x2)2 φ (x2) dx2 +

∫
(∇ϕ (x2))2 φ (x2) dx2, where φ is the pdf of the

standard Gaussian distribution. Similarly, the norm on Z1 = R is such that ‖ψ‖2
L2
x1

(Z1) =∫
ψ (z1)2 φ (z1) dz1, for any x1 ∈ X1. The function ϕx1,0 is ϕx1,0 = ϕ̄0(·+ x1). The operator

A := Ax1 is independent of x1, since X2 is independent of X1 conditionally on Z1. The spec-

trum of the operator ÃA consists of eigenvalues ν̃j = %2(j−1) = e−α(j−1), with % = 1/
√

2 and

α = −2 log %, and associated eigenfunctions φ̃j = Hj−1, j = 1, 2, ..., where Hj is the Hermite

polynomial of order j (see e.g. CFR). In the Technical Report we show that A∗A = D−1ÃA,

where the differential operator D is given by D = 1−∇2 − (∇ log φ)∇. From the differen-

tial equation of Hermite polynomials (e.g., Abramowitz and Stegun, 1970), we get that the

functions φ̃j are eigenfunctions of operator D with eigenvalues j. This property allows us to

derive the spectrum of operator A∗A and to characterize the asymptotic behaviour of the

variance σ2
x1

(λx1,T ) and squared bias bx1 (λx1,T , hx1,T )2 in the asymptotic MISE of the TiR

estimator. This result is stated in the next Proposition 4 for a setting that generalizes our

Gaussian example.

Proposition 4: Let us assume that the spectrum of operator Ãx1Ax1 consists of eigenvalues

ν̃x1,j � e−αj, α > 0, and eigenfunctions φ̃x1,j, and that the functions φ̃x1,j are eigenfunctions

of operator D with eigenvalues τx1,j � jβ, β ≥ 0. Let further l = 1. Then:
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(i) The spectrum of A∗x1Ax1 consists of eigenvalues νx1,j =
ν̃x1,j
τx1,j

� j−βe−αj and eigenfunc-

tions φx1j =
1

√
τx1,j

φ̃x1,j.

Furthermore, assume that dx1,j :=
〈
φx1,j, ϕx1,0

〉
H1(X2)

and ξx1,j :=
〈
ψx1,j,Ξx1

〉
L2
x1

(Z1)
, where

ψx1,j := Ax1φx1j/
√
νx1,j, are such that: (a) d2

x1,j
� e−2δαj and ξ2

x1,j
� e−2ραj, for δ ∈ (0, 1)

and ρ ∈ (0, 1/2); (b) the number n(J) of lags 1 ≤ j ≤ J for which dx1,jξx1,j ≤ 0 is such that

lim
J→∞

n(J)/J > 0. Then:

(ii) Under Conditions (16)-(18) and (20), up to logarithmic terms, we have Mx1,T (λx1,T , hx1,T ) �

1

Th
dX1
x1,T

λx1,T
+ λ2δ

x1,T
+ h2m

x1,T
λ2ρ−1
x1,T

.

(iii) Under Conditions (16)-(18) and (20), up to logarithmic terms, the bandwidth h∗x1,T �

T−η
∗
x1 and regularization parameter λ∗x1,T � T−γ

∗
x1 that optimize the rate of convergence of the

MISE are such that η∗x1 =
1

dX1 + 2ω
and γ∗x1 =

1

dX1 + 2δ

2ω

1 + 2ω
, where ω = m

1 + 2δ

1 + 2 (δ − ρ)
.

The optimal MISE is such that M∗
x1,T
� T−κ

∗
x1 with κ∗x1 =

2δ

1 + 2δ

2ω

1 + 2ω
.

Under the assumptions of Proposition 4 (i), the eigenvalues of operator A∗x1Ax1 feature a

mixed geometric-hyperbolic decay behaviour. This decay behaviour when the adjoint w.r.t.

the Sobolev norm is used, is distinct from the geometric decay obtained when the adjoint

w.r.t. the L2 norm is used in the Gaussian case. Indeed we get νj = e−α(j−1)/j, φj = Hj−1/
√
j

instead of ν̃j = e−α(j−1), φ̃j = Hj−1 in our Gaussian example.

Condition (a) requires that the coefficients of functions ϕx1,0 and Ξx1 w.r.t. the or-

thonormal systems
{
φx1j : j ∈ N

}
and

{
ψx1,j : j ∈ N

}
in the singular value decomposition

of A∗x1Ax1 (see Kress, 1999, Theorem 15.16), feature geometric decay. Under Condition

(a), the source condition in Assumption 4 is satisfied for any δx1 < δ. Condition (b) re-
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quires that the proportion of lags for which either dx1,j = 0, or ξx1,j = 0, or dx1,j and

ξx1,j have opposite sign, is non-zero asymptotically. This condition is used to control a

cross-term in the squared bias function and show bx1 (λx1,T , hx1,T )2 � λ2δ
x1,T

+ h2m
x1,T

λ2ρ−1
x1,T

in

Proposition 4 (ii). By using this result, the conditions (16)-(18) and (20) simplify to ηx1 ≤ η,

γx1+ηx1+2η < 1, γx1 < min

{
mηx1 ,

1− ηx1 − η
2

,
1− ηx1 − 2η

1 + δ
,
2
(
η + (m− 1) ηx1

)
2δ + 1

,
2mη

2δ + 1

}
when dX1 = dZ1 = dX2 = 1.

The optimal convergence rate of the bandwidth in Proposition 4 (iii) is smaller than the

standard dX1-dimensional nonparametric rate with m derivatives. It can be interpreted as

the standard nonparametric rate with ω > m derivatives. The optimal convergence rate

of the regularization parameter is smaller than
1

1 + 2δ
, that is the optimal rate with no

exogenous regressors (i.e. dX1 = 0). The optimal convergence rates γ∗x1 and η∗x1 of the

regularization parameter and bandwidth depend on the dimension dX1 of the exogenous

variable, but their ratio γ∗x1/η
∗
x1

is independent of dX1 . The optimal convergence rate of

the MISE is the product of
2δ

1 + 2δ
, that is the optimal rate with no exogenous regressors,

times
2ω

dX1 + 2ω
, that is the convergence rate of a kernel estimator with ω derivatives. The

optimal convergence rates γ∗x1 , η
∗
x1

, and any rate η such that
1

1 + 2ω

1 + 2 (δ − ρ) + 2mρ

1 + 2 (δ − ρ)
<

η <
ω

1 + 2ω

min {2 (2δ − 1) , δ}
2δ + 1

, satisfy Conditions (16)-(18) and (20) if 1 ≥ δ >
1

2
+ ρ

and 1 + 2 (δ − ρ) + 2mρ < mmin {2 (2δ − 1) , δ} when dX1 = dZ1 = dX2 = 1. Finally, by

using Expression (24) it is possible to verify that under the conditions of Proposition 4 the

optimal rate of convergence of the L2 regularized estimator is exactly the same as for the

TiR estimator (including logarithmic terms).
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6.2 Trigonometric eigenfunctions

Under an hyperbolic spectrum, a result similar to Proposition 4 can be obtained. Hereafter

we focus on an example with no exogenous variables and a trigonometric basis of eigenfunc-

tions. Specifically, let the spectrum of ÃA consist of eigenvalues ν̃j � j−α̃, α̃ > 1, and eigen-

functions φ̃1(x2) = 1, φ̃j(x2) =
√

2 cos ((j − 1) πx2) , j = 2, 3, · · · , x2 ∈ X2 = [0, 1]. Since the

functions φ̃j are eigenfunctions of operator D =1−∇2 to eigenvalues 1 +π2j2, the spectrum

of operator A∗A for l = 1 is such that νj � j−α, α = α̃ + 2, and φj =
√

1/ (1 + π2j2)φ̃j.

Moreover, we assume that the function ϕ0 is such that
〈
ϕ0, φ̃j

〉2

L2(X2)
� j−2ρ, 1/2 < ρ

< 1/2 + α̃. Then, the squared bias function is such that b (λ)2 � λ2δ with 2δ = (2ρ− 1)/α.

In this second example we compare analytically the optimal MISEs of the TiR estimator,

and of the L2 regularized estimator, denoted M∗
T and M̃∗

T . This comparison is made possible

because we have derived the exact asymptotic expansions MT (λ) and M̃T (λ). The optimal

MISEs are M∗
T = cT−κ(1 + o(1)) and M̃∗

T = c̃T−κ(1 + o(1)), where κ =
2δ

1 + 2δ − 1/α
=

2ρ− 1

2ρ+ α̃
and the constants c, c̃ are such that

c

c̃
=

(
α− 2

α

)2

sin

(
π

α− 2

)
sin
(π
α

)


κα− 2ρ+ 1

α− 2ρ− 1

sin

(
π

2ρ− 1

α− 2

)
sin

(
π

2ρ− 1

α

)


1−κ

.

The two estimators feature the same rate of convergence κ, which is the optimal rate given

in HH, Theorem 4.1, and in BCK, Theorem 3 (with their r = (2ρ− 1)/2 and s = α̃/2). The

rate of convergence in Proposition 4 is recovered when dX1 = 0 and α → ∞. The ratio c/c̃

yields the relative efficiency of the TiR estimator compared to the L2 regularized estimator.

For any ρ > 1/2, the ratio c/c̃ is a monotonically increasing function of α with range (0, 1). In
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particular, c/c̃ < 1. Moreover, there exist models for which the TiR estimator is arbitrarily

more efficient (c/c̃→ 0) compared to the L2 regularized estimator.

In the two above examples, the operators A∗A and ÃA admit a common basis of eigen-

functions and we obtain a common rate of convergence for Sobolev and L2 penalization. The

analytic comparison of the rates of convergence and the discussion of the relative efficiency

of the estimators in the general case is still an open question.

7 Numerical implementation

To compute numerically the estimator we solve Equation (11) on the subspace spanned by

a finite-dimensional basis of functions {Pj : j = 1, ..., k}, such as Chebyshev or Legendre

polynomials, and use the numerical approximation

ϕx1 '
k∑
j=1

θx1jPj =: θ
′

x1
P, θx1 ∈ Rk. (25)

The k × k matrix corresponding to operator Â∗x1Âx1 on this subspace is given by

〈Pi, Â∗x1Âx1Pj〉Hl(X2) = 〈Âx1Pi, Âx1Pj〉L2
x1

(Z1) '
1

Thx1,T

T∑
t=1

(
Âx1Pi

)
(Z1t) Ω̂x1 (Z1t)

(
Âx1Pj

)
(Z1t)

K((X1t−x1)/hx1,T )/f̂X1(x1) '
(
P̂
′

x1
Σ̂x1P̂x1

)
i,j
, i, j = 1, ..., k, where P̂x1 is the T×k matrix

with rows P̂x1 (Z1t)
′
=

1

ThThx1,T

T∑
l=1

P (X2l)
′
K((Z1l−Z1t)/hT )K((X1l−x1)/hx1,T )/f̂Z1,X1(Z1t, x1)

and Σ̂x1 is the T×T diagonal matrix with diagobal elements
1

Thx1,T f̂X1(x1)
Ω̂x1 (Z1t)K((X1t−

x1)/hx1,T ), t = 1, ..., T . The use of empirical averages instead of integrals in the defini-

tion of the estimator simplifies the implementation and is asymptotically equivalent. It

avoids bivariate numerical integration and the choice of two additional bandwidths. Ma-
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trix P̂x1 is the matrix of the “fitted values” in the regression of P (X2) on Z1 at the

sample points conditionally to X1 = x1. Then, by projection on the k-dimensional lin-

ear subspace of H l(X2) spanned by {Pj : j = 1, ..., k}, Equation (11) reduces to a matrix

equation
(
λTD + P̂

′

x1
Σ̂x1P̂x1

)
θ = P̂

′

x1
Σ̂x1R̂x1 , where

(
R̂x1

)
t

= r̂x1 (Z1t) with r̂x1 (Z1t) =

1

ThThx1,T

T∑
l=1

YlK((Z1l − Z1t)/hT )K((X1l − x1)/hx1,T )/f̂Z1,X1(Z1t, x1), and D is the k × k

matrix of Sobolev scalar products Di,j = 〈Pi, Pj〉Hl(X2), i, j = 1, ..., k. The solution is

θ̂x1 =
(
λTD + P̂

′

x1
Σ̂x1P̂x1

)−1

P̂
′

x1
Σ̂x1R̂x1 , which yields the approximation of the TiR estima-

tor ϕ̂x1 ' θ̂
′
x1
P . It only asks for inverting a k × k matrix. The matrix D is by construction

positive definite, since its entries are scalar products of linearly independent basis functions.

Hence, λTD + P̂
′

x1
Σ̂x1P̂x1 is non-singular, P -a.s..

Estimator θ̂x1 is a 2SLS estimator with optimal instruments and a ridge correction term.

It is also obtained if we replace (25) in Criterion (9) and minimize w.r.t. θx1 . This route is

followed by NP, AC, and BCK, who use sieve estimators and let k = kT → ∞ with T to

regularize the estimation. In our setting, the introduction of a series of basis functions as in

(25) is simply a method to compute numerically the original TiR estimator (12). The latter

is a well-defined estimator on the function space H l(X2), and we do not need to tie down the

numerical approximation to sample size. In practice we can use an iterative procedure to

verify whether k is large enough to yield a small numerical error. We can start with an initial

number (not too small) of polynomials, and then increment until the absolute or relative

variations in the optimized objective function become smaller than a given tolerance level.

This mimicks stopping criteria implemented in numerical optimization routines. A visual
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check of a stable behavior of the optimized objective function w.r.t. k is another possibility

(see the empirical application). Alternatively, we could simply take an a priori large k as in

the next section for which matrix inversion in computing θ̂x1 is numerically feasible.

Finally, a similar approach can be followed under an L2 regularization by replacing matrix

D with matrix B of L2 scalar products Bi,j = 〈Pi, Pj〉L2(X2), i, j = 1, ..., k. DFFR follow a

different approach to compute exactly the estimator (see DFFR, Appendix C). Their method

requires solving a T ×T linear system of equations. For univariate X and Z, HH implement

an estimator which uses the same basis for estimating conditional expectation m (ϕ, z) and

for approximating function ϕ (x).

8 A Monte-Carlo study

We include an exogenous regressor X1 in a design similar to NP and to the example of Section

6.1. The errors U and V and the instrument Z1 and X∗1 are jointly normally distributed, with

zero means, unit variances and correlation coefficient ρ = 0.5 between U and V . We take

X∗2 = (Z1 + V )/
√

2 and build the endogenous regressor X2 = Φ (X∗2 ) where the function Φ

denotes the cdf of a standard Gaussian variable. Similarly we takeX1 = Φ (X∗1 ) for the exoge-

nous regressor. To generate Y , we examine the design Y = sin (π(X1 +X2 − 0.5))+U . Then

E [Y − ϕ0 (X) | Z] = 0 and the functional parameter satisfies ϕx1,0(.) = sin (π(x1 + .− 0.5)).

We work with a Sobolev space of order l = 1.

As X2 = [0, 1], we use a numerical approximation based on standardized shifted Cheby-

shev polynomials of the first kind (Abramowitz and Stegun, 1970). We take a large number
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k = 16 of polynomials from orders 0 to 15 in (25) to match our theory. Matrices D and B

are explicitly computed with a symbolic calculus package.

The kernel estimator m̂x1

(
ϕx1 , z1

)
of the conditional moment is approximated through

θ′x1P̂x1(z1)− r̂x1(z1), where P̂x1(z1) and r̂x1(z1) are standard kernel regressions with Gaussian

kernel. All bandwidths are selected via the standard rule of thumb (Silverman, 1986). This

choice is motivated by ease of implementation. Moderate deviations from this simple rule do

not seem to affect estimation results significantly. The weighting function Ωx1,0(z1) is taken

equal to unity, satisfying Assumption 5, and assumed to be known.

The sample size is fixed at T = 1000. In Figures 1 and 3 (TiR estimator) and Figures

2 and 4 (L2 regularized estimator), the left panel plots the MISE on a grid of lambda, the

central panel the Integrated Squared Bias (ISB), and the right panel the mean estimated

functions and the true function on the unit interval. Mean estimated functions correspond to

averages over 1000 repetitions obtained from regularized estimates with a lambda achieving

the lowest MISE. In each panel, we also display corresponding quantities for a bivariate

standard kernel regression. We look at function ϕx1 for x1 = Φ(0) in the two first figures

and x1 = Φ(1) in the two next ones. Several remarks can be made. First, the endogeneity

bias of the standard kernel estimator is large, and as a consequence its MISE as well. Second,

the MISE under a Sobolev penalization is more convex and much smaller than the MISE

under an L2 penalization for the same range of λ. So even if we expect the same optimal

convergence rates (cf. Section 6.1), the Sobolev norm should be strongly favored in our

Monte-Carlo design in order to recover the shape of the true function. A potential theoretical
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explanation is the that multiplicative constants play a crucial role in the MISE behavior (cf.

Section 6.2). Third, examining the ISB for λ close to 0 reveals that the estimation part of

the bias of the TiR estimator coming from smoothing is negligible w.r.t. the regularization

part.

In Figures 5 and 6 we look at the same design as in Figures 1 and 3 except for ρ = 0. When

we suppress the endogeneity of X2 the MISE of the TiR estimator is slightly larger than the

MISE of the standard kernel regression estimator. We loose in terms of ISB and variance

w.r.t. kernel regression as predicted by theory. Moreover, the MISE of the TiR estimator

is very close in the endogenous and exogenous designs. This feature is in accordance with

Proposition 3, since the spectrum of operator A∗x1Ax1 is the same in the two designs, and

the estimation bias contribution is rather small.

For T = 100 and T = 400 as well as a number k of polynomials as low as 6, our

conclusions remain qualitatively unaffected. This suggests that as soon as the order of the

polynomials is sufficiently large to numerically approximate the underlying function, there

is no gain by linking it with sample size (cf. Section 7).

To summarize our Monte-Carlo findings we get evidence in favor of a Sobolev penalty

instead of an L2 penalty. We also observe that there is little to gain from using kernel

regression in the exogenous case but a lot to loose if we neglect endogeneity when it is

present.
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9 An empirical example

This section presents an empirical example with the data in Horowitz (2006) based on the

moment condition E [Y − ϕ0 (X2) | Z1] = 0, with X2 = Φ (X∗2 ) and no exogenous regressor.

We estimate an Engel curve where variable Y denotes the food expenditure share, X∗2 denotes

the standardized logarithm of total expenditures, and Z1 denotes the standardized logarithm

of annual income from wages and salaries. We have 785 household-level observations from the

1996 US Consumer Expenditure Survey. The estimation procedure is as in the Monte-Carlo

study and uses a data-driven regularization parameter.

The data driven selection procedure of the regularization parameter λT aims at estimating

directly the asymptotic spectral representation (23). A similar heuristic approach has been

successfully applied in Carrasco and Florens (2011) for density deconvolution. Theoretical

properties of such a selection procedure are still unknown, and beyond the scope of this

paper. Preliminary Monte-Carlo results show that the selected parameter is of the same

magnitude as the optimal one (see GS). The selection algorithm works as follows.

Algorithm to select the regularization parameter

(i) Perform the spectral decomposition of the matrix D−1P̂
′
Σ̂P̂ to get eigenvalues ν̂j and

eigenvectors ŵj, normalized to ŵ
′
jDŵj = 1, j = 1, ..., k.

(ii) Get a first-step estimate θ̄ using a pilot regularization parameter λ̄.

(iii) Estimate the MISE:

M̄ (λ) =
1

T

k∑
j=1

ν̂j

(λ+ ν̂j)
2 ŵ
′
jBŵj
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+θ̄
′
[
P̂
′
Σ̂P̂

(
λD + P̂

′
Σ̂P̂
)−1

− I
]
B

[(
λD + P̂

′
Σ̂P̂
)−1

P̂
′
Σ̂P̂ − I

]
θ̄,

and minimize it w.r.t. λ to get the optimal regularization parameter λ̂.

(iv) Compute the second-step TiR estimator with θ̂ using regularization parameter λ̂.

We take six polynomials. Here the value of the optimized objective function stabilizes

after k = 6 (see Figure 7), and estimation results remain virtually unchanged for larger

k. We have observed a stabilization of the loadings in the numerical series approximation

and of the data-driven regularization parameter. We have also observed that higher order

polynomials receive loadings which are closer and closer to zero. This suggests that we can

limit ourselves to a small number of polynomials in this empirical example.

Since Ω0(z1) = V [Y − ϕ0 (X2) | Z1 = z1]−1 is doubtfully constant in this application we

estimate the weighting matrix. We use a pilot regularization parameter λ̄ = .0001 to get

a first step estimator of ϕ0. The estimator ŝ2(Z1,t) of the conditional variance s2(Z1,t) =

Ω0(Z1,t)
−1 is of a kernel regression type.

Estimation with the data driven selection procedure takes less than 2 seconds, and we

obtain a selected value of λ̂ = .01113. Figure 8 plots the estimated functions ϕ̂(x2) for

x2 ∈ [0, 1], and ϕ̂(Φ (x∗2)) for x∗2 ∈ R. The plotted shape corroborates the findings of

Horowitz (2006), who rejects a linear curve but not a quadratic curve at the 5% significance

level to explain log Y . The specification test of Gagliardini and Scaillet (2007) does not reject

the null hypothesis of the correct specification of the moment restriction used in estimating

the Engel curve at the 5% significance level (p-value = .67). Banks, Blundell and Lewbel
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(1997) consider demand systems that accommodate such empirical Engel curves.
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Appendix 1: List of regularity conditions

Below we list the additional regularity conditions. For a function f of variable s in Rds and

a multi-index α ∈ Nds , we denote ∇αf := ∇α1
s1
· · · ∇αds

sds
f , |α| :=

∑ds
i=1 αi, ‖f‖∞ := sups |f(s)|

and ‖Dmf‖∞ :=
∑

α:|α|≤m ‖∇
αf‖∞.

B.1: (i) {(Yt, X2,t, Z
∗
t ) : t = 1, ..., T ∗} is a sample of i.i.d. observations of random variable

(Y,X2, Z
∗), where Z∗ := (Z∗1 , X

∗
1 ), admitting a density fY,X2,Z∗ on the support Y×X2×Z∗ ⊂

Rd, where Y ⊂R, X2 = [0, 1]dX2 , Z∗ ⊂ RdZ1
+dX1 , d = dX2 + dZ1 + dX1 + 1. (ii) The density

fY,X2,Z∗ is in class Cm
(
Rd
)
, with m ≥ 2, and ∇αfY,X2,Z∗ is uniformly continuous and

bounded , for any α ∈ Nd with |α| = m. (iii) The random variable (Y,X2, Z) is such that

(Y,X2, Z) = (Y,X2, Z
∗) if Z∗ ∈ Z, where Z = Z1×X 1=[0, 1]dZ1

+dX1 is interior to Z∗, and

the density fZ of Z is such that infz∈Z fZ(z) > 0.

B.2: The kernel K on Rd is such that (i)

∫
K(u)du = 1 and K is bounded ; (ii) K has

compact support; (iii) K is Lipshitz ; (iv)

∫
uαK(u)du = 0 for any α ∈ Nd with |α| < m.

B.3: (i) The density fX2|Z of X2 given Z is such that
∥∥Dm∨lfX2|Z

∥∥
∞ < ∞; (ii) The func-

tion µ(z) = E [Y |Z = z] fZ(z) is such that ‖Dmµ‖∞ < ∞. Moreover, E [|Y |s] < ∞ and

sup
z∈Z

E [|Y |s | Z = z] fZ(z) <∞ for s > 4.

B.4: There exists h > 0 such that function q (s) :=
∑

α:|α|≤m

sup
v∈Bh(s)

|∇αfY,X2,Z(v)|, s ∈ S, is

integrable and satisfies sup
x1∈X1

∫
q (s)2

fY,X2,Z(s)
dydx2dz1 <∞, where Bh(s) denotes the ball in Rd

of radius h centered at s.
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B.5: Function ϕ0 is such that

∫
ϕx1,0(x2)4dx2 <∞, for any x1 ∈ X1.

B.6: The weighting function Ω0 is such that supz∈Z Ω0(z) <∞ and infz∈Z Ω0(z) > 0.

B.7: Estimator Ω̂ of Ω0 is such that (i) sup
z1∈Z1

Ω̂x1 (z1) < ∞, P -a.s., for any x1 ∈ X1,

(ii) sup
z1∈Z1

∣∣∣∆Ω̂x1 (z1)
∣∣∣ = Op

(√
log T

Th
dX1
x1,T

h
dZ1
T

+ hmT + hmx1,T

)
, uniformly in x1 ∈ X1;

(iii) sup
z1∈Z1

E

[∣∣∣∆Ω̂x1 (z)
∣∣∣N] = O

 1√
Th

dX1
x1,T

h
dZ1
T

+ hmT + hmx1,T

N, for any x1 ∈ X1 and

N ∈ N.

B.8: For any x1 ∈ X1 : (i)
∞∑

j,i=1,j 6=i

〈
φx1,j, φx1,i

〉2

L2(X2)∥∥φx1,j∥∥2

L2(X2)

∥∥φx1,i∥∥2

L2(X2)

<∞; (ii)
∞∑
j=1

νx1,j
∥∥φx1,j∥∥2

L2(X2)
<∞ ;

(iii) sup
j∈N

E
[
|gx1,j (U2)|s̄ |X1 = x1

]
<∞, for s̄ ≥ 4, where gx1,j(u2) :=

(
ψx1,j

)
(z1)Ωx1,0(z1)(y−

ϕx1,0(x2)) and ψx1,j = Ax1φx1,j/
√
νx1,j; (iv) The functions gx1,j are differentiable such that

sup
j∈N

E
[
|∇gx1,j (U2)|s̄ |X1 = x1

]
<∞ .

In Assumption B.1 (i), the compact support of X2 is used for technical reasons. Mapping

in the unit hypercube can be achieved by simple linear or nonlinear monotone transforma-

tions. If a nonlinear invertible transform Λ is used to map the observations X∗2,t into [0, 1]dX2

through X2,t = Λ
(
X∗2,t

)
(e.g. the cdf of the standard Gaussian distribution applied com-

ponentwise) then the smoothness assumptions bear on function ϕx1,0 = ϕ∗x1,0 ◦ Λ−1, since

ϕx1,0(x2) = ϕ∗x1,0(x∗2). Assumptions B.1 (ii) and B.2 are classical conditions in kernel den-

sity estimation concerning smoothness of the density and of the kernel. In particular, when

m > 2, K is a higher order kernel. Moreover, we assume a compact support for the kernel K

to simplify the set of regularity conditions. In Assumption B.1 (iii), variable Z is obtained
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by truncating Z∗ on the compact set Z, and the density fZ of Z is bounded from below away

from 0 on the support Z. The corresponding observations are Zt, t = 1, ..., T , where T ≤ T ∗.

We get the estimator f̂Y,X2,Z of the density fY,X2,Z on Y ×X2×Z from the kernel estimator

f̂Y,X2,Z∗(y, x, z) =
1

T ∗hdT

T ∗∑
l=1

K ((Yl − y)/hT )K ((X2,l − x)/hT )K ((Z∗l − z)/hT ) of density

fY,X2,Z∗ by normalization and trimming, namely f̂Y,X2,Z = f̂Y,X2,Z∗/

∫
Z
f̂Z∗,τ , where f̂Z∗,τ =

max
{
f̂Z∗ , (log T )−1

}
. Similarly, f̂Y,X2|Z = f̂Y,X2,Z∗/f̂Z∗,τ . The truncation trick is used to

avoid edge effects when smoothing Z while maintaining the assumption infz∈Z fZ(z) > 0,

or equivalently infz∈Z fZ∗(z) > 0 (since fZ is a rescaled version of fZ∗). The latter condi-

tion is useful to control in probability for small values of the estimator f̂Z∗ of density fZ∗

appearing in denominators. The additional trimming of f̂Z∗ is necessary to control in mean

square sense small values of the estimator f̂Z∗ of density fZ∗ appearing in denominators.

The condition infz∈Z fZ∗ (z) > 0 allows us to select a simple trimming sequence (log T )−1

independent of the density tails. Alternative approaches to address these technical issues

consist in using more general forms of trimming (see e.g. Hansen, 2008), boundary kernels

or density weighting (see e.g. HH).

Assumptions B.3 (i) and (ii) concern boundedness and smoothness of the p.d.f. of X2

given Z, and the (conditional) moments of Y (given Z), respectively. Assumption B.4 con-

cerns the joint density fY,X2,Z , and imposes an integrability condition on a suitable measure

of local variation of density fY,X2,Z and its derivatives. This assumption is used in the proof

of Lemmas A.5-A.7 to bound higher order terms in the asymptotic expansion of the MISE

coming from kernel estimation bias. Similarly, Assumption B.5 on function ϕ0 is used to
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bound the expectation of terms involving powers of ϕ0(X2) in the proof of Lemma A.5 (see

also Lemmas B.6 and B.7 in the Technical Report). Assumption B.6 imposes boundedness

from above and from below on the weighting function Ω0. In particular, Assumption B.6

together with Assumption B.3 (i) imply that operator Ax1 is compact, for any x1 ∈ X1. As-

sumption B.7 concerns the estimator Ω̂x1 of the weighting function. Specifically, Assumption

B.7 (i) is a uniform a.s. bound for Ω̂x1 , Assumption B.7 (ii) yields a uniform rate of conver-

gence in probability and Assumption B.7 (iii) yields a uniform rate of convergence in mean

square. Assumption B.7 covers the trivial case of known weighting function Ω0, and the

choice Ω0 = fZ used by HH. In particular, Assumptions B.1-B.3, B.6, B.7 (i)-(ii), together

with Assumptions 1-4, imply the (uniform) consistency of the TiR estimator (Proposition 1

and 2).

Finally, Assumption B.8 concerns the singular system
{√

νx1,j, φx1,j, ψx1,j; j ∈ N
}

of op-

erator Ax1 (Kress, 1999, p. 278) and is used to derived the sharp asymptotic expansion of the

MISE (Proposition 3). Assumption B.8 (i) requires that the 〈., .〉Hl(X2)-orthonormal basis of

eigenfunctions of A∗x1Ax1 satisfies a summability condition w.r.t. 〈., .〉L2(X2), for any x1 ∈ X1.

Assumption B.8 (ii) implies the convergence of the series defining the variance term of the

MISE. Assumptions B.8 (iii) and (iv) ask for the existence of bounds for moments of deriva-

tives of functions gx1,j, uniformly j ∈ N and for any x1 ∈ X1. These assumptions control for

terms of the type

∫
gx1,j (u2) f̂Y,X2,Z1(u2, x1)du2, uniformly in j ∈ N and for any x1 ∈ X1, in

the proof of Lemmas A.5 and A.6.
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Appendix 2: Characterization of the adjoint operators

In this appendix we characterize the adjoint operator A∗x1 and its empirical counterpart

Â∗x1 . Let H2l
0 (X2) =

{
ψ ∈ H2l (X2) | ∇αψ(x2) = 0 for a.e. x2 ∈ ∂X2 and all |α| < 2l odd

}
be the subspace of H2l (X2) consisting of functions with odd-order derivatives vanishing

on the boundary ∂X2 = {x2 ∈ X2 : either x2,i = 0 or x2,i = 1, for some i = 1, ..., dX2} of X2.

Let us define the polynomial p (z) =
∑
|α|≤l

zα and the differential operator D =p
(
−∇2

)
, where

(
−∇2

)α
:= (−1)|α|

dX2∏
i=1

∇2αi
i . Let us introduce the orthonormal basis

{
χj : j = (j1, ..., jdX2

) ∈ NdX2

}
of L2 (X2) given by χj(x2) =

dX2∏
i=1

χ̃ji(x2,i), where χ̃ji(x2,i) = 1,

if ji = 1, and χ̃ji(x2,i) =
√

2 cos (π (ji − 1)x2,i) , otherwise. The elements of the basis be-

long to H2l
0 (X2) and are eigenfunctions of operator D, that is Dχj = ξjχj, with eigenvalues

ξj = p (zj), where zj = π2
(
(ji − 1)2 , i = 1, ..., dX2

)
. Define further the linear vector space

S l (X2) =

ϕ ∈ L2 (X2) |
∑

j∈NdX2

[
ξj
〈
ϕ, χj

〉
L2(X2)

]2

<∞

 , which is a linear vector subspace

of L2[0, 1] made of functions whose basis coefficients
〈
ϕ, χj

〉
L2(X2)

feature rapid decay for large

|j| such that ξj
〈
ϕ, χj

〉
L2(X2)

, j ∈ NdX2 , are square-summable. It is an Hilbert space w.r.t. the

scalar product 〈ϕ, φ〉S :=
∑

j∈NdX2

ξ2
j〈ϕ, χj〉L2(X2)〈φ, χj〉L2(X2). We denote by ‖ϕ‖S := 〈ϕ, ϕ〉1/2S

the associated norm. The space S l (X2) is equivalent to H2l
0 (X2), which therefore is also an

Hilbert space equiped with the scalar product 〈., .〉S .

Lemma A.1: (i) For any φ ∈ L2 (X2), the PDE Du = φ, u ∈ H2l
0 (X2) , admits a unique

solution, denoted by u = D−1φ. (ii) The mapping D−1 : L2 (X2) → H2l
0 (X2) is continu-

ous. (iii) There exists a unique linear continuous operator E : H2l
0 (X2) → H l (X2) such
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that 〈Du, ϕ〉L2(X2) = 〈Eu, ϕ〉Hl(X2), for any u ∈ H2l
0 (X2) and ϕ ∈ H l (X2). (iv) We have

A∗x1 = ED−1Ãx1 where Ãx1ψ(x2) =

∫
Ωx1,0(z1)fX2,Z1|X1(x2, z1|x1)ψ(z1)dz1 for ψ ∈ L2

x1
(Z1).

Operator E is the identity when l = 1. When l > 1 and dX2 = 1, operator E is characterized

in CGS. In the Technical Report, we discuss the characterization of E when l, dX2 ≥ 1, and

the embedding condition 2l > dX2 is satisfied.

Lemma A.2: Under Assumptions B.2 and B.7 (i), the following properties hold P -a.s. for

any x1 ∈ X1:

(i) The linear operator Â∗x1 := ED−1 ˜̂Ax1 from L2
x1

(Z1) into H l (X2) is such that, for any ψ ∈

L2
x1

(Z1), ϕ ∈ H l (X2) :
〈
ϕ, Â∗x1ψ

〉
Hl(X2)

=

∫
Ω̂x1(z1)

(
Âx1ϕ

)
(z1)ψ (z1) f̂Z1|X1 (z1|x1) dz1 .

(ii) Operator Â∗x1Âx1 : H l (X2)→ H l (X2) is compact.

Appendix 3: Proof of Propositions 1-3

This appendix concerns the proof of the consistency and the derivation of the asymptotic

MISE of the TiR estimator. The steps are as follows: getting the asymptotic expansion of

the estimator in A.3.1, controlling the regularization bias in A.3.2, proving consistency in

A.3.3 and finally deriving the asymptotic MISE in A.3.4.

40



A.3.1 Asymptotic expansion (proof of Equation (13))

We can write

r̂x1(z1) =

∫ (
y − ϕ0,x1(x2)

) [
f̂W |Z(w|z)− fW |Z(w|z)

]
dw +

∫
ϕ0,x1(x2)f̂W |Z(w|z)dw

=

∫ (
y − ϕ0,x1(x2)

) ∆f̂W,Z(w, z)

fZ(z)
dw +

∫
ϕ0,x1(x2)f̂W |Z(w|z)dw

−∆f̂Z(z)

f̂Z(z)

∫ (
y − ϕ0,x1(x2)

) ∆f̂W,Z(w, z)

fZ(z)
dw

= ψ̂x1(z1) + ζx1(z1) +
(
Âx1ϕ0,x1

)
(z1) + q̂x1(z1),

where q̂x1(z1) := −∆f̂Z(z)

f̂Z(z)

∫ (
y − ϕ0,x1(x2)

) ∆f̂W,Z(w, z)

fZ(z)
dw, ∆f̂Z := f̂Z−fZ , and ∆f̂W,Z :=

f̂W,Z − fW,Z . Hence, Â∗x1 r̂x1 = A∗x1ψ̂x1 + A∗x1ζx1 +Â∗x1Âx1ϕ0,x1 +
(
Â∗x1 − A

∗
x1

)(
ψ̂x1 + ζx1

)
+

Â∗x1 q̂x1 . By replacing this equation into (12), we get (13) where the remainder term Rx1,T is

given by

Rx1,T =

[(
λx1,T + Â∗x1Âx1

)−1

−
(
λx1,T + A∗x1Ax1

)−1
]
A∗x1

(
ψ̂x1 + ζx1

)
+
(
λx1,T + Â∗x1Âx1

)−1 [(
Â∗x1 − A

∗
x1

)(
ψ̂x1 + ζx1

)
+ Â∗x1 q̂x1

]
+

[(
λx1,T + Â∗x1Âx1

)−1

Â∗x1Âx1 −
(
λx1,T + A∗x1Ax1

)−1
A∗x1Ax1

]
ϕ0,x1 . (26)

The remainder term Rx1,T accounts for estimation of operator Ax1 and its adjoint.

A.3.2 Control of the regularization bias term (proof of (15) and (19))

Similarly to the proof of Proposition 3.11 in CFR, we have

‖Brx1,T‖
2
Hl(X2) =

∞∑
j=1

λ2
x1,T
〈φx1,j, ϕx1,0〉

2
Hl(X2)

(λx1,T + νx1,j)
2 = λ

2δx1
x1,T

∞∑
j=1

λ
2−2δx1
x1,T

ν
2δx1
x1,j

(λx1,T + νx1,j)
2

〈
φx1,j, ϕx1,0

〉2

Hl(X2)

ν
2δx1
x1,j

≤ λ
2δx1
x1,T

∞∑
j=1

〈
φx1,j, ϕx1,0

〉2

Hl(X2)

ν
2δx1
x1,j

.
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Then, Assumption 4 implies (15), while Assumption 4 bis implies (19).

A.3.3 Consistency (proof of Propositions 1 and 2)

The next lemma gives a bound in probability for the Sobolev norm of the remainder term

Rx1,T , uniformly in x1 ∈ X1.

Lemma A.3: Under Assumptions 3, B.1-B.3, B.6, B.7 (i)-(ii) and if
log T

Th
dX1
x1,T

h
dZ1
∨dX2

T

+

h2m
T +h2m

x1,T
= o

(
λ2
x1,T

)
and

log T

Th
dX1
x1,T

h
dX2

+dZ1
T

= O(1) uniformly in x1 ∈ X1, we have uniformly

in x1 ∈ X1: ‖Rx1,T‖Hl(X2) = op

(
‖Vx1,T‖Hl(X2) +

∥∥Brx1,T∥∥Hl(X2)
+
∥∥Bex1,T∥∥Hl(X2)

)
+Op

(
1

λx1,T

(
log T

Th
dX1
x1,T

h
dZ1

+dX2
T

+ h2m
T + h2m

x1,T

))
.

From Equation (13), the triangular inequality and Lemma A.3 we get:

∥∥ϕ̂x1 − ϕx1,0∥∥Hl(X2)
= Op

(
‖Vx1,T‖Hl(X2) +

∥∥Brx1,T∥∥Hl(X2)
+
∥∥Bex1,T∥∥Hl(X2)

)
(27)

+Op

(
1

λx1,T

(
log T

Th
dX1
x1,T

h
dZ1

+dX2
T

+ h2m
T + h2m

x1,T

))
,

uniformly in x1 ∈ X1. In order to bound in probability the Sobolev norms of Vx1,T and Bex1,T ,

we use the next lemma.

Lemma A.4: Under Assumptions 3, B.1-B.3 and B.6, we have uniformly in x1 ∈ X1:

(i)
∥∥∥ψ̂x1∥∥∥

L2
x1

(Z1)
= Op

(√
log T

Th
dX1
x1,T

h
dZ1
T

)
; (ii)

∥∥∥A∗x1ψ̂x1∥∥∥
Hl(X2)

= Op

(√
log T

Th
dX1
x1,T

)
;

(iii)
∥∥ζx1∥∥L2

x1
(Z1)

= O
(
hmT + hmx1,T

)
.

Let ‖.‖L(H1,H2) denote the operator norm for operators from Banach space H1 into Banach

spaceH2, with ‖.‖L(H1) := ‖.‖L(H1,H1) whenH1 = H2. By using
∥∥∥(λx1,T + A∗x1Ax1

)−1
∥∥∥
L(Hl(X2))
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≤ 1/λx1,T and Lemma A.4 (ii), we have ‖Vx1,T‖Hl(X2) = Op

(
1

λx1,T

√
log T

Th
dX1
x1,T

)
, uniformly in

x1 ∈ X1. By using
∥∥∥(λx1,T + A∗x1Ax1

)−1
A∗x1

∥∥∥
L(L2

x1
(Z1),Hl(X2))

≤ 1/
√
λx1,T (see CGS) and

Lemma A.4 (i), we have ‖Vx1,T‖Hl(X2) = Op

(√
log T

λx1,TTh
dX1
x1,T

h
dZ1
T

)
, uniformly in x1 ∈ X1.

Thus, we get ‖Vx1,T‖Hl(X2) = Op

√√√√ log T

Th
dX1
x1,T

λx1,T

(
λx1,T ∨ h

dZ1
T

)
, uniformly in x1 ∈ X1.

Moreover, from Lemma A.4 (iii) we get
∥∥Bex1,T∥∥Hl(X2)

= O

(
hmT + hmx1,T√

λx1,T

)
, uniformly in

x1 ∈ X1. From (27) and (15)-(19) we get:

∥∥ϕ̂x1 − ϕx1,0∥∥Hl(X2)
= Op

√√√√ log T

Th
dX1
x1,T

λx1,T

(
λx1,T ∨ h

dZ1
T

) +
hmT + hmx1,T√

λx1,T
+ λ

δx1
x1,T


+Op

(
1

λx1,T

log T

Th
dX1
x1,T

h
dZ1

+dX2
T

+
h2m
T + h2m

x1,T

λx1,T

)
,

uniformly in x1 ∈ X1. Then, Propositions 1 and 2 follow.

A.3.4 MISE (proof of Proposition 3)

The next Lemma A.5 shows that the L2-norm of the remainder term Rx1,T is asymptot-

ically negligible in mean square sense.

Lemma A.5: Under Assumptions 5, B.1-B.6, B.7 (iii), B.8 and if
1

Th
dX1
x1,T

h
dX2
∨dZ1

T

+

h2m
T + h2m

x1,T
= O

(
λ2+ε
x1,T

)
, ε > 0,

(log T )2

Th
dX1
x1,T

h
dZ1

+dX2
T

= O(1),
1

Th
dX1
x1,T

h
dZ1

+dX2
T

+ h2m
x1,T

+ h2m
T =

o (λx1,T b (λx1,T , hx1,T )), we have: E
[
‖Rx1,T‖

2
L2(X2)

]
= o

(
E
[
‖Vx1,T‖

2
L2(X2)

]
+
∥∥Brx1,T + Bex1,T

∥∥2

L2(X2)

)
.
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From Equation (13) and Lemma A.5 we have:

E
[∥∥ϕ̂x1 − ϕx1,0∥∥2

L2(X2)

]
= E

[∥∥Vx1,T + Brx1,T + Bex1,T
∥∥2

L2(X2)

]
(1 + o(1))

=
(
E
[
‖Vx1,T‖

2
L2(X2)

]
+
∥∥Brx1,T + Bex1,T

∥∥2

L2(X2)

)
(1 + o(1)) ,(28)

for any x1 ∈ X1. To derive the asymptotic expansion of the MISE, we need sharp bounds for

the variance contribution E
[
‖Vx1,T‖

2
L2(X2)

]
and the bias contribution

∥∥Brx1,T + Bex1,T
∥∥2

L2(X2)
.

They are given in next Lemmas A.6 and A.7.

Lemma A.6: Under Assumptions B.1-B.4, B.8 and 5, we have E
[
‖Vx1,T‖

2
L2(X2)

]
=(

ω2fX1(x1)

Th
dX1
x1,T

∞∑
j=1

νx1,j

(λx1,T + νx1,j)
2

∥∥φx1,j∥∥2

L2(X2)

)
(1 + o(1)) , for any x1 ∈ X1.

Lemma A.7: Under Assumptions 5, B.1-B.4 and B.6, and if
hTh

m−1
x1,T

+ hmT√
λx1,T

= o (b(λx1,T , hx1,T )),

we have
∥∥Brx1,T + Bex1,T

∥∥
L2(X2)

=
∥∥∥Brx1,T + hmx1,T

(
λx1,T + A∗x1Ax1

)−1
A∗x1Ξx1

∥∥∥
L2(X2)

(1 + o(1)),

for any x1 ∈ X1.

From (28) and Lemmas A.6 and A.7, Proposition 3 follows.

Appendix 4: Proof of Proposition 4

(i) Since A∗x1Ax1 = D−1Ãx1Ax1 (see Lemma A.1 (iv) with l = 1) and D−1φ̃x1,j = τ−1
x1,j

φ̃x1,j,

we have A∗x1Ax1φ̃x1,j =
νx1,j
τx1,j

φ̃x1,j. The normalization of the eigenfunctions in H1 (X2) is

obtained from
∥∥∥φ̃x1,j∥∥∥2

H1(X2)
= 〈φ̃x1,j,Dφ̃x1,j〉L2(X2) = τx1,j (see Lemma A.1 (iii) with l = 1).
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(ii) To compute the asymptotic behaviour of σ2
x1

(λx1,T ) and bx1 (λx1,T , hx1,T )2 in Propo-

sition 3, we use the next lemma.

Lemma A.8: Let νj � j−α1e−α2j, aj � j−α3e−α4j for α1, α3 ≥ 0, α2, α4 > 0. Let nλ ∈ N be

such that νnλ � λ as λ→ 0. Then, as λ→ 0:

∞∑
j=1

aj

(λ+ νj)
2 �


λ−2+α4/α2n

α1α4
α2
−α3

λ , if α4 < 2α2

1 , if α4 > 2α2

.

From Lemma A.8 and Condition (a), we get σ2
x1

(λx1,T ) � 1

λx1,Tn
β
λx1,T

. Now, by using

that the functions φx1,j are orthogonal w.r.t. 〈., .〉L2(X2) (see Part (i)), the squared bias

function is given by bx1 (λx1,T , hx1,T )2 =
∞∑
j=1

(
λx1,Tdx1,j − hmx1,T

√
νx1,jξx1,j

)2

(λx1,T + νx1,j)
2

∥∥φx1,j∥∥2

L2(X2)
.

We develop the parentheses, and show by using Lemma A.8 and Condition (a) that

λ2
x1,T

∞∑
j=1

d2
x1,j

(λx1,T + νx1,j)
2

∥∥φx1,j∥∥2

L2(X2)
� λ2δ

x1,T
n

(2δ−1)β
λx1,T

and h2m
x1,T

∞∑
j=1

νx1,jξ
2
x1,j

(λx1,T + νx1,j)
2

∥∥φx1,j∥∥2

L2(X2)
�

h2m
x1,T

λ2ρ−1
x1,T

n
(2ρ−1)β
λx1,T

. In the Technical Report, we use Condition (b) to control the cross

term in bx1 (λx1,T , hx1,T )2 and get Mx1,T (λx1,T , hx1,T ) � 1

Th
dX1
x1,T

λx1,Tn
β
λx1,T

+ λ2δ
x1,T

n
(2δ−1)β
λx1,T

+

h2m
x1,T

λ2ρ−1
x1,T

n
(2ρ−1)β
λx1,T

. Moreover, nλx1,T = O (log (1/λT )). Thus, for λx1,T such that λx1,T � T−γ,

powers of nλx1,T contribute multiplicative terms of logarithmic order, and Part (ii) follows.

(iii) The bandwidth and regularization parameter sequences that optimize the conver-

gence rate of the MISE up to logarithmic terms are the minima of the function ΨT (λx1,T , hx1,T ) =

1

Th
dX1
x1,T

λx1,T
+λ2δ

x1,T
+h2m

x1,T
λ2ρ−1
x1,T

. The partial derivatives are given by
∂ΨT

∂hx1,T
= − dX1

Th
dX1

+1

x1,T
λx1,T

+

2mh2m−1
x1,T

λ2ρ−1
x1,T

and
∂ΨT

∂λx1,T
= − 1

Th
dX1
x1,T

λ2
x1,T

+ 2δλ2δ−1
x1,T

+ (2ρ− 1)h2m
x1,T

λ2ρ−2
x1,T

. By setting these
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partial derivatives equal to zero, we get:

h2m
x1,T

=
2δ

2m
dX1

+ 1− 2ρ
λ

2(δ−ρ)+1
x1,T

. (29)

By plugging this into function ΨT , we get the concentrated function ΨT (λx1,T ) =

c1

Tλ
1+

dX1
2m

(2(δ−ρ)+1)

x1,T

+ c2λ
2δ
x1,T

, for some constants c1, c2 > 0. By minimizing this function w.r.t.

λx1,T , the optimal rate γ for the regularization parameter follows. Then, the optimal rate

η for the bandwidth is deduced from (29). Finally, by plugging the optimal λx1,T and hx1,T

into ΨT (λx1,T , hx1,T ), the optimal rate of the MISE follows.
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Figure 1: MISE (left panel), ISB (central panel) and mean estimated function (right panel) for

the TiR estimator using Sobolev norm (solid line) and for the kernel regression estimator (dashed

line). The true function is the dotted line in the right panel. Correlation parameter is ρ = 0.5,

value of the exogenous variable X1 is fixed at x1 = Φ(0), and sample size is T = 1000.

51



0 0.05 0.1 0.15 0.2 0.25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

λ

MISE

0 0.05 0.1 0.15 0.2 0.25
0

0.02

0.04

0.06

0.08

0.1

0.12

ISB

λ
0 0.2 0.4 0.6 0.8 1

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x2

Estimated and

 true functions

Figure 2: MISE (left panel), ISB (central panel) and mean estimated function (right panel) for

the regularised estimator using L2 norm (solid line) and for the kernel regression estimator (dashed

line). The true function is the dotted line in the right panel. Correlation parameter is ρ = 0.5,

value of the exogenous variable X1 is fixed at x1 = Φ(0), and sample size is T = 1000.
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Figure 3: MISE (left panel), ISB (central panel) and mean estimated function (right panel) for

the TiR estimator using Sobolev norm (solid line) and for the kernel regression estimator (dashed

line). The true function is the dotted line in the right panel. Correlation parameter is ρ = 0.5,

value of the exogenous variable is X1 is fixed at x1 = Φ(1), and sample size is T = 1000.
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Figure 4: MISE (left panel), ISB (central panel) and mean estimated function (right panel) for

the regularised estimator using L2 norm (solid line) and for the kernel regression estimator (dashed

line). The true function is the dotted line in the right panel. Correlation parameter is ρ = 0.5,

value of the exogenous variable is X1 is fixed at x1 = Φ(1), and sample size is T = 1000.
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Figure 5: MISE (left panel), ISB (central panel) and mean estimated function (right panel) for

the TiR estimator using Sobolev norm (solid line) and for the kernel regression estimator (dashed

line). The true function is the dotted line in the right panel. Correlation parameter is ρ = 0, value

of the exogenous variable is X1 is fixed at x1 = Φ(0), and sample size is T = 1000.
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Figure 6: MISE (left panel), ISB (central panel) and mean estimated function (right panel) for

the TiR estimator using Sobolev norm (solid line) and for the kernel regression estimator (dashed

line). The true function is the dotted line in the right panel. Correlation parameter is ρ = 0, value

of the exogenous variable is X1 is fixed at x1 = Φ(1), and sample size is T = 1000.
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Figure 7: Value of the optimized objective function as a function of the number k of polynomials.

The regularization parameter is selected with a data-driven approach.
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Figure 8: Estimated Engel curves for 785 household-level observations from the 1996 US Con-

sumer Expenditure Survey. Food expenditure share Y is plotted as a function of the standardized

logarithm X∗2 of total expenditures (right panel), and of transformed variable X2 = Φ(X∗2 ) with

support [0, 1], where Φ is the cdf of the standard normal distribution (left panel). Instrument Z1

is the standardized logarithm of annual income from wages and salaries.
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