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Duration Time Series Models with Proportional Hazard

Abstract

The analysis of liquidity in financial markets is generally performed by means of the dynamics of the

observed intertrade durations (possibly weighted by price or volume). Various dynamic models for dura-

tion data have been considered in the literature, such as the ACD (Autoregressive Conditional Duration)

model. These models are often excessively constrained, introducing for example a deterministic link between

conditional expectation and variance in the case of the ACD model. Moreover, the stationarity properties

and the patterns of the stationary distributions are often unknown. The aim of this paper is to solve these

difficulties by considering a duration time series satisfying the proportional hazard property. We describe

in detail this class of dynamic models, discuss its various representations, and provide the ergodicity con-

ditions. The proportional hazard copula can be specified either parametrically, or nonparametrically. We

discuss estimation methods in both contexts, and explain why they are efficient, that is, why they reach the

parametric (respectively, nonparametric) efficiency bound.

Keywords: Duration, Copula, ACD Model, Nonparametric Estimation, Proportional Hazard, Nonpara-

metric Efficiency.
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1 Introduction

Series of durations between consecutive trades of a given asset have been the object of a considerable body

of research in financial econometrics (e.g. Engle, 2000; Gourieroux and Jasiak, 2001a). Interest in this topic,

supported by the increasing availability of (ultra-)high-frequency data, has several financial motivations. In

addition to its links with microstructure theory and with the literature on stochastic time deformation1,

the dynamics of intertrade durations is an important issue for the management of liquidity risk. Indeed,

durations between consecutive trades are a natural measure of market liquidity and their variability is related

to liquidity risk (risk on time). The aim of this paper is to introduce a new class of dynamic models for

intertrade durations suitable for the analysis of liquidity risk.

Empirical investigations of series of intertrade durations report several stylized facts which must be taken

into account in the specification of econometric models2. The most significant are the following ones: a posi-

tive serial dependence, in the form of positive autocorrelations and tendency of extremely large durations to

come in clusters (clustering effects); persistency, with autocorrelations decreasing slowly with horizon, and

possibly featuring long memory; strong nonlinearities in the dynamics, observed from the analysis of non-

linear autocorrelograms; path-dependent (under-)overdispersion in the conditional distribution; significant

departures from unconditional exponential distribution, with negative duration dependence and fat tails. In

addition to consistency with these stylized facts, flexible specifications for conditional mean and conditional

variance are desirable for the management of liquidity risk. If extreme liquidity risks have to be taken into

account, the first conditional moments may not be sufficient and measures based on the entire conditional

distribution may be more appropriate. This is the case of the Time-at-Risk (TaR), which is the minimal

time without a trade that may occur with a given probability (see Ghysels et al., 2004). These measures

require flexible specifications for the entire conditional distribution of the duration process.

The Autoregressive Conditional Duration (ACD) model introduced by Engle and Russell (1998) is the

most successful dynamic model for intertrade durations. It is based on an accelerated hazard specification,

where the conditional mean follows a deterministic autoregression3. The ACD is able to replicate various

stylized effects observed in the data. However, as pointed out in Ghysels et al. (2004), a limitation of

this specification is the quite restrictive set of assumptions on the conditional distribution of the duration

process. The dynamics of conditional moments of any order and of liquidity risk measures like TaRt are

all determined by the dynamics of the conditional mean. These restrictions are not supported by empirical

evidence, since they imply path-independent conditional dispersion and, more importantly, they are not

desirable for management of liquidity risk. In order to overcome these difficulties, alternative specifications

to accelerated hazard may be considered. For example, Ghysels et al. (2004) propose the Stochastic Volatility
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Duration (SVD) model, where conditional mean and conditional variance follow independent dynamics as

a result of the introduction of two underlying factors. For expository purposes and the sake of a thorough

analytic study, we restrict our analysis to Markov duration processes.

In this paper, we introduce a Markov process for intertrade durations that is based on a proportional

hazard specification. The conditional hazard function for duration Xt given the past durations Xt−1, is the

product of a baseline hazard function λ0 times a positive function a of the lagged duration4:

λ
(
x | Xt−1

)
= a (Xt−1)λ0(x), x ≥ 0,

where a and λ0 are unconstrained, except for identifiability conditions. This specification improves on

the accelerated hazard specification of the ACD(0,1) model in two directions. First, it provides a flexible

specification for the conditional distribution of the duration process, without restrictive assumptions on the

joint dynamics of conditional moments. Since the past information scales the conditional hazard function

instead of the duration variable itself, the effect of the lagged duration on the conditional moments and on

the conditional distribution is not tied down by the specification of the conditional mean. On the contrary,

the effect of the conditioning variable is determined by the interplay of the two functional parameters a

and λ0. Secondly, another advantage of the proportional hazard specification is to separate marginal and

serial dependence characteristics of the process. More precisely, we show that the bivariate copula between

two consecutive durations Xt and Xt−1 is fully characterized by a univariate functional parameter A (say)

on [0, 1]. The copula is defined as the c.d.f. of variables Xt and Xt−1 preliminarily transformed to get

uniform marginal distributions on the interval [0, 1]. The copula summarizes the serial dependence between

Xt and Xt−1 that is invariant to monotonic transformations. This result implies that the proportional hazard

duration model can be parameterized in terms of the marginal distribution of the process and functional

parameter A, which characterizes serial dependence. The marginal properties of the process are fixed by

choosing the marginal distribution. By focusing on parameter A, the nonlinear serial dependence properties

of the process are controlled, leaving its marginal distribution unaltered. We discuss how the shape of

function A influences the pattern and the strength of serial dependence in the process, both in the whole

distribution and in the tails, by introducing appropriate (functional) concepts and measures of dependence.

In particular, the duration process features positive dependence when functional parameter A is decreasing,

whereas its negative elasticity −d log A/dv is an ordinal functional measure of serial dependence. Moreover,

the behaviour of A at v = 1 characterizes dependence in the tails of the process and creates clusterings

of extremely large durations. We provide sufficient conditions on the behaviour of functional dependence

parameter A in a neighbourhood of the boundary points v = 0 and v = 1 ensuring ergodicity and mixing
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properties of the process 5.

The paper is organized as follows. In Section 2 we define the proportional hazard Markov process. In

Section 3 the serial dependence properties of the Markov process with proportional hazard are discussed,

and in Section 4 sufficient conditions for geometric ergodicity and mixing are provided. Section 5 reports

several examples of Markov processes with proportional hazard. Section 6 considers statistical inference.

Finally, Section 7 concludes. The proofs are gathered in appendices.

2 Markov process with proportional hazard

In this section we introduce the stationary Markov process with proportional hazard.

2.1 A Markov process of durations

Let Xt, t ∈ N, denote the sequence of consecutive (intertrade) durations. We assume that Xt, t ∈ N, is a

stationary Markov process of order one and features proportional hazard. In the sequel, it is called Markov

process with proportional hazard. The conditional hazard function is the product of a baseline hazard

function λ0 times a positive function a of the lagged duration:

λ
(
x | Xt−1

)
≡ lim

h→0

P
[
Xt ≤ x + h | Xt ≥ x,Xt−1

]

h
= a (Xt−1)λ0(x), x ≥ 0.

The effect of the lagged duration is a proportional shift of the conditional hazard function. The transition

density of the process is characterized by the conditional survivor function:

P [Xt ≥ xt | Xt−1 = xt−1] = exp [−a(xt−1)Λ0(xt)] , t ∈ N, (1)

where Λ0 is the baseline cumulated hazard corresponding to λ0, defined by: Λ0(x) =
∫ x

0
λ0(u)du, x ≥ 0.

Thus, the distribution of the process is characterized by two functional parameters, namely the baseline

cumulated hazard Λ0, which is (up to a multiplicative constant) the cumulated hazard of the conditional

distribution of Xt given Xt−1 = xt−1, and the positive function a on R+, which describes the effect of the

lagged duration Xt−1 on the conditional distribution.

The proportional hazard specification satisfies an invariance property with respect to increasing trans-

formations, since any increasing transformation Yt = h(Xt), t ∈ N, of a Markov process Xt, t ∈ N, with

proportional hazard features proportional hazard. This suggests alternative representations of Xt, t ∈ N, in

which the distribution of the process features simpler characteristics. Two such representations are consid-
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ered in the following sections.

2.2 The transformed nonlinear autoregressive representation

Let us consider the nonlinear autoregressive (NLAR) representation with exponential innovations of Markov

process Xt, t ∈ N, (see Tong, 1990) given by:

Xt = Λ−1
0

(
1

a(Xt−1)
εt

)
, t ∈ N, (2)

where εt, t ∈ N, is a white noise, independent of Xt−1, with a standard exponential distribution γ (1).

The duration process Xt, t ∈ N, can be represented (up to the transformation Λ−1
0 ) as a stochastic time

deformation of an i.i.d. series of exponential durations εt, t ∈ N. The time deformation factor is function of

past duration.

In the NLAR representation (2), the error term εt, t ∈ N, does not enter in an additive way. An

autoregressive representation with additive noise can be derived by considering another transformation of

the duration variable Xt, t ∈ N. Let us introduce the transformed process:

Yt = log [Λ0(Xt)] , t ∈ N.

We have:

Yt = − log a(Xt−1) + log εt = ϕ (Yt−1) + ηt, t ∈ N,

where ϕ (y) = − log a
[
Λ−1

0 (exp y)
]
, y ∈ R, and ηt = log εt follows a type I extreme value distribution.

Proposition 1 The stationary Markov process Xt, t ∈ N, features proportional hazard if and only if there

exists an increasing transformation of Xt: Yt = h(Xt), t ∈ N, (say) such that:

Yt = ϕ (Yt−1) + ηt, t ∈ N, (3)

where ηt, t ∈ N, is a white noise independent of Yt−1 with a type I extreme value distribution.

The additive NLAR representation (3) is characterized by two functional parameters, which are the

autoregression function ϕ of the transformed process, and the transformation function h 6. Representation

(3) is equivalent to representation (1), since the functional parameters (a,Λ0) and (h, ϕ) are in a one-to-one
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relationship:

h(x) = log Λ0(x), x ∈ [0,∞), (4)

ϕ (y) = − log a
[
Λ−1

0 (exp y)
]
, y ∈ (−∞,∞). (5)

2.3 The copula representation

We may also use the invariance property of the proportional hazard specification to obtain processes with

given marginal distribution. Let F be a c.d.f. on R+ with strictly positive density, and Xt, t ∈ N, be a

stationary Markov process with proportional hazard and marginal c.d.f. F . Then Ut = F (Xt), t ∈ N, is a

stationary Markov process with proportional hazard and uniform marginal distribution on [0, 1]. Thus, the

entire class of stationary Markov processes with proportional hazard can be obtained as a transformation of

processes with uniform margins on [0, 1]: Xt = F−1(Ut), t ∈ N.

Functions A and H0 in the conditional survivor function of process Ut, t ∈ N:

P [Ut ≥ ut | Ut−1 = ut−1] = exp [−A(ut−1)H0(ut)] , ut, ut−1 ∈ [0, 1] ,

are constrained by the form of the marginal distribution of Ut. We have:

P [Ut ≥ u] = E [P [Ut ≥ u | Ut−1]] , ∀u ∈ [0, 1] , t > 1,

or equivalently:

1− u =
∫ 1

0

exp (−A(v)H0(u)) dv, ∀u ∈ [0, 1] .

This condition identifies H0 in terms of A:

H−1
0 (z) = 1−

∫ 1

0

exp (−A(v)z) dv, z ∈ [0,∞),

and functional parameter A characterizes the distribution of the process Ut, t ∈ N.

Proposition 2 (i) Let F be a c.d.f. on R+ with strictly positive density. Stationary Markov processes

Xt, t ∈ N, with proportional hazard and marginal distribution F can be written as:

Xt = F−1(Ut), t ∈ N, (6)

where process Ut, t ∈ N, is a stationary Markov process with proportional hazard and uniform marginal
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distribution on [0, 1].

(ii) The conditional survivor function of process Ut, t ∈ N, with uniform margins is given by:

P [Ut ≥ ut | Ut−1 = ut−1] = exp [−A(ut−1)H0(ut, A)] , t ∈ N, (7)

where A is a positive function on [0, 1], and :

H−1
0 (z, A) = 1−

∫ 1

0

exp (−A(v)z) dv, z ∈ [0,∞). (8)

(iii) The parameters (a, Λ0) of process Xt, t ∈ N, in (6) are obtained from the corresponding parameters

(A,H0) of process Ut, t ∈ N, by compounding with F :

a = A ◦ F, Λ0 = H0 ◦ F. (9)

Let Xt, t ∈ N, be a stationary Markov process defined by (6), with transformed process Ut, t ∈ N. The

copula of (Xt, Xt−1) is the c.d.f. of the joint distribution of (Ut, Ut−1) (see Joe, 1997; Nelsen, 1999). It is

given by:

CA(u, v) = v −
∫ v

0

exp (−A(y)H0(u,A)) dy, u, v ∈ [0, 1] , (10)

where H0(., A) is defined by (8). Copula CA summarizes the serial dependence between Xt and Xt−1 that is

invariant to increasing transformations. In the proportional hazard model, the copula is fully characterized

by a univariate functional parameter A on [0, 1]. Copula CA is called proportional hazard copula.

From (8) and (9), the sets of parameters (a, Λ0) and (A,F ) are in a one-to-one relationship. Thus,

stationary Markov processes with proportional hazard and strictly positive marginal density can be charac-

terized by the functional parameters F and A. F is the marginal distribution, and can be any c.d.f. on R+

with strictly positive density. A is any positive function on [0, 1]; it characterizes the copula of (Xt, Xt−1)

and the serial dependence of the process that is invariant to monotonic transformations. This justifies the

interpretation of A as a functional dependence parameter. It is identified up to a multiplicative constant.

The representation in terms of functional parameters (F,A) is called copula representation. It distinguishes

marginal and serial dependence characteristics of the process.

Finally, let us relate the parameterization (F,A) involving the copula and the parameterization (ϕ, h)

corresponding to the nonlinear autoregressive representation with additive noise. From (4), (5), (8) and (9),
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we get:

ϕ(y) = − log A

[
1−

∫ 1

0

exp (−A(v) exp y) dv

]
, y ∈ (−∞,∞), (11)

h(x) = log H0 [F (x)] , x ∈ [0,∞). (12)

Function ϕ depends on A only. This is not surprising, since the copula of (Xt, Xt−1) is the same as that

of (Yt, Yt−1), and the latter depends on the autoregression function ϕ only. Thus, CA is the copula of a

nonlinear autoregressive Markov process with type I extreme value innovations, where the autoregressive

function is restricted by (11) to ensure stationarity.

2.4 Equivalent parameterizations of the copula

When functional dependence parameter A is monotonic, equivalent parameterizations of the copula CA are

available. We consider explicitly the case of positive serial dependence, which corresponds to a decreasing

function A. Then copula CA can also be characterized by 1−A−1, that is, the c.d.f. of the variable A(Ut−1),

which is the transformation of the past transformed duration Ut−1 with proportional hazard effect on Ut.

Restriction (8) can be written as:

1−H−1
0 (z) =

∫

Ω

exp (−wz) d
(
1−A−1

)
(w), z ∈ [0,∞), (13)

where Ω denotes the range of A. Thus, function 1−H−1
0 is the real Laplace transform (also called moment

generating function) of the distribution with c.d.f. 1−A−1, and satisfies the property of complete monotonic-

ity (see Feller, 1971). Knowing A is equivalent to knowing H0, and thus copula CA is also characterized by

the Laplace transform 1−H−1
0 , or by the cumulated hazard H0.

Proposition 3 A proportional hazard copula with monotonically decreasing functional dependence parame-

ter A can be equivalently defined in terms of:

i) either the functional dependence parameter A itself, or

ii) the c.d.f. 1−A−1, with support Ω ⊂ R+, or

iii) its Laplace transform 1−H−1
0 , or

iv) the baseline cumulated hazard H0, or

v) the baseline survivor function S0 ≡ exp (−H0).
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2.5 An example

In this section, we consider an example of stationary Markov process with proportional hazard, and we plot

simulated trajectories, autocorrelograms and the copula’s p.d.f.. This allows us to have an initial qualitative

idea of the serial dependence properties of these processes, which will be discussed extensively in Section 3.

Let us assume that 1−A−1 is a gamma distribution with parameter 1/δ, δ > 0. Thus, 1−A−1 is given

by the incomplete gamma function P (1/δ, .) (see Abramowitz and Stegun, 1970):

1−A−1(w) = P (1/δ, w) =
1

Γ (1/δ)

∫ w

0

exp (−u)u
1
δ−1du, w ∈ [0,+∞). (14)

Then:

A(v) = A (v; δ) = P−1 (1/δ, 1− v) , v ∈ [0, 1] ,

where inversion is defined with respect to the second argument. Since:

H−1
0 (z) = 1− 1

(1 + z)
1
δ

, z ∈ [0,+∞),

the baseline cumulated hazard is:

H0(u) =
1

(1− u)δ
− 1, u ∈ [0, 1] .

Let us first consider the case δ = 1
10 . A simulated trajectory of 500 observations of process Ut, t ∈ N,

(Figure 1),

[Insert Figure 1: Simulated path for U , δ = 1/10]

features weak positive serial dependence, with a stronger tendency to clustering effects at the upper boundary

(large durations). The associated copula p.d.f. (Figure 2)

[Insert Figure 2: Copula p.d.f., δ = 1/10]

confirms the presence of positive dependence. The copula p.d.f. diverges at points u = v = 0 and u = v = 1.

The rate of divergence is related with the strength of serial dependence in the tails, and thus with clustering.

The asymmetry of the density shows that the process is not time reversible. These properties of the copula

can be better seen in Figure 3, which displays a contour plot of the transition p.d.f. of process X∗
t = Φ−1(Ut),

t ∈ N, with standard Gaussian marginal distribution. Positive serial dependence is revealed by the ellipsoidal
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contour, and it is stronger in the upper tail, where the peaks in the isodensity lines are more pronounced.

[Insert Figure 3: Contour plot, δ = 1/10]

The autocorrelogram of duration process Xt = F−1(Ut), t ∈ N, with Pareto marginal distribution F (x) =

1− (1 + x)−τ , τ = 5.5, is reported in Figure 4.

[Insert Figure 4: Autocorrelogram for X, δ = 1/10]

Let us now increase parameter δ to δ = 1. A simulated trajectory of the process (see Figure 5)

[Insert Figure 5: Simulated path for U , δ = 1]

features an increased positive serial dependence with strong clustering effects, especially at the upper bound-

ary. The copula p.d.f. (see Figure 6)

[Insert Figure 6: Copula p.d.f., δ = 1]

is more concentrated in a region close to line u = v, and diverges at the corner points. Note the different

limiting behaviour of the copula at points u = v = 0 and u = v = 1. Similarly, the contour plot with

standard Gaussian marginal distribution displayed in Figure 7 is more concentrated along the diagonal and

more peaked in the upper tail.

[Insert Figure 7: Contour plot, δ = 1]

The autocorrelogram of process Xt = F−1(Ut), t ∈ N, with the same marginal distribution as before, is

reported in Figure 8.

[Insert Figure 8: Autocorrelogram for X, δ = 1]

In the next two sections, we introduce statistical tools that are useful to analyze the qualitative features

observed above.
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3 Positive dependence

The aim of this section is to discuss serial dependence for stationary Markov processes with proportional

hazard. Several approaches have been proposed in the literature to analyse serial dependence in nonlinear

time series7. We focus on notions of dependence that are invariant with respect to increasing transformations

and involve the copula only.

We first recall two standard notions of positive dependence based on the conditional survivor function

and hazard function, respectively. They coincide for stationary processes with proportional hazard, and the

condition can be written in terms of either functional dependence parameter A, or autoregressive function ϕ.

The notions of positive dependence are used to construct dependence orderings and to introduce functional

measures of dependence. Then, we discuss tail dependence properties, and report a sufficient condition that

ensures that the process features positive dependence in the tails. Finally, we discuss how the dependence

between Xt and Xt−h varies with lag h, as an introduction to ergodicity properties of the process.

3.1 Notions of positive dependence

Different notions of positive bivariate dependence can be defined, which are invariant by increasing transfor-

mations of Xt and Xt−1. We describe below two standard definitions and discuss their interpretation.

Definition 1 (Lehmann, 1966; Barlow and Proschan, 1975): Xt is stochastically increasing (SI) in Xt−1

iff

S(x | y) ≡ P [Xt ≥ x | Xt−1 = y] is increasing in y, for any x ∈ R+.

Definition 2 (Shaked, 1977): Xt is hazard increasing (HI) in Xt−1 iff

λ(x | y) is decreasing in y, for any x ∈ R+,

where λ(. | y) denotes the conditional hazard rate of Xt given Xt−1 = y.

Since S(x | y) = exp
(− ∫ x

0
λ (x∗ | y) dx∗

)
, the condition of increasing hazard (HI) is stronger than

condition (SI)8. Both dependence conditions are invariant with respect to increasing transformations of

process (Xt, t ∈ N) and can be written in terms of the copula.

Proposition 4 Let Xt, t ∈ N, be a stationary Markov process with proportional hazard and dependence

parameter A. Xt is hazard increasing in Xt−1 if and only if it is stochastically increasing in Xt−1. This

condition is equivalent to function A (or a) being decreasing.
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Proof. It is a direct consequence of the relations:

log S(u|v) = −A(v)H0(u), and λ(u|v) = A(v)h0(u),

for u, v ∈ [0, 1], where S(u|v) [resp. λ(u|v)] denotes the conditional survivor function (resp. conditional

hazard function) of (Ut, Ut−1). Q.E.D.

The condition can be written in terms of nonlinear autoregression with additive noise (see Proposition

1): Yt = ϕ(Yt−1) + ηt. Indeed from equation (11), the autoregressive function ϕ is increasing if and only if

the functional dependence parameter A is decreasing.

Corollary 5 A stationary Markov process with proportional hazard features (HI), or (SI), positive depen-

dence if and only if the autoregressive function ϕ is increasing.

3.2 Dependence orderings

Let (Xt, t ∈ N) and (X∗
t , t ∈ N) be two stationary processes with proportional hazard and dependence pa-

rameter A and A∗, respectively. The aim of this section is to introduce dependence orderings in order

to compare the strength of the dependence between Xt and Xt−1 with that between X∗
t and X∗

t−1, or

equivalently between transformed variables Ut, Ut−1, and U∗
t , U∗

t−1.

Let us first recall two definitions proposed in the statistical literature (see Yanagimoto and Okamoto,

1969; Kimeldorf and Sampson, 1987, 1989; Capéràa and Genest, 1990). For v < v
′
, with v, v

′ ∈ [0, 1], let us

denote:

Sv,v′ (u) = S
[
S−1(u | v)

∣∣∣v′
]
, u ∈ [0, 1],

where S(. | v) is the survivor function of Ut conditional on Ut−1 = v, and similarly for S∗
v,v′ (u), u ∈ [0, 1].

Intuitively, Sv,v′ measures the effect on the conditional distribution of an increase of the conditioning variable

from v to v
′
.

Definition 3 : Xt is more stochastically increasing in Xt−1 than X∗
t in X∗

t−1 if for any v, v
′ ∈ [0, 1], v < v

′
:

Sv,v′ (u)
/

S∗
v,v′ (u) ≥ 1, for any u ∈ [0, 1].

Definition 4 : Xt is more hazard increasing in Xt−1 than X∗
t in X∗

t−1 if for any v, v
′ ∈ [0, 1], v < v

′
:

Sv,v′ (u)
/

S∗
v,v′ (u) is decreasing in u ∈ [0, 1].
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These pre-orderings, denoted by º(SI) and º(HI), respectively, satisfy various desirable axioms (see

Kimeldorf and Sampson, 1987, 1989; Capéràa and Genest, 1990). Moreover, since Sv,v′ (1)/S∗
v,v′ (1) = 1,

the ordering º(HI) is stronger than º(SI)
9. Intuitively, (Xt, Xt−1) º(SI)

(
X∗

t , X∗
t−1

)
holds if the effect on

the conditional distribution of an increase in the conditioning value is stronger for (Xt, Xt−1) than it is for
(
X∗

t , X∗
t−1

)
. Moreover, if this is more and more pronounced as we move towards the tail of the distribution,

then (Xt, Xt−1) º(HI)

(
X∗

t , X∗
t−1

)
.

The following proposition characterizes the orderings in terms of the functional dependence parameter.

Proposition 6 Let (Xt, t ∈ N) and (X∗
t , t ∈ N) be stationary Markov processes with proportional hazard

and dependence parameters A and A∗, respectively. The conditions (Xt, Xt−1) º(SI)

(
X∗

t , X∗
t−1

)
and

(Xt, Xt−1) º(HI)

(
X∗

t , X∗
t−1

)
are equivalent. They are also equivalent to the condition: A/A∗ is decreasing.

Proof. See Appendix 1.

For the proportional hazard model, λ (u|v) /λ(u|v′) is independent of u and is equal to A (v) /A(v
′
).

Thus, the conditions (Xt, Xt−1) º(SI)

(
X∗

t , X∗
t−1

)
and (Xt, Xt−1) º(HI)

(
X∗

t , X∗
t−1

)
are also equivalent to:

λ (u | v) /λ∗ (u | v) is decreasing in v, for any u ∈ [0, 1] .

When dependence parameters A and A∗ are differentiable, the ordering conditions involve the elasticity of

dependence parameter A, or equivalently the elasticity of the hazard function with respect to the conditioning

variable.

Corollary 7 Let (Xt, t ∈ N) and (X∗
t , t ∈ N) be stationary Markov processes with proportional hazard and

differentiable dependence parameters A and A∗, respectively. The conditions (Xt, Xt−1) º(SI)

(
X∗

t , X∗
t−1

)

and (Xt, Xt−1) º(HI)

(
X∗

t , X∗
t−1

)
are equivalent to:

d

dv
log A(v) ≤ d

dv
log A∗(v), ∀v ∈ [0, 1] ,

or
∂

∂v
log λ (u | v) ≤ ∂

∂v
log λ∗ (u | v) , ∀u, v ∈ [0, 1] .

For instance, the functions:

A(v; α) = exp (−αv) , A(v; α) =
1

(1 + v)α
, and A(v; α) = (1− v)α ,
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induce three families of distributions such that serial dependence is increasing with respect to parameter α,

in both the SI and HI sense.

3.3 Measures of dependence

The discussion above shows that the appropriate functional dependence measure is not A itself, but prefer-

ably:

∆A(v) = − d

dv
log A(v), v ∈ [0, 1] .

The properties above can be summarized as follows:

(i) ∆A(v) = 0, ∀v ∈ [0, 1] ⇐⇒ Xt and Xt−1 are independent, t ∈ N;

(ii) ∆A(v) ≥ 0, ∀v ∈ [0, 1] ⇐⇒ Xt is SI and HI in Xt−1, t ∈ N;

(iii) ∆A(v) ≥ ∆A∗(v), ∀v ∈ [0, 1] ⇐⇒ (Xt, Xt−1) º
(
X∗

t , X∗
t−1

)
, where º is any of the orderings º(SI) or

º(HI).

3.4 Tail dependence

This section provides sufficient conditions on the functional dependence parameter A to get positive depen-

dence in the tails. The coefficient of upper tail dependence is defined by (see Joe, 1993, 1997):

λ = lim
u→1

P [Ut ≥ u | Ut−1 ≥ u] .

The process features positive tail dependence if λ > 0. For a process with proportional hazard, the coefficient

of upper tail dependence is given by:

λ = λA = lim
u→1

1
1− u

∫ 1

u

exp [−A (v)H0 (u, A)] dv.

If limv→1 A(v) > 0, then λA = 0, and the process is independent in the tail. Hence tail dependence is

possible only if limv→1 A(v) = 0, that is, if the conditional hazard function of Ut given Ut−1 = v converges

to 0 as v → 1.

Proposition 8 If the functional dependence parameter A is such that:

A(v) ∼ C(1− v)δ, v ∼ 1,

13



for some constants δ > 0 and C > 0, then:

λA = λ(δ) = P
(
1/δ,Γ (1 + 1/δ)δ

)
,

where P (1/δ, .) denotes the incomplete gamma function with parameter 1/δ.

Proof. See Appendix 2.

Function λ(δ), δ ≥ 0, is increasing, and ranges from 0 to 1.

3.5 Dependence at larger lag

Let (Xt, t ∈ N) be a stationary Markov process with proportional hazard and dependence parameter A.

Generally the pair (Xt, Xt−h) does not satisfy the property of proportional hazard. However, the dependence

between Xt and Xt−h, h ∈ N, can be summarized by its copula, CA,h, defined as the joint c.d.f. of Ut, Ut−h.

By the Chapman-Kolmogorov formula, the copula p.d.f. cA,h is given by (see also Darsow et al., 1992):

cA,h(u, v) =
∫ 1

0

· · ·
∫ 1

0

cA(u,w1) · · · cA(wi−1, wi) · · · cA(wh−1, v)dw1 · · · dwh−1.

The analytic expression of cA,h is not available in general, but some dependence properties can be deduced

from a theorem by Fang et al. (1994). They show that, for a stationary Markov process (Xt, t ∈ N),

if Xt is stochastically increasing in Xt−1, then Xt is still stochastically increasing in Xt−h, h ∈ N, and

corr [g(Xt), g(Xt−h−1)] ≤ corr [g(Xt), g(Xt−h)], h ∈ N, for any monotonic transformation g such that these

correlations exist.

Proposition 9 Let (Xt, t ∈ N) be a stationary Markov process with proportional hazard and dependence

parameter A. If A is decreasing, then

Xt is stochastically increasing in Xt−h, for any h ∈ N,

and

corr [g(Xt), g(Xt−h−1)] ≤ corr [g(Xt), g(Xt−h)] , for any h ∈ N,

for any monotonic transformation g such that the correlations exist.

When A is decreasing, serial dependence is positive at any lag, and decreases with the horizon.

14



4 Ergodicity properties

The aim of this section is to study the ergodicity properties of stationary Markov processes with proportional

hazard.

4.1 Geometric ergodicity

Let us first recall the definition of geometric ergodicity.

Definition 5 Let V be a function on R+, such that V ≥ 1. The Markov process (Xt, t ∈ N) is V -geometrically

ergodic if there exist ρ < 1, a probability measure π and a finite function C such that:

∥∥P t(x, .)− π
∥∥

V
≤ ρtC(x), for any x ∈ R+, t ∈ N,

where P t(x, .) is the probability measure of Xt given X0 = x, and ‖µ‖V = supf :|f |≤V

∣∣∫ fdµ
∣∣.

For a stationary Markov process with proportional hazard, geometric ergodicity can be equivalently

discussed in any of the representations of the process introduced in Section 2. Conditions for geometric

ergodicity will involve either functional dependence parameter A, or functional autoregressive parameter ϕ,

only. The NLAR representation with additive noise is the most appropriate to discuss geometric ergodicity,

since the required drift conditions are easy to derive, and have been extensively investigated in the literature

(see Meyn and Tweedie, 1993). Equivalent conditions can be derived for the other representations.

Proposition 10 Let Xt, t ∈ N, be a stationary Markov process with proportional hazard, with dependence

parameter A. Assume A is continuous on (0, 1). Denote by γ the expectation of a type I extreme value

variable. The following conditions are equivalent and any of them implies geometric ergodicity of process

Xt, t ∈ N :

(i) The autoregressive function ϕ is such that there exist constants ε > 0, R < ∞, satisfying:

|ϕ(y) + γ| ≤ |y| − ε, for |y| ≥ R;

(ii) The functional dependence parameter A is such that there exist constants 0 < R1 < R2 < ∞, and

c < exp (−γ) < C, satisfying:

Cy ≤ 1

A
[
1− ∫ 1

0
exp (−A(v)y) dv

] ≤ c
1
y
, for 0 < y ≤ R1,

15



C
1
y
≤ 1

A
[
1− ∫ 1

0
exp (−A(v)y) dv

] ≤ cy, for y ≥ R2.

Proof. See Appendix 4.

Let us briefly discuss the ergodicity conditions. Condition (i) restricts the absolute value of the autore-

gressive function (including the expectation of the innovation), |ϕ(y) + γ|, to be strictly bounded by |y|,
as |y| → +∞. This condition is less stringent than the condition usually reported in the literature (see

Doukhan, 1994), that is, |ϕ(y) + γ| ≤ ρ |y| as |y| → +∞, for some ρ < 1. The weakening of the restriction

on ϕ is possible since innovation ηt in the additive NLAR representation has a distribution with sufficiently

thin tails (see Proposition A.1 in Appendix 3).

Let us now consider condition (ii) 10. It defines restrictions on dependence parameter A, and specifically

on the behaviour of A(v) as v → 0 and v → 1, respectively. These restrictions are not immediately satisfied

only if limv→0 A(v) or limv→1 A(v) are either 0 or +∞. The intuition beyond this condition is that when

A(v) approaches 0 (resp. +∞), the distribution of duration Ut, conditionally on Ut−1 = v, concentrates close

to the upper (lower) boundary. Thus, geometric ergodicity imposes restrictions on the functional dependence

parameter A in a neighborhood of v = 0 and v = 1 in order to prevent the process from diverging to infinity

or being absorbed by 0. Let us now focus on the restriction at v = 1, when limv→1 A(v) = 0 11. For

simplicity’s sake, let us consider functions A that are continuous on (0, 1), decreasing near v = 1, and such

that ∀δ > 0 : limv→1
A(v)

(1−v)δ exists (in [0,+∞]). Any such function belongs to one of the following categories:

I ∃δ > 0 : limv→1
A(v)

(1−v)δ ∈]0,+∞[;

II ∀δ > 0 : limv→1
A(v)

(1−v)δ = +∞;

III ∀δ > 0 : limv→1
A(v)

(1−v)δ ∈ {0,+∞} and ∃δ > 0 : limv→1
A(v)

(1−v)δ = 0.

A function A in class I converges to 0 as (1− v)δ, for some δ > 0, when v → 1, that is, the elasticity δ

of A(1 − v) with respect to v at v = 1 is strictly positive and finite12. Functions in class II dominate any

function in class I, when v → 1.

Proposition 11 When function A is either in class I, or in class II such that for some C > 0: A(v) ≥
−C

log(1−v) , for v close to 1, then the second restriction in condition (ii) of Proposition 10 is satisfied.

Proof. See Appendix 5.
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4.2 Mixing properties

We are now concerned with the decay rate of the dependence between the σ-fields up to time s, σ (Xt; t ≤ s),

and from time s + h onward, σ (Xt; t ≥ s + h), as the horizon h goes to infinity (see Bosq, 1998). Let us

recall the definition of β-mixing with geometric decay for a Markov process.

Definition 6 A Markov process Xt, t ∈ N, is β-mixing with geometric decay if the mixing coefficients βh,

defined by

βh = E

[
sup

C∈σ(Xt;t≥h)

|P (C)− P (C | X0)|
]

, h ∈ N,

decay geometrically: βh ≤ Cρh, h ∈ N, for some constants ρ < 1, C < ∞.

The next proposition provides sufficient conditions for β-mixing with geometric decay of a stationary

Markov process Xt, t ∈ N, with proportional hazard.

Proposition 12 Under the ergodicity conditions of Proposition 10, a stationary Markov process Xt, t ∈ N,

with proportional hazard is β-mixing with geometric decay.

Proof. See Proposition A.2 in Appendix 3.

5 Examples

Let us now discuss examples of stationary Markov processes with proportional hazard. The associated

dynamic models can be parametric or nonparametric. In all cases, i) sufficient ergodicity conditions are easily

written, ii) the invariant distribution (which is the uniform distribution) is known. This is an important

advantage of these models compared to the dynamic duration models previously introduced in the literature

(such as the ACD models) for which neither the ergodicity conditions, nor the stationary distribution are

known.

5.1 Constant measure of dependence

When the measure of dependence ∆A is constant, we get:

∆A(v) = − d

dv
log A(v) = α, ∀v ∈ [0, 1] =⇒ A(v) = exp (−αv + c) , v ∈ [0, 1] ,

and without loss of generality, we can set c = 0, to obtain:

A(v) = exp (−αv) , v ∈ [0, 1] , α ∈ R.
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The distribution features (SI) and (HI) positive dependence when α ≥ 0, whereas the independence case

corresponds to α = 0. Moreover, since A(0) and A(1) are finite and non-zero, the process is geometrically

ergodic.

When α > 0, the c.d.f. 1−A−1 is given by:

1−A−1(w) = 1 +
1
α

log w, w ∈ Ω =
[
e−α, 1

]
,

and admits the density 1/ (αw), w ∈ Ω. The inverse of the baseline cumulated hazard H0 is obtained by

computing the Laplace transform of 1−A−1:

H−1
0 (z) = 1− 1

α

∫ 1

exp(−α)

exp (−zw)
w

dw = 1− 1
α

∫ z

z exp(−α)

exp (−y)
y

dy.

5.2 Analytic examples

Proposition 3 suggests that simple examples can be derived when the Laplace transform admits a closed

form expression (see Abramowitz and Stegun, 1970; Joe, 1997, Appendix A.1, for an extensive list). In this

section we consider continuous distributions only.

i) Exponential distribution

Let us assume an exponential distribution with parameter λ: A−1(w) = exp (−λw), w ∈ R+, λ > 0. Without

loss of generality, we can set λ = 1, and get:

A(v) = − log(v), v ∈ [0, 1] . (15)

Then:

H−1
0 (z) = 1−

∫ +∞

0

exp (−zw) exp (−w) dw = 1− 1
1 + z

=
z

1 + z
, z ∈ [0,+∞),

and the baseline cumulated hazard is:

H0(u) =
u

1− u
, u ∈ [0, 1] .

The corresponding copula is:

CA(u, v) = v − (1− u)v
1

1−u , u, v ∈ [0, 1] ,
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with density:

cA(u, v) = − 1
(1− u)2

(log v) v
u

1−u , u, v ∈ [0, 1] .

The associated proportional hazard process is geometrically ergodic. Indeed:

A(v) = − log v = − log [1− (1− v)] ∼ 1− v, for v ∼ 1,

(see Proposition 11),

A
[
H−1

0 (y)
]

= − log
(

y

1 + y

)
∼ − log y, as y → 0,

and limy→0 yA
[
H−1

0 (y)
]

= 0 (see Proposition 10).

ii) Gamma distribution

The exponential distribution is a special case of gamma distribution. In the general gamma case, the

functional dependence parameter A and the baseline cumulated hazard H0 have been derived in Section 2.5:

A(v) = A (v; δ) = P−1 (1/δ, 1− v) , v ∈ [0, 1] ,

H0(u) =
1

(1− u)δ
− 1, u ∈ [0, 1] .

The process features positive dependence since A is decreasing. The functional dependence measure is

given by:

∆A(v) ≡ ∆(v; δ) =
Γ

(
1
δ

)

e−A(v;δ)A (v; δ)
1
δ

, v ∈ [0, 1] .

It is U-shaped and diverges at the boundaries v = 0 and v = 1 [see Figure 9 where ∆(.; δ) is plotted for

δ = 0.1 (dashed line) and δ = 1 (solid line)].

[Insert Figure 9: Functional dependence measure]

Since ∆(.; 1) ≥ ∆(.; 0.1), serial dependence is stronger when δ = 1.

For w ∼ 0, we have:

P (1/δ, w) =
1

Γ (1/δ)

∫ w

0

exp (−u)u
1
δ−1du ∼ 1

Γ (1/δ)

∫ w

0

u
1
δ−1du =

w1/δ

Γ (1 + 1/δ)
,

and:

A(v) = P−1 (1/δ, 1− v) ∼ Γ (1 + 1/δ)δ (1− v)δ , v ∼ 1.
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It follows from Proposition 8 that the process features positive tail dependence.

iii) Power distributions

When:

1−A−1(w) = w
1
δ , w ∈ [0, 1] ,

with δ > 0, we get:

A(v) = (1− v)δ , v ∈ [0, 1] . (16)

For example, the Cox model (Cox, 1955, 1972) with a(y) = exp (−αy), y ≥ 0, and an exponential marginal

distribution F (x) = 1− exp (−λx), x ≥ 0, is in this class, with δ = α
λ .

The Laplace transform is:

1−H−1
0 (z) =

∫ 1

0

exp (−wz)
w

1
δ−1

δ
dw

=
1

δz
1
δ

∫ z

0

exp (−y) y
1
δ−1dy =

Γ (1/δ + 1)
z

1
δ

P (1/δ, z) , z ≥ 0,

and H0 is derived by inversion. In the special case δ = 1, which corresponds to the uniform distribution

U[0,1], we get:

H−1
0 (z) = 1− 1− exp (−z)

z
, z ≥ 0.

The functional measure of dependence is given by:

∆A(v) = ∆ (v; δ) =
δ

1− v
, v ∈ [0, 1] .

It is increasing, and diverges at v = 1. Moreover, positive dependence is increasing in δ.

Since A(0) = 1, processes in this class are geometrically ergodic (see Propositions 10 and 11).

iv) α-stable distributions

For some distributions neither the density nor the c.d.f. is known explicitly, but an analytical expression of

the Laplace transform can be available. For example, let us assume a positive α-stable distribution, where:

1−H−1
0 (z) = exp

(
−z

1
α

)
, z ≥ 0,

with α ≥ 1, and

H0(u) = [− log (1− u)]α , u ∈ [0, 1] .
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This serial dependence is compatible with Weibull marginal and conditional distributions for process Xt,

t ∈ N. More precisely, let us assume:

Λ(x) ≡ − log (1− F (x)) = xαm , Λ0(x) = xαc , x ≥ 0,

where αm < αc, then:

H0(u) = Λ0

[
F−1(u)

]
= [− log (1− u)]

αc
αm , u ∈ [0, 1] ,

and 1−A−1 corresponds to a positive α-stable distribution with parameter α = αc/αm. The larger parameter

α (that is, the larger the mass of the distribution 1−A−1 in a neighbourhood of 0), the larger the duration

dependence in the marginal distribution with respect to the one in the conditional distribution.

5.3 Endogenous switching regimes

Let us consider a stepwise functional dependence parameter:

A(v) =
J∑

j=0

ajI(uj ,uj+1](v), v ∈ [0, 1] , (17)

where 0 = u0 < u1 < ... < uj < ... < uJ+1 = 1, aj ≥ 0, j = 0, ..., J , and J ∈ N ∪ {+∞}. The conditional

distribution is characterized by the survivor function:

S(ut|ut−1) = P [Ut ≥ ut | Ut−1 = ut−1] =
J∑

j=0

exp [−ajH0 (ut)] I(uj ,uj+1](ut−1).

The proportional hazard process Ut, t ∈ N, features endogenous regimes, induced by qualitative thresholds

in lagged duration Ut−1, and characterized by hazard functions which differ by a scale factor.

The stationarity condition with uniform U[0,1] margins is:

1− u =
J∑

j=0

exp [−ajH0 (u)] (uj+1 − uj) , ∀u ∈ [0, 1] . (18)

When aj > 0, for at least one j ∈ {0, ..., J}, condition (18) characterizes the baseline cumulated hazard H0,

whose inverse is given by:

H−1
0 (z) = 1−

J∑

j=0

exp (−ajz) (uj+1 − uj) = 1−
J∑

j=0

πj exp (−ajz) , z ≥ 0, (19)

where πj ≡ uj+1−uj , j = 0, ..., J . Equation (19) is a discrete analogue of equation (8), and represents 1−H−1
0
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as the Laplace transform of a discrete distribution on R+, weighting aj , j = 0, ..., J , with probabilities πj ,

j = 0, ..., J.

Figure 10 displays a stepwise functional parameter and the corresponding autocorrelogram of process

Xt, t ∈ N, with the same Pareto marginal distribution as in Section 2.5.

[Insert Figure 10: Endogenous switching regimes]

The autocorrelation function in Figure 10 decays slowly with large horizon h and is significantly positive

up to h ∼ 500. This example shows that the proportional hazard Markov specification of order 1 is able to

generate long memory patterns. Contrary to standard linear specifications, in which persistency is introduced

by means of lagged variables of high order, in our setting persistency is induced by the nonlinearities in the

serial dependence structure (see also Gourieroux and Robert, 2006).

Let us now discuss examples of endogenous switching regimes models with parametrically constrained

functional dependence parameter.

i) Uniform series

Assume J = N − 1 < +∞, and

aj = N − j, πj =
1
N

, j = 0, 1, ..., N − 1.

Thus, function A is regularly decreasing and:

H−1
0 (z) = 1− 1

N

1− exp (−Nz)
exp (z)− 1

, z ≥ 0.

ii) Power series

When:

1−H−1
0 (z) = 1− [1− exp (−z)]

1
θ , z ≥ 0,

with θ ≥ 1, the corresponding baseline cumulated hazard is:

H0(u) = − log
(
1− uθ

)
, u ∈ [0, 1] .
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By using the binomial series expansion, we get (see Joe, 1997, Appendix A.1):

1−H−1
0 (z) =

∞∑

j=0

πj exp (−ajz) , z ≥ 0,

with

aj = j + 1, πj =
1

θj+1 (j + 1)!

j∏

k=1

(kθ − 1) , j = 0, 1, ....

This defines an increasing step function (17), with thresholds at:

uj+1 =
j∑

l=0

πl, j = 0, 1, ....

A decreasing step function, with the same baseline cumulated hazard, is obtained by considering v 7→
A(1− v).

iii) Logarithmic series

When:

1−H−1
0 (z) = −1

θ
log

[
1− (

1− e−θ
)
exp (−z)

]
, z ≥ 0, (20)

with θ > 0, the corresponding baseline cumulated hazard and survivor function are:

H0(u) = − log
(

1− e−θ(1−u)

1− e−θ

)
, u ∈ [0, 1] ,

and:

S0(u) =
1− e−θ(1−u)

1− e−θ
, u ∈ [0, 1] ,

respectively. The corresponding discrete distribution is found by expanding the logarithmic series in (20) to

get (see Joe, 1997, Appendix A.1):

1−H−1
0 (z) =

∞∑

j=0

πj exp (−ajz) , z ≥ 0,

with

aj = j + 1, πj =
1

θ (j + 1)
(
1− e−θ

)j+1
, j = 0, 1, ....

Again, a decreasing step function, with the same baseline cumulated hazard, is obtained by considering

v 7→ A(1− v).
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6 Statistical inference

Let us assume available observations X1, ..., XT , and discuss the efficient estimation of the dependence

functional parameter, when the marginal distribution F is unconstrained. The functional parameter A can

be parametrically specified, or left unconstrained.

In practice, one generally proceeds in two steps. First, the marginal c.d.f. is estimated by its sample

counterpart F̂T , say, and the ranks Ût = F̂T (Xt), t = 1, ..., T provide approximations of the uniform variables

Ut. Secondly, we look for an estimator of the dependence functional A from the observed Ût and study the

asymptotic properties of the estimator as if Ut = Ût, t = 1, ..., T , were observed. This approach disregards

the information on the copula that is contained in the level of the initial variables Xt. Firstly, a joint

estimation of F and A can improve the accuracy of a copula estimator. Secondly, the asymptotic properties

of the estimated copula can be influenced by the replacement of Ut by Ût, at least when the functional

dependence parameter is left unconstrained13 (see Genest and Werker, 2002; Gagliardini and Gourieroux,

2007, for a more precise discussion).

Since the aim of this section is merely to give a flavour of estimation on copula, we will assume that the

transformed variables Ut, t = 1, ..., T , are observed. We first consider (Section 6.1) the parametric framework,

and we derive the expression of the score and of the efficiency bound. Then, in Section 6.2, we consider

the nonparametric estimation of functional parameter A. We describe a nonparametric estimation method

based on the minimum chi-square principle. This estimation approach is nonparametrically efficient. We

essentially provide the main ideas that underlie the estimator and the derivation of its asymptotic properties.

Proofs are gathered in Appendices 6-9 and are based on the results of Gagliardini and Gourieroux (2007).

6.1 Parametric framework

When the dependence functional is parameterized, the conditional pdf is:

c [ut, ut−1; A (θ)] = A(ut−1; θ)h0(ut; θ) exp[−H0(ut; θ)A(ut−1; θ)]

= At−1(θ)h0,t(θ) exp[−H0,t(θ)At−1(θ)].

Parameter θ can be estimated by maximum likelihood as:

θ̂T = arg max
θ

T∑
t=1

log c(ut, ut−1; θ) =
T∑

t=1

lt(θ), say.

24



The score ∂lt
∂θ and the Cramer-Rao bound can be written in terms of backward conditional expectations.

The results below are proved in Appendix 6.

Proposition 13 :

(i) The score is given by:

∂lt
∂θ

= (1−At−1H0,t)
(

∂

∂θ
log At−1 − E

[
∂

∂θ
log At−1 | Ut

])

−E

{
(1−At−1H0,t)

(
∂

∂θ
log At−1 − E

[
∂

∂θ
log At−1 | Ut

])
| Ut

}
,

where At−1 = A (Ut−1; θ), and H0,t = H0 (Ut; θ).

(ii) The Cramer-Rao bound is:

B (θ) = I (θ)−1 ,

where

I (θ) = V

(
∂lt
∂θ

)
= E

[
V

(
∂lt
∂θ

| Ut

)]

= E V

[
(1−At−1H0,t)

(
∂

∂θ
log At−1 − E

[
∂

∂θ
log At−1 | Ut

])
| Ut

]
.

Since process (Ut) is also a Markov process in reverse time, the expression of the score given in Proposition

13 has the form of an expectation error (martingale difference sequence) in reverse time.

The log-derivatives of functions A and H0 are related by:

∂

∂θ
log H0(Ut; θ) = −E

[
∂

∂θ
log A(Ut−1; θ) | Ut

]
. (21)

6.2 Nonparametric minimum chi-square estimation

The nonparametric estimation approach considers the constrained nonparametric copula that is the closest

to a kernel estimator of the copula for the chi-square proximity measure.

i) The estimator

Let us introduce a kernel estimator of the copula density ĉT (u, v) (say), defined by:

ĉT (u, v) =
1
T

T∑
t=2

KhT (u− Ut)KhT (v − Ut−1) ,
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where K is a kernel, KhT
(.) = (1/hT ) K (./hT ), and hT is a bandwidth converging to 0. Under standard

regularity conditions (see the set of Assumptions in Appendix 8):

(i) This estimator converges to the true copula p.d.f. c (u, v) = c (u, v; A0), and is
√

Th2
T -asymptotically

normal 14: √
Th2

T (ĉT (u, v)− c (u, v)) d−→ N

(
0, c(u, v)

(∫
K2(w)dw

)2
)

.

(ii) The integrals of the type
∫

g(u, v)ĉT (u, v)du and
∫ ∫

g(u, v)ĉT (u, v)dudv are asymptotically normal,

but at higher nonparametric rate, and parametric rate, respectively:

Vas

[√
ThT

∫
g(u, v)ĉT (u, v)du

]
= E0

[
g (Ut, Ut−1)

2 | Ut−1 = v
] ∫

K2(w)dw, (22)

Vas

[√
T

∫ ∫
g(u, v)ĉT (u, v)dudv

]
=

∞∑

h=−∞
Cov [g (Ut, Ut−1) , g (Ut−h, Ut−h−1)] . (23)

The minimum chi-square estimator is defined as:

ÂT = min
A∈Θ

∫ ∫
[ĉT (u, v)− c (u, v; A)]2

ĉT (u, v)
ωT (u, v)dudv, (24)

where Θ is a set of functional parameters, ωT is a smooth weighting function converging pointwise to the

constant function 1 on [0, 1]2 as T →∞, and the optimization is performed under the identifying constraint:

∫
A(v)dv = 1. (25)

ii) Asymptotic properties of the estimator

The asymptotic properties of the minimum chi-square estimator ÂT defined in (24) and (25) are reported

in Proposition 14 below. In order to formulate this proposition we need some preliminary concepts (see

Gagliardini and Gourieroux, 2007, and references therein). The derivation of the asymptotic properties of

the minimum chi-square estimator is based on the possibility of (Hadamard) differentiating the copula density

with respect to the functional parameter. The differential of log c(., .; A) with respect to A in direction h is
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given by (see Appendix 6):

〈D log c (Ut, Ut−1; A) , h〉 = (1−At−1H0t) (ht−1/At−1 − E [ht−1/At−1 | Ut])

−E {(1−At−1H0t) (ht−1/At−1 − E [ht−1/At−1 | Ut]) | Ut}

= γ0(Ut, Ut−1)h (Ut−1) +
∫

γ1 (Ut, Ut−1, w) h(w)dw,

where:

γ0(u, v) = [1−A(v)H0(u)] /A(v),

and γ1 is given in Appendix 6, Formula (a.8). Let us denote by L2 (λ) the space of square integrable functions

w.r.t. the Lebesgue measure λ on [0, 1], equipped with the standard inner product (., .)L2(λ). We assume

that D log c (Ut, Ut−1; A) is a bounded linear operator from L2(λ) to L2 (PA), where L2 (PA) denotes the

space of square integrable random variables w.r.t. the probability measure PA associated with c(u, v; A).

Further, let us denote by H the tangent space of
{
A ∈ L2 (λ) :

∫
A(v)dv = 1

}
at A0:

H =
{

h ∈ L2(λ) :
∫

h(x)dx = 0
}

.

The asymptotic distribution of the minimum chi-square estimator is characterized by the information oper-

ator IH , which is the bounded linear operator from H into itself defined by:

(g, IHh)L2(λ) = E0 [〈D log c (Ut, Ut−1;A0) , g〉 〈D log c (Ut, Ut−1; A0) , h〉] ,

for g, h ∈ H. For the proportional hazard copula, the information operator IH satisfies (see Appendix 7):

(g, IHh)L2(λ) = ECov0 {(1−At−1H0t) (gt−1/At−1 − E [gt−1/At−1 | Ut]) ,

(1−At−1H0t) (ht−1/At−1 − E [ht−1/At−1 | Ut])}

=
∫ 1

0

g(w)α0(w)h(w)dw +
∫ 1

0

∫ 1

0

g(w)α1(w, v)h(v)dwdv,

where:

α0(w) =
1

A0(w)2
, (26)

and α1 is defined in Appendix 7. The two components of the information operator IH have different

interpretations. The ”local” component α0(w) comes from the differentiation of the terms in the copula

density that depend on the value of A at a point w, w ∈ [0, 1]. The ”functional” component α1 comes from
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the differentiation of the terms in the copula density that depend on continuous functionals of A.

Proposition 14 Under the regularity conditions in Appendix 8,

(i) The estimator ÂT is consistent in L2(λ)-norm.

(ii) We have the following asymptotic equivalence:

α0 (v) δÂT (v) +
∫

α1 (v, w) δÂT (w) dw

=
∫

δĉT (u, v)γ0 (u, v) du +
∫ ∫

δĉT (u,w)γ1 (u,w, v) dudw + rT (v), (27)

where δÂT = ÂT − A0, δĉT = ĉT − c, and the residual term rT is such that (h, rT )L2(λ) = op(1/
√

T )

for any h ∈ H and rT (v) = op(1/
√

ThT ) λ-a.s. in v ∈ [0, 1].

(iii) The estimator ÂT is pointwise asymptotically normal:

√
ThT

(
ÂT (v)−A0 (v)

)
d−→ N

(
0, A0 (v)2

∫
K2(w)dw

)
, λ-a.s. in v ∈ [0, 1] .

(iv) Continuous linear functionals of ÂT are asymptotically normal:

√
T

(
g, ÂT −A0

)
L2(λ)

d−→ N
[
0,

(
g, PHI−1

H PHg
)
L2(λ)

]
, for any g ∈ L2(λ),

where PH is the orthogonal projection operator on H.

Proof. See Appendix 8.

Pointwise asymptotic normality of the minimum chi-square estimator follows from the asymptotic ex-

pansion in Proposition 14 (ii), since the second term in the RHS of (27) is Op(1/
√

T ) [see (23)], and the

same order is expected for the second term in the LHS. Then, δÂT (v) ' α0 (v)−1 ∫
δĉT (u, v)γ0 (u, v) du, and

Proposition 14 (iii) follows from (22) and (26).

Let us now consider the nonparametric efficiency of the minimum chi-square estimator. The nonpara-

metric efficiency bound for functional A is defined by the semiparametric efficiency bounds BA(g) for linear

functional
∫

g(v)A(v)dv, g varying, which can be consistently estimated at rate 1/
√

T (e.g. Bickel et al.,

1993; Severini and Tripathi, 2001). The nonparametric efficiency bound BA(g) is given by (see Gagliardini

and Gourieroux, 2007):

BA(g) =
(
g, PHI−1

H PHg
)
L2(λ)

, g ∈ L2(λ).
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From Proposition 14 (iv) the minimum chi-square estimator reaches the efficiency bound and is nonpara-

metrically efficient.

iii) Estimation of H−1
0

H−1
0 (z, A) = 1− ∫ 1

0
exp [−A(v)z] dv is a differentiable functional of A. More precisely, we have:

H−1
0 (z,A + δA) = H−1

0 (z,A)−
∫ 1

0

z exp [−A(v)z] δA(v)dv + o (δA) .

Therefore,

H−1
0

(
z, ÂT

)
' H−1

0 (z, A)−
∫ 1

0

z exp [−A(v)z]
(
ÂT (v)−A0(v)

)
dv.

The estimator Ĥ−1
0 (z) = H−1

0

(
z, ÂT

)
is asymptotically equivalent to a continuous linear functional of ÂT ,

and thus converges at rate 1/
√

T [see Proposition 14 (iv)]:

Corollary 15 Under the regularity conditions in Appendix 8:

√
T

(
Ĥ−1

0 (z)−H−1
0 (z,A0)

)
d−→ N

[
0, z2

(
e−zA0 , PHI−1

H PHe−zA0
)
L2(λ)

]
, z ∈ (0, 1) .

In Appendix 6, it is shown that H0 and h0 are both differentiable functionals of A. Therefore the

corresponding pointwise estimators converge at parametric rate 1/
√

T 15. The higher convergence rate of

H0 and h0 sheds light on the pointwise asymptotic distribution of the minimum chi-square estimator given

in Proposition 14 (iii). Indeed, for pointwise estimation of A, functions H0 and h0 can be assumed to be

known, in which case the information operator IH consists only of the local component α0 . The asymptotic

variance of ÂT (v) is (essentially) its inverse.

7 Conclusion

We have introduced duration time series models with proportional hazard. These models allow us to separate

the marginal characteristics from the serial dependence properties. The latter are described by a copula with

proportional hazard, characterized by a functional parameter A. The consequences from a modelling point

of view are twofold. On the one hand, the marginal distribution of the process can be chosen freely, and

we can focus on serial dependence by considering function A. On the other hand, since parameter A is

functional, this class of models allows for various nonlinear and non-Gaussian dependence features, such as

dependence in the extremes, serial persistence, nonreversibility, as confirmed in simulated examples.
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We have related the pattern and strength of serial dependence to the shape of functional parameter A by

using well-known concepts from copulas’ theory. More precisely, we have shown how various characteristics

of functional parameter A give rise to different forms of serial dependence, in particular, dependence in the

tails. Furthermore, we have provided sufficient ergodicity conditions in terms of functional parameter A.

Finally, we have discussed parametric and nonparametric estimation of dependence parameter A. A non-

parametric estimator of A can be obtained by minimizing a chi-square distance between the nonparametric

constrained copula and an unconstrained kernel estimator of the copula density. This minimum chi-square

estimator is consistent, asymptotically normal, and reaches the nonparametric efficiency bound computed

under the assumption that the uniform variables Ut are observed.
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Appendix 1

Dependence ordering: Proof of Proposition 6

For u, v, v
′ ∈ [0, 1] , we have:

S(u | v) = exp (−A(v)H0(u)) ,

Sv,v′ (u) = S
[
S−1(u | v) | v′

]
= uA(v

′
)/A(v),

and:
Sv,v′ (u)
S∗

v,v′
(u)

= uA(v
′
)/A(v)−A∗(v

′
)/A∗(v).

Thus, for any v < v
′ ∈ [0, 1]:

Sv,v′ (u)
S∗

v,v′
(u)

≥ 1, ∀u ∈ [0, 1] ⇐⇒ Sv,v′ (u)
S∗

v,v′
(u)

is decreasing in u ∈ [0, 1]

⇐⇒ A(v
′
)

A(v)
≤ A∗(v

′
)

A∗(v)

⇐⇒ A(v
′
)

A∗(v′)
≤ A(v)

A∗(v)
.

Appendix 2

Coefficient of upper tail dependence: Proof of Proposition 8

Without loss of generality, we can set C = 1. It will be proved in Appendix 5 [equation (a.3)] that:

A

[
1−

∫ 1

0

exp [−yA(v)] dv

]
' Γ (1 + 1/δ)δ

y
, as y → +∞.

When A (v) ' (1− v)δ, v → 1, we get:

∫ 1

0

exp [−yA(v)] dv ' Γ (1 + 1/δ)
y1/δ

, as y → +∞.

Thus:

H−1
0 (z, A) ' 1− Γ (1 + 1/δ)

z1/δ
, z → +∞,

and

H0(u,A) ' Γ (1 + 1/δ)δ

(1− u)δ
, u → 1.
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It follows:

λA = lim
u→1

1
1− u

∫ 1

u

exp [−A (v)H0 (u,A)] dv = lim
u→1

1
1− u

∫ 1

u

exp

[
− (1− v)δ Γ (1 + 1/δ)δ

(1− u)δ

]
dv

=
1

Γ (1/δ)

∫ Γ(1+1/δ)δ

0

exp (−w)w1/δ−1dw = P
(
1/δ,Γ (1 + 1/δ)δ

)
.

Appendix 3

Nonlinear Autoregression

Let us provide probabilistic properties of nonlinear autoregressive models with additive noise:

Yt = ϕ(Yt−1) + ηt,

where the innovation ηt is a white noise, independent of Yt−1, with strictly positive density g on R, and

E [ηt] = 0.

The conditional density of Yt given Yt−1 = y is given by:

f(x | y) = g (x− ϕ(y)) , x, y ∈ R,

and is strictly positive. Thus (Yt, t ∈ N) is λ-irreducible, λ-Harris recurrent (see Feigin and Tweedie, 1985)

and aperiodic (see Tong, 1990, Proposition A1.2).

We assume that the autoregression function ϕ is continuous. Then, (Yt, t ∈ N) is a Feller chain (see Feigin

and Tweedie, 1985). Indeed, if V is a bounded, continuous function defined on R, it follows by applying

Lebesgue theorem that:

y 7→ E [V (Yt) | Yt−1 = y] =
∫

V (x + ϕ(y)) g(x)dx,

is continuous.

The following proposition provides a sufficient condition for geometric ergodicity.

Proposition A.1 Assume that the real Laplace Transform (LT) of the innovation ηt is defined in an open

neighbourhood of 0. Assume further that the autoregression function ϕ satisfies:

|ϕ(y)| ≤ |y| − ε, |y| ≥ R,
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for some constants ε > 0, R < ∞. Then, (Yt, t ∈ N) is geometrically ergodic.

Proof. Let r0 > 0 be such that the LT of ηt:

Ψ(k) = E [exp (−kηt)] ,

is defined for k ∈ (−r0, r0). For k ∈ (0, r0) let us introduce the functions:

Vk(y) = 1 + exp (k |y|) , y ∈ R.

We now show that for some k sufficiently small, function Vk satisfies the following drift condition:

∃γ < 1 : E [Vk(Yt) | Yt−1 = y] ≤ γVk(y), for |y| large enough. (a.1)

Since (Yt, t ∈ N) is an irreducible, aperiodic Feller chain, and Vk is continuous, condition (a.1) implies

geometric ergodicity (see Theorem 1 of Feigin and Tweedie, 1985). Let us now prove the inequality (a.1).

We have:

E [Vk(Yt) | Yt−1 = y] = 1 + E [exp (k |ϕ(y) + ηt|)]

= 1 +
∫ −ϕ(y)

−∞
exp [−k (ϕ(y) + η)] g(η)dη +

∫ +∞

−ϕ(y)

exp [k (ϕ(y) + η)] g(η)dη

= 1 + exp (−kϕ(y))
∫ −ϕ(y)

−∞
exp (−kη) g(η)dη + exp (kϕ(y))

∫ +∞

−ϕ(y)

exp (kη) g(η)dη.

It is sufficient to consider the case where |ϕ(y)| → +∞ as |y| → +∞. Then, we have:

E [Vk(Yt) | Yt−1 = y] = 1 + o(1) + (1 + o(1))Ψ [−k · sign (ϕ(y))] exp [k |ϕ(y)|] ,

where o(1) → 0 as |y| → +∞. It follows:

E [Vk(Yt) | Yt−1 = y] ≤ O(1) + (1 + o(1)) exp
[
k |y| − k

(
ε− ψ [−k · sign (ϕ(y))]

k

)]
,

where ψ(k) = ln Ψ (k). Since:

lim
k→0

(
ε− ψ [−k · sign (ϕ(y))]

k

)
= ε− sign (ϕ(y)) E [ηt] = ε > 0,
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there exists δ > 0 such that for k small enough:

E [Vk(Yt) | Yt−1 = y] ≤ O(1) + (1 + o(1)) exp [k |y| − δ] .

Therefore, there exists γ < 1 such that for k small enough:

E [Vk(Yt) | Yt−1 = y] ≤ γVk(y), |y| large enough,

and the result follows. Q.E.D.

Finally, by using the results of Davydov (1973), geometric ergodicity16 implies β-mixing with geometric

decay (see Doukhan, 1994, ch.2.4).

Proposition A.2 Under the assumptions of Proposition A.1, (Yt, t ∈ N) is β-mixing with geometric decay.

Appendix 4

Proof of Proposition 10

Condition (i) implies geometric ergodicity

Let us consider the transformed process Yt = h(Xt), t ∈ N, which follows the nonlinear autoregression with

additive noise in (3), where the innovations have a type I extreme value distribution, with density:

g(η) = exp (η) exp (−eη) , η ∈ R.

This density is strictly positive on R. From Appendix 3, it follows that Yt, t ∈ N, (and hence Xt, t ∈ N)

is irreducible, Harris recurrent and aperiodic. Moreover, since the continuity of A on (0, 1) implies the

continuity of the autoregressive function ϕ, the process Yt, t ∈ N, (and hence Xt, t ∈ N) is a Feller chain.

Finally, note that the density g of the innovation admits a real LT:

Ψ(k) = E [exp (−kηt)] =
∫ ∞

0

1
εk

exp (−ε) dε,

defined for k ∈ (−∞, 1). From Proposition A.1 in Appendix 3, geometric ergodicity of Yt, t ∈ N, and hence

of Xt, t ∈ N, follows.
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Conditions (i) and (ii) are equivalent

By using relation (11), condition (i) can be written as:

∣∣∣∣log
(

e−γA

[
1−

∫ 1

0

exp (−A(v) exp y) dv

])∣∣∣∣ ≤ |y| − ε, |y| ≥ R. (a.2)

Let us first consider the case y → +∞, and discuss the inequality (a.2) according to the behaviour of the

functional dependence parameter at v = 1.

Case I: limv→1 A(v) = 0

Condition (a.2) becomes:

− log
(

e−γA

[
1−

∫ 1

0

exp (−A(v) exp y) dv

])
≤ y − ε, y ≥ r2,

for a constant r2 < ∞, that is:

1

A
[
1− ∫ 1

0
exp (−A(v) exp y) dv

] ≤ e−ε−γ exp (y) , y ≥ r2,

which is equivalent to:
1

A
[
1− ∫ 1

0
exp (−A(v)y) dv

] ≤ cy, y ≥ R2,

for c < e−γ , and R2 = exp (r2).

Case II: limv→1 A(v) = +∞

Condition (a.2) becomes:

log
(

e−γA

[
1−

∫ 1

0

exp (−A(v) exp y) dv

])
≤ y − ε, y ≥ r2,

for a constant r2 < ∞, that is:

A

[
1−

∫ 1

0

exp (−A(v) exp y) dv

]
≤ e−ε+γ exp (y) , y ≥ r2,

which is equivalent to:
1

A
[
1− ∫ 1

0
exp (−A(v)y) dv

] ≥ C
1
y
, y ≥ R2,
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for C > e−γ , R2 = exp (r2).

Case III: limv→1 A(v) ∈]0, +∞[

In this case, inequality (a.2) implies no restrictions on the functional dependence parameter.

Case I and II give the second restriction in condition (ii). The case y → −∞ is similar, and provides the

first restriction.

Appendix 5

Proof of Proposition 11

i) Let us first assume that A is in class I. The following lemma is used in the proof.

Lemma A.3 Let us assume that function A is strictly positive on [0, 1[, continuous on (0, 1), decreasing at

v = 1, and satisfies limv→1 A (v) = 0. Then for any ε > 0 small enough:

lim
y→+∞

∫ 1

1−ε
exp [−yA(v)] dv

∫ 1

0
exp [−yA(v)] dv

= 1.

Proof. For any ε > 0 small enough, and 0 < γ < A(1− ε), there exists δ < ε such that:

A(v) ≥ A(1− ε), on [0, 1− ε] ,

A(v) ≤ A(1− ε)− γ, on [1− δ, 1] .

Thus:

∫ 1−ε

0
exp [−yA(v)] dv∫ 1

1−ε
exp [−yA(v)] dv

≤ exp [−yA(1− ε)]∫ 1

1−δ
exp [−yA(v)] dv

≤ exp [−yA(1− ε)]∫ 1

1−δ
exp [−y (A(1− ε)− γ)] dv

≤ 1
δ exp (yγ)

→ 0,

as y → +∞. Q.E.D.

Without loss of generality, we can assume that for some δ > 0

lim
v→1

A (v)

(1− v)δ
= 1.
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Let us now consider the function involved in the second restriction of (ii). For any ε > 0, we have:

lim
y→+∞

yA

[
1−

∫ 1

0

exp (−yA(v)) dv

]
= lim

y→+∞

A
[
1− ∫ 1

0
exp (−yA(v)) dv

]

(∫ 1

0
exp (−yA(v)) dv

)δ
y

(∫ 1

0

exp (−yA(v)) dv

)δ

= lim
y→+∞

y

(∫ 1

0

exp (−yA(v)) dv

)δ

=
(

lim
y→+∞

y
1
δ

∫ 1

1−ε

exp (−yA(v)) dv

)δ

=

(
lim

y→+∞
1
δ

∫ +∞

0

1z≤εδy exp

[
−yA

(
1−

(
z

y

) 1
δ

)]
z

1
δ−1dz

)δ

.

Let us now check that the limit and integral can be commuted by using Lebesgue theorem. Since:

lim
y→+∞

yA

(
1−

(
z

y

) 1
δ

)
= lim

y→+∞
z

A

(
1−

(
z
y

) 1
δ

)

z
y

= z,

we get:

lim
y→+∞

1z≤εδy exp

[
−yA

(
1−

(
z

y

) 1
δ

)]
z

1
δ−1 = exp (−z) z

1
δ−1, for all z > 0.

Moreover, let r < 1 be such that:
A(v)

(1− v)δ
≥ 1

2
, for any v ≥ r,

then

yA

(
1−

(
z

y

) 1
δ

)
≥ 1

2
z, for any z ≤ (1− r)δ

y.

Therefore, by choosing ε < 1− r, we show that the integrand admits an integrable upper bound:

1z≤εδy exp

[
−yA

(
1−

(
z

y

) 1
δ

)]
z

1
δ−1 ≤ exp

(
−1

2
z

)
z

1
δ−1, for any z, y ≥ 0.

Thus, Lebesgue theorem applies:

lim
y→+∞

∫ +∞

0

1z≤εδy exp

[
−yA

(
1−

(
z

y

) 1
δ

)]
z

1
δ−1dz =

∫ +∞

0

exp (−z) z
1
δ−1dz = Γ (1/δ) ,

and:

lim
y→+∞

yA

[
1−

∫ 1

0

exp (−yA(v)) dv

]
= [(1/δ) Γ (1/δ)]δ = Γ (1 + 1/δ)δ . (a.3)
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In particular, we deduce from (11) that the autoregressive function ϕ corresponding to A is such that:

ϕ(y) ∼ y − δ log Γ (1 + 1/δ) , y → +∞.

From (a.3), it follows that the second restriction in condition (ii) is satisfied iff:

Γ (1 + 1/δ)δ
> exp (γ) , for any δ > 0,

where γ is the expectation of a type I extreme value variable:

γ =
∫ ∞

0

(ln ε) exp (−ε) dε.

The conclusion follows by using the following lemma.

Lemma A.4 The function

δ 7→ Γ (1 + 1/δ)δ , δ > 0,

is decreasing, with:

lim
δ→+∞

Γ (1 + 1/δ)δ = exp (γ) .

Proof. Define

ψ(x) ≡ log Γ(1 + x), x ≥ 0.

Then δ 7→ Γ (1 + 1/δ)δ, δ > 0, is decreasing iff x 7→ ψ(x)
x is increasing, that is, iff: xψ

′
(x) ≥ ψ(x), x ≥ 0.

Since

Γ(1 + x) =
∫ +∞

0

exp (−z) exp (x log z) dz

is the real LT of the negative of a type I extreme value variable, ψ is convex, such that ψ(0) = 0 17. We

deduce:

ψ(x) =
∫ x

0

ψ
′
(z)dz ≤

∫ x

0

ψ
′
(x)dz = xψ

′
(x),

and the first part of the Lemma is proved. Finally, let us show the second part:

lim
δ→+∞

Γ (1 + 1/δ)δ = lim
δ→+∞

(∫ ∞

0

exp (−z) z
1
δ dz

)δ

= lim
δ→+∞

(∫ ∞

0

exp (−z) (1 + 1/δ ln z + o (1/δ)) dz

)δ

= lim
δ→+∞

(
1 +

1
δ

∫ ∞

0

exp (−z) ln zdz

)δ

= exp
(∫ ∞

0

(ln z) exp (−z) dz

)
= exp (γ) .
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Q.E.D.

ii) Let us now assume that A is in class II, and that there exists C < ∞ with:

A(v) ≥ − C

log(1− v)
, for v close to 1.

Since limv→1 A (v) = 0, for any λ ∈ (0, +∞) there exists K = K(λ) such that A (v) ≤ λ for v ≥ 1 − K.

Then:

∫ 1

0

exp [−yA(v)] dv ≥
∫ 1

1−K

exp [−yA(v)] dv ≥ K exp (−λy) , y ≥ 0.

Since A is decreasing near 1,

A

[
1−

∫ 1

0

exp (−yA(v)) dv

]
≥ A [1−K exp (−λy)] , for y large.

Then:

yA

[
1−

∫ 1

0

exp (−yA(v)) dv

]
≥ yA [1−K exp (−λy)]

= − 1
λ

log
(

1− [1−K exp (−λy)]
K

)
A [1−K exp (−λy)]

=
C

λ
+ o(1) > exp (γ) , for y large enough,

if we choose λ < C exp (−γ).

Appendix 6

Computation of the differential of c (u, v; A) with respect to A

The aim of this appendix is to derive different expressions of the differential of the copula with respect to

the functional parameter. In a first step, we derive the differential with respect to A, by taking into account

that H0 is a functional of A, as a result of the relationship implied by the condition of uniform marginal

distribution. In a second step, we provide interpretations in terms of backward expectations. Finally, the

results are particularized to the parametric framework.

i) The general expression
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Let us derive the first-order expansion of the copula log-density:

log c (u, v;A) = log A (v) + log h0 (u,A)−A (v) H0 (u,A) ,

with respect to functional parameter A. We get:

log c (u, v; A + δA) = log [A (v) + δA (v)] + log h0 (u,A + δA)− [A (v) + δA (v)] H0 (u,A + δA)

' log c (u, v;A) +
δA (v)
A (v)

+ 〈D log h0 (u,A) , δA〉

−H0 (u,A) δA (v)−A (v) 〈DH0 (u,A) , δA〉

= log c (u, v;A) +
1−A (v)H0 (u,A)

A (v)
δA(v)

+ 〈D log h0 (u,A) , δA〉 −A (v) 〈DH0 (u, A) , δA〉 , (a.4)

where the expansions are in terms of Hadamard derivatives and the sign ' means that the residual terms

are negligible. Let us now derive the expressions of the derivative of H0 and h0 with respect to A.

Expression of DH−1
0 (z,A)

We have:

H−1
0 (z, A + δA) = 1−

∫ 1

0

exp [−A (v) z − δA (v) z] dv ' 1−
∫ 1

0

[1− δA (v) z] exp [−A (v) z] dv

= H−1
0 (z,A) +

∫ 1

0

zδA (v) exp [−A (v) z] dv;

hence:
〈
DH−1

0 (z,A) , δA
〉

=
∫ 1

0

z exp [−A (v) z] δA(v)dv.

Expression of DH0(u; A)

By applying the implicit function theorem, we get:

〈DH0 (u,A) , δA〉 = −h0 (u,A)
〈
DH−1

0 (H0 (u, A) , A) , δA
〉

= −h0 (u,A)
∫ 1

0

H0 (u,A) exp [−A (v)H0 (u, A)] δA(v)dv (a.5)

Expression of D log h0(u; A)
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We get:

h0 (u,A) =

(
d

dz
H−1

0 (z, A)
∣∣∣∣
z=H0(u,A)

)−1

=
(∫ 1

0

A(v) exp [−A(v)H0 (u,A)] dv

)−1

.

Let us introduce the functional:

q (u,A) ≡ 1
h0 (u,A)

=
∫ 1

0

A(v) exp [−A(v)H0 (u, A)] dv,

and derive its first-order expansion. We get:

q (u, A + δA) =
∫ 1

0

[A(v) + δA(v)] exp {− [A(v) + δA(v)] H0 (u,A + δA)} dv

' q(u,A) +
∫ 1

0

δA(v) exp [−A(v)H0 (u,A)] dv

−H0 (u,A)
∫ 1

0

δA(v)A(v) exp [−A(v)H0 (u, A)] dv

−〈DH0(u), δA〉
∫ 1

0

A(v)2 exp [−A(v)H0 (u,A)] dv

= q(u,A) +
∫ 1

0

δA(v) [1−A(v)H0 (u,A)] exp [−A(v)H0 (u,A)] dv

−〈DH0(u), δA〉
∫ 1

0

A(v)2 exp [−A(v)H0 (u,A)] dv.

It follows:

〈D log h0 (u,A) , δA〉

= −h0 (u, A) 〈Dq (u,A) , δA〉

= −h0 (u, A)
∫ 1

0

δA(v) [1−A(v)H0 (u,A)] exp [−A(v)H0 (u,A)] dv

+ h0 (u,A)
(∫ 1

0

A(v)2 exp [−A(v)H0 (u,A)] dv

)
〈DH0(u), δA〉

= −h0 (u, A)
∫ 1

0

δA(v) [1−A(v)H0 (u,A)] exp [−A(v)H0 (u,A)] dv

− h0 (u,A)2
(∫ 1

0

A(v)2 exp [−A(v)H0 (u,A)] dv

) ∫ 1

0

H0 (u,A) exp [−A (v)H0 (u,A)] δA(v)dv. (a.6)

Explicit expression of the copula’s derivative
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By substituting (a.5) and (a.6) into (a.4), the expansion of log c(u, v; A) becomes:

log c (u, v; A + δA) ' log c(u, v;A) + γ0(u, v,A)δA(v) +
∫

γ1(u, v, w;A)δA(w)dw,

where:

γ0(u, v, A) =
1−A(v)H0(u, A)

A(v)
, (a.7)

and:

γ1(u, v, w; A) = −h0(u,A) exp [−A(w)H0(u,A)]

·
{

1−H0(u,A)
[
A(v) + A(w)−

∫ 1

0

A(z)2h0(u,A) exp [−A (z) H0 (u,A)] dz

]}
. (a.8)

The expression of the differential of log c(u, v; A) follows:

〈D log c(u, v;A), δA〉 = γ0(u, v,A)δA(v) +
∫

γ1(u, v, w; A)δA(w)dw. (a.9)

ii) Conditional expectations in reverse time

Various functional derivatives with respect to A can be written as expectations in reverse time. From (a.5)

we get:

〈DH0 (u,A) , δA〉 = −H0 (u,A)E [δA (Ut−1) /A(Ut−1) | Ut = u] ,

or equivalently:

〈D log H0t, δA〉 = −E [δAt−1/At−1 | Ut] ,

where H0t = H0 (Ut, A) and At−1 = A (Ut−1). Similarly, from (a.6) we get:

〈D log h0t, δA〉 = −E [(1−At−1H0t) δAt−1/At−1 | Ut]− E [At−1H0t | Ut] E [δAt−1/At−1 | Ut] .

Then, from (a.4) the score of the model can be written as an expectation error in reverse time:

〈D log c (Ut, Ut−1; A) , δA〉 = (1−At−1H0t) (δAt−1/At−1 − E [δAt−1/At−1 | Ut])

− E {(1−At−1H0t) (δAt−1/At−1 − E [δAt−1/At−1 | Ut]) | Ut} . (a.10)
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iii) The parametric case

When function A is parameterized:

A(v) = A(v, θ),

the score of the model is obtained from (a.10) with:

δA(v) =
∂A

∂θ
(v, θ)δθ.

We get:

∂lt
∂θ

(θ) =
∂

∂θ
log c (Ut, Ut−1; A (θ))

= (1−At−1H0t)
(

∂

∂θ
log At−1 (θ)− E

[
∂

∂θ
log At−1 (θ) | Ut

])

−E

{
(1−At−1H0t)

(
∂

∂θ
log At−1 (θ)− E

[
∂

∂θ
log At−1 (θ) | Ut

])
| Ut

}
.

Similarly, the derivatives of log H0 (u,A (θ)) and log h0 (u,A (θ)) with respect to θ are given by:

∂

∂θ
log H0t (θ) = −E

[
∂

∂θ
log At−1 (θ) | Ut

]
,

and:

∂

∂θ
log h0t (θ) = −E

[
(1−At−1H0t)

∂

∂θ
log At−1 (θ) | Ut

]
− E [H0tAt−1 | Ut] E

[
∂

∂θ
log At−1 (θ) | Ut

]
.

Appendix 7

The information operator

i) The expression of the information operator

Let us derive the information operator IH . Using (a.9) in Appendix 6, we get

(g, IHh)L2(λ) = E0 [〈D log c (Ut, Ut−1; A0) , g〉 〈D log c (Ut, Ut−1;A0) , h〉]

=
∫

g(v)α0(v)h(v)dv +
∫

g(w)α1(w, v)h(v)dwdv, (a.11)
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for g, h ∈ H, where:

α0(v) = E0

[
γ0 (Ut, Ut−1)

2 | Ut−1 = v
]

=
1

A0(v)2
,

and:

α1(w, v) =
∫

γ0(u,w)γ1(u,w, v)du +
∫

γ0(u, v)γ1(u, v, w)du +
∫

γ1(u, y, w)γ1(u, y, v)dudy.

Let us now derive an expression for IHh, h ∈ H. From (a.11) we get:

∫
g(w)

[
IHh(w)− α0(w)h(w)−

∫
α1(w, v)h(v)dv

]
dw = 0, ∀g ∈ H.

Thus, there exists a constant k such that:

IHh(w) = α0(w)h(w) +
∫

α1(w, v)h(v)dv + k.

Constant k is determined by the condition IHh ∈ H, that is,
∫

IHh(w)dw = 0. We get:

IHh(w) = α0(w)h(w) +
∫

α1(w, v)h(v)dv −
∫

α0(w)h(w)dw −
∫

α1(w, v)h(v)dvdw. (a.12)

Thus, IH admits the representation:

IHh(w) = α0,H(w)h(w) +
∫

α1,H(w, v)h(v)dv, say,

with α0,H = α0 (see equation (22) in Gagliardini and Gourieroux, 2007).

ii) Boundedness and invertibility of IH

We assume that there exists a positive function αH(.) > 0 such that:

∫ ∫
α1,H(w, v)2

αH(w)αH(v)
dwdv < +∞.

Moreover, we assume that:

sup
v∈[0,1]

max
{

1
A0(v)2

, αH(v)
}

< ∞.

Then, from Proposition B.1 in the technical Appendix of Gagliardini and Gourieroux (2007), D log c (Ut, Ut−1; A0)

is a bounded operator from L2(λ) to L2(PA0), and IH is a bounded operator from H in itself.

Let us now consider the invertibility of IH . In Gagliardini and Gourieroux (2007), Section 6.1, it is shown
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that D log c (Ut, Ut−1; A0) has a zero null space on H. Further, let us assume that functional parameter A0

is bounded. Then Proposition B.2 in the technical Appendix of Gagliardini and Gourieroux (2007) implies

that IH is invertible.

The above assumptions require functional parameter A to be bounded and bounded away from 0. It is

possible to show that less restrictive conditions are sufficient, if we choose log A as functional parameter,

instead of A itself. However, this would imply a nonlinear identification constraint. Similarly, less restrictive

assumptions are sufficient if we allow for a general measure ν in the definition of the L2(ν) scalar product

in the functional parameter space.

Appendix 8

Asymptotic properties of the minimum chi-square estimator

In this Appendix we consider the asymptotic properties of the minimum chi-square estimator. We first

introduce the set of regularity assumptions. Then, we prove Proposition 14.

A.8.1 Regularity assumptions

Assumption A.1: Process Ut, t ∈ N, is a Markov process with proportional hazard, with copula p.d.f.

c(u, v;A0) and uniform stationary distribution. We denote by PA the probability measure associated with

c(u, v;A), A ∈ A, where A is an open subset of L2(λ) containing A0.

Assumption A.2: The Hadamard derivative of log c(u, v; A) with respect to A, denoted by D log c(u, v; A),

exists:

log c(u, v; A + h)− log c(u, v;A) = 〈D log c(u, v; A), h〉+ R(u, v; A, h),

for A,A + h ∈ A, where D log c(u, v; A) is a linear mapping from L2(λ) to R which associates to h ∈ L2(λ)

the quantity 〈D log c(u, v;A), h〉 ∈ R. When u, v are replaced by Ut, Ut−1 with distribution PA, the Hadamard

derivative becomes stochastic and Dlog c(Ut ,Ut−1 ; A) is a linear operator from L2(λ) to L2 (PA) which

associates to h ∈ L2(λ) the random variable 〈D log c(Ut ,Ut−1 ;A), h〉 ∈ L2 (PA). We also assume that:

(i) the operator D log c(Ut ,Ut−1 ; A) : L2 (λ) → L2(PA) is bounded, ∀ A ∈ A,

(ii) the stochastic residual term R(Ut ,Ut−1 ;A, h) is such that ∀A ∈ A, K ⊂ A compact:

‖R(Ut ,Ut−1 ; A, h)‖L2(PA) / ‖h‖L2(λ) → 0, uniformly in h ∈ K.
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Assumption A.3: The information operator IH is invertible, with a continuous inverse I−1
H .

Assumption A.4: The process Ut, t ∈ N, is geometric β-mixing.

Assumption A.5: The copula density c (u, v) = c(u, v; A0) of (Ut, Ut−1) is of class Cm
(
[0, 1]2

)
and

vanishes at the boundary.

Assumption A.6: There exist constants C̄ > 0, γ > 0, and an increasing sequence of sets ΩT ⊂ (0, 1)2 ,

T ∈ N, such that:

inf
(u,v)∈ΩT

c(u, v) > C̄(log T )−γ , for any T .

Assumption A.7: The conditional density ch(z, w | u, v) of (Ut, Ut−1) given (Ut−h, Ut−h−1) = (u, v) is

such that:

sup
h∈N

sup
(z,w),(u,v)∈[0,1]2:c(u,v)>0

ch(z, w | u, v) < +∞.

Assumption A.8: The kernel K is of class Cm, with derivatives in L2 (R), and is Lipschitz. Moreover,

the kernel K is of order m ≥ 2, that is:

∫
usK(u)du = 0, s = 1, ..., m− 1, and

∫
|u|m K(u)du < +∞.

Assumption A.9: The bandwidth hT is such that hT = c̄T T−α, limT→∞c̄T = c̄ > 0, with:

1
4m

(
1 +

2m− 1
4m2 + 2m + 1

)
< α <

1
4

(
1− 1

2
2m− 1

4m2 + 2m + 1

)
.

Assumption A.10: There exist compact sets Ω̃T , ΩT such that Ω̃T ⊂ ΩT ⊂ [0, 1]2, weighting function ωT

has support in ΩT , is smaller than 1 with restriction ωT |eΩT
= 1, T ∈ N, and λ2

(
Ω̃T

)
→ 1, as T → ∞,

where λ2 is the Lebesgue measure on [0, 1]2.

Assumption A.11: The set ΩT in Assumption A.10 satisfies Assumption A.6.

Assumption A.12: For any A, A0 ∈ Θ : c(Ut, Ut−1;A)/c(Ut, Ut−1) ∈ L2(PA0). Moreover, the first-order

expansion of the copula density is such that:

c(Ut, Ut−1; A + h) = c(Ut, Ut−1; A) + 〈Dc(Ut, Ut−1; A), h〉+ R(Ut, Ut−1; A, h), ∀A, A + h ∈ Θ,

where:

i) Dc(Ut, Ut−1;A)/c(Ut, Ut−1) is a bounded operator from L2 (λ) in L2(PA0), ∀A,A0 ∈ Θ;
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ii) the residual term satisfies: ‖R(Ut, Ut−1;A, h)/c(Ut, Ut−1)‖L2(PA0 ) = O
(
‖h‖2L2(λ)

)
, A,A + h ∈ Θ.

iii) Moreover: R(u, v;A0, h) = O

((
‖h(u)‖+ ‖h(v)‖+ ‖h‖L2(λ)

)2
)

, λ2-a.s. in (u, v) ∈ (0, 1)2 .

Assumption A.13: There exists p > 1 such that:

sup
A∈Θ

∥∥∥∥
c(., .; A)2

c(., .)

∥∥∥∥
Lp

< ∞.

Assumption A.14: The set Θ is bounded and closed with respect to the norm ‖.‖L2(λ) .

Assumption A.15: The set {c(., .; A), A ∈ Θ} is bounded and weakly closed in L2(µ) for any measure µ

on (0, 1)2 with compact support and continuous density w.r.t λ2.

Assumption A.16: The information operator IH is such that:

inf
h∈H:‖h‖L2(λ)=1

(h, IHh)L2(λ) > 0.

Assumption A.17: Parameter set Θ has a non-empty interior (w.r.t. ‖.‖L2(λ)) containing the true func-

tional parameter A0.

Assumption A.18: The operator Dc(Ut,Ut−1;A)
c(Ut,Ut−1)

is Lipschitz with respect to A at A0 :

∥∥∥∥
Dc(Ut, Ut−1; A0 + h)

c(Ut, Ut−1)
− Dc(Ut, Ut−1;A0)

c(Ut, Ut−1)

∥∥∥∥
L

≤ C̄ ‖h‖L2(λ) ,

for a constant C̄, where ‖.‖L denotes the L2-norm on the space of bounded linear operators from L2(λ) into

L2(PA0).

Assumption A.19: There exists p > 1 such that:

‖〈D log c(., .; A0), g〉 〈D log c(., .; A0), h〉 c(., .)‖Lp = O
(
‖g‖L2(λ) ‖h‖L2(λ)

)
.

Assumption A.20: There exists β2 > q/4 such that:

λ2(Ω̃c
T ) = O

(
T−β2

)
,

where p is the value given in Assumption A.19, 1/p + 1/q = 1, and Ω̃T is defined in Assumption A.10.

The boundedness of the differential operator (Assumption A.2) and the invertibility of the information

operator (Assumption A.3) can be verified using primitive conditions on functions α0 and α1 (see Appendix
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7). Moreover, the decomposition of the information operator IH in Assumption A.3 of Gagliardini and

Gourieroux (2007) is satisfied (see Appendix 7). Sufficient conditions on the functional parameter A0 to

ensure geometric β-mixing (Assumption A.4) are given in Proposition 12. Assumptions A.5-A.9 are standard

conditions on the copula p.d.f., the kernel and the bandwidth for kernel density estimation. In particular,

Assumption A.9 allows for optimal bandwidth choice hT = O
(
T−1/(2m+1)

)
. The minimum chi-square

estimator is pointwise asymptotically unbiased if, in addition to A.9, we have α > 1/(2m+1) (see Gagliardini

and Gourieroux, 2007). To control the boundary bias, less restrictive assumptions on the copula p.d.f. can

be introduced, if generalized kernels are used (e.g. Rice, 1984; Jones, 1993). Assumptions A.10, A.11 and

A.20 explain how the sequence of weighting functions ωT with compact support ΩT converges to the constant

function 1 on [0, 1]2. Assumptions A.14 and A.17 describe the functional parameter set Θ. Assumption A.15

is useful to prove the existence of the minimum chi-square estimator ÂT , since the criterion defining ÂT is a

distance in an Hilbert space. Finally, Assumptions A.12, A.13, A.16, A.18 and A.19 are technical restrictions

on functional parameter A to ensure integrability conditions for the copula p.d.f. and its differential. They

are used to bound the residual terms in the asymptotic expansion of the minimum chi-square estimator.

A.8.2 Proof of Proposition 14

Let us now prove Proposition 14. Point (i) follows from Proposition 12 in Gagliardini and Gourieroux

(2007). To prove point (ii), let us first derive the efficient score ψT ∈ L2 (λ), which is defined by:

(h, ψT )L2(λ) =
∫ ∫

δĉT (u, v) 〈D log c (u, v;A0) , h〉 dudv, ∀h ∈ L2 (λ) .

From Gagliardini and Gourieroux (2007), equation (16), we get:

ψT (w) =
∫

δĉT (w, v)γ0 (w, v) dv +
∫ ∫

δĉT (u, v)γ1 (u, v, w) dudv. (a.13)

The first-order condition of the minimum chi-square estimator is given by (see Gagliardini and Gourieroux,

2007, Proposition 4, Sections 4.5 and 6.2):

IHδÂT = PHψT + r̃T ,

where PH is the orthogonal projection operator on the tangent space H, defined by PHh(v) = h(v) −
(∫

h(w)dw
)
, and the residual term r̃T is such that ‖r̃T ‖L2(λ) = op(1/

√
T ) and r̃T (v) = op(1/

√
ThT ) λ-a.s.

48



in v ∈ [0, 1]. From (a.12) and (a.13), we get:

α0(w)δÂT (w) +
∫

α1(w, v)δÂT (v)dv −
∫ (

α0(w)δÂT (w) +
∫

α1(w, v)δÂT (v)dv

)
dw

=
∫

δĉT (w, v)γ0 (w, v) dv +
∫ ∫

δĉT (u, v)γ1 (u, v, w) dudv

−
(∫ ∫

δĉT (w, v)γ0 (w, v) dv +
∫ ∫

δĉT (u, v)γ1 (u, v, w) dudv

)
dw + r̃T (w). (a.14)

This gives the asymptotic expansion reported in Proposition 14 (ii) with:

rT (v) = r̃T (v)−
(∫ ∫

δĉT (w, v)γ0 (w, v) dv +
∫ ∫

δĉT (u, v)γ1 (u, v, w) dudv

)
dw

+
∫ (

α0(w)δÂT (w) +
∫

α1(w, v)δÂT (v)dv

)
dw ≡ r̃T (v) + kT .

Then, (rT , h)L2(λ) = (r̃T , h)L2(λ) ≤ ‖r̃T ‖L2(λ) ‖h‖L2(λ) = op(1/
√

T ) for any h ∈ H. Moreover, from equation

(23) and point (iv), we have kT = Op(1/
√

T ). Thus, rT (v) = op(1/
√

ThT ) λ-a.s. in v ∈ [0, 1] and point (ii)

is proved.

Finally, points (iii) and (iv) follow from Propositions 13 and 16 in Gagliardini and Gourieroux (2007).
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Notes

1See Clark (1973), Stock (1988), Ghysels and Jasiak (1994), Ghysels et al. (1998), Ané and Geman

(2000).

2See Engle and Russell (1998), Jasiak (1998), Giot (2001), Gourieroux and Jasiak (2001b), Ghysels et al.

(2004).

3Various extensions of the basic specifications have been considered in the literature. For instance, Jasiak

(1998) introduces fractionally integrated ACD (FIACD); Bauwens and Giot (2000) apply the GARCH dy-

namics to the log-durations and log-expected durations; Zhang et al. (2001) introduce a nonlinear dynamics

by means of a deterministic threshold autoregression.

4In the Cox (1972) model, function a is exponential linear. See Hautsch (1999) for an application to

intertrade durations.

5See Carrasco and Chen (2002) for mixing properties of ACD models.

6The restrictions on functional parameters h and ϕ to get stationarity are considered later on in this

section.

7Beyond traditional methods based on autocorrelograms, considerable attention has been devoted in

recent years to nonlinear autocorrelograms (e.g. Gourieroux and Jasiak, 2001b), conditional Laplace trans-

forms (e.g. Darolles et al., 2006) and copulas (see Bouyé et al., 2002; Jondeau and Rockinger, 2006, and

references therein; Joe, 1997, ch.8; Nelsen, 1999, section 6.3).

8A link with the literature on nonlinear autocorrelograms is provided by the fact that condition (SI)

implies that any monotonic transformation h(Xt), t ∈ N, of the process features positive correlation:

corr [h(Xt), h(Xt−1)] ≥ 0.

9(Xt, Xt−1) º(HI)

(
X∗

t , X∗
t−1

)
, or (Xt, Xt−1) º(SI)

(
X∗

t , X∗
t−1

)
, implies that the Kendall’s tau of (Xt, Xt−1)

is larger than that of
(
X∗

t , X∗
t−1

)
; moreover, if (Xt, t ∈ N) and (X∗

t , t ∈ N) have the same margins, then:

corr [g (Xt) , g (Xt−1)] ≥ corr
[
g (X∗

t ) , g
(
X∗

t−1

)]
,
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for any monotonic transformation g such that the correlations exist.

10Note that:
1

A
[
1− ∫ 1

0
exp (−A(v)y) dv

] =
1

A
[
H−1

0 (y)
] , y ≥ 0,

is the conditional expectation of the transformed process Zt = H0(Ut), t ∈ N, with constant conditional

hazard.

11The symmetric case v = 0 is analogous.

12Functions A in class I imply autoregressive functions ϕ such that ϕ(y)
y → 1 as y → +∞ (see Appendix

5).

13The replacement of Ut by Ût does not influence the pointwise asymptotic distribution of a nonparametric

estimator of A, but can influence the asymptotic distribution of estimators of linear functionals of A.

14For expository purposes, we assume that the bandwidth hT is such that the bias term can be neglected

(see Gagliardini and Gourieroux, 2007, for the analysis of the bias term of the minimum chi-square estimator).

15The fact that the pointwise estimator for the baseline hazard function h0 converges at a parametric rate

may seem unusual. This result is due to the restriction of uniform margins for the copula, which implies

that h0 can be expressed as an integral of function A.

16With integrable function C.

17Indeed, if ψ(x) = log E [exp (−xZ)], then ψ
′′
(x) = VQx [Z], where distribution Qx is defined by dQx(z) =

{exp (−xz) /E [exp (−xZ)]} dFZ(z).
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Figure 1: Simulated path for process Ut, t ∈ N, with proportional hazard and functional dependence para-
meter A such that 1−A−1 is a gamma distribution with parameter 1/δ, δ = 0.1.
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Figure 2: Copula p.d.f. for process Ut, t ∈ N, with proportional hazard and functional dependence parameter
A such that 1−A−1 is a gamma distribution with parameter 1/δ, δ = 0.1.
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Figure 3: Contour plot of transition p.d.f. for process X∗
t , t ∈ N, with proportional hazard, functional

dependence parameter A such that 1 − A−1 is a gamma distribution with parameter 1/δ, δ = 0.1, and
standard Gaussian marginal distribution.
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Figure 4: Autocorrelogram for process Xt, t ∈ N, with functional dependence parameter A such that
1−A−1 ∼ γ (1/δ), δ = 0.1, and marginal distribution F (x) = 1− 1/ (1 + x)τ , τ = 5.5.
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Figure 5: Simulated path for process Ut, t ∈ N, with proportional hazard and functional dependence para-
meter A such that 1−A−1 is a gamma distribution with parameter 1/δ, δ = 1.
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Figure 6: Copula p.d.f. for process Ut, t ∈ N, with proportional hazard and functional dependence parameter
A such that 1−A−1 is a gamma distribution with parameter 1/δ, δ = 1.
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Figure 7: Contour plot of transition p.d.f. for process X∗
t , t ∈ N, with proportional hazard, functional

dependence parameter A such that 1 − A−1 is a gamma distribution with parameter 1/δ, δ = 1, and
standard Gaussian marginal distribution.
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Figure 8: Autocorrelogram for process Xt, t ∈ N, with functional dependence parameter A such that
1−A−1 ∼ γ (1/δ), δ = 1, and marginal distribution F (x) = 1− 1/ (1 + x)τ , τ = 5.5.
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Figure 9: Functional dependence measure for process Ut, t ∈ N, with 1 − A−1 ∼ γ (1/δ): δ = 0.1 (dashed
line), δ = 1 (solid line).
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Figure 10: Stepwise functional parameter A (upper Panel) of a Markov process with proportional haz-
ard and endogenous switching regimes, and the corresponding autocorrelogram (lower Panel) for marginal
distribution F (x) = 1− 1/ (1 + x)τ , τ = 5.5.
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