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Microinformation, Nonlinear Filtering and Granularity

Abstract

The recursive prediction and filtering formulas of the Kalman filter are difficult to implement in

nonlinear state space models since they require the updating of a function. The aim of this paper is

to consider the situation of a large numbern of individual measurements, called microinformation,

and to take advantage of the large cross-sectional size to get closed-form prediction and filtering

formulas at order1/n. The state variables have a macro-factor interpretation. The results are ap-

plied to maximum likelihood estimation of a macro-parameter, and to computation of a granularity

adjusted Value-at-Risk (VaR) for large portfolios. The granularity adjustment for VaR is illustrated

by an application of the Value of the Firm model [Merton (1974)] taking into account both default

and loss given default.

Keywords: Kalman Filter, Nonlinear State Space, Granularity, Value-at-Risk, Credit Risk, Loss

Given Default.

JEL classification: G12, C23.
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Introduction

Let us consider a nonlinear state space model with observationsyt, t = 1, · · · , T , and underlying

latent state variablesFt. We denote byYt (resp.Ft) the information included in the current and

past values of variabley (resp.F ). The model is defined by (i) the state equation, which specifies

the conditional probability density function (pdf) ofFt givenFt−1, Yt−1 asg(ft|ft−1), say; (ii) the

measurement equation, which specifies the conditional pdf of yt givenFt, Yt−1 ash(yt|ft), say.

Thus, the state variable is assumed to follow an autonomous Markov process of order 1, and the

distribution of the observed variable depends on the information through the current state variables

only 1. In such a nonlinear state space model, the joint pdf of the observations (given some initial

condition) is:
∫ T
∏

t=1

[h(yt|ft)g(ft|ft−1)]

T
∏

t=1

dft, (1)

and involves a multiple integral with dimension equal to sample sizeT times the dimension of the

underlying state variables vector.

The nonlinear Kalman filter proposes a recursive computation of well-chosen conditional dis-

tributions. The filtering density provides the conditionalpdf p(ft|Yt) of the state variableFt given

Yt. The predictive density provides the conditional pdf ofyt+1 given Yt, denotedp(ỹt+1|Yt),

whereỹt+1 indicates a generic argument of variableyt+1. Then the joint pdf of the sample ob-

servations is deduced by multiplying the successive predictive densities, evaluated at the observed

valuesỹt+1 = yt+1 for t = 0, 1, · · · , T − 1.

Let us recall some recursions involved in the nonlinear Kalman filter. We have for instance:

p(ỹt+1|Yt) = E [p(ỹt+1|Ft,Yt)|Yt] = E

[
∫

h(ỹt+1|ft+1)g(ft+1|Ft)dft+1|Yt

]

= E [Ψ(ỹt+1, Ft)|Yt] ,

where:

Ψ(ỹt+1, ft) =

∫

h(ỹt+1|ft+1)g(ft+1|ft)dft+1. (2)

Thus, we get the updating of the predictive distribution from the filtering distribution:

p(ỹt+1|Yt) =

∫

Ψ(ỹt+1, ft)p(ft|Yt)dft. (3)

3



The integrals in (2) and (3) often have a small dimension and could be easily computed numerically.

However, this type of updating formula is difficult to implement in the general framework, since it

requires as input the functionft → p(ft|Yt). Hence, it is necessary to temporarily store this func-

tion at each recursion. Three special cases are known, in which the nonlinear Kalman filter is sim-

plified, because only a finite number of scalars have to be updated. These are the Gaussian linear

state space model, initially considered by Kalman [Kalman (1960), Kalman and Bucy (1961)], the

model with qualitative state variable, at the core of the Kitagawa filter [Kitagawa (1987), (1996),

Hamilton (1989)], and state space models with finite-dimensional dependence [Gouriéroux, Jasiak

(2002), Gouriéroux, Monfort (2011)].

This paper introduces another framework in which the nonlinear Kalman filter can be (approx-

imately) solved in closed-form. Specifically, we consider alarge numbern of individual mea-

surementsyt = (y1,t, · · · , yn,t)
′, and assume that the measurement density is such thath(yt|ft) =

n
∏

i=1

h(yi,t|ft). The individual measurementsyi,t are i.i.d. conditional on the state variablesFt,

which can be interpreted as macro-factors (or as systematicrisk factors in financial applications).

2 Thus, our framework corresponds to a nonlinear panel structure with latent common stochastic

factors and homogenous loadings. By means of an asymptotic expansion when the cross-sectional

dimensionn tends to infinity, we show that it is possible to approximate the nonlinear Kalman

filter in closed form at order1/n.

We can contrast our methodology with the approaches that have been proposed in the literature

to implement approximated numerical filters in general nonlinear and/or non-Gaussian state space

models [see e.g. Arulampalam, Maskell, Gordon, Clapp (2002) for an overview]. Simulation-

based approaches include sequential Monte-Carlo methods such as particle filtering, where the

filtering distribution is approximated by a discrete distribution with non-zero probability mass on a

set of random states [the “particles”; see e.g. Carpenter, Clifford, Fearnhead (1999), Pitt, Shephard

(2001), Cappé, Moulines, Rydén (2005), Chapter 7, and references therein, as well as Johannes,

Polson (2009) for an overview with financial applications].Alternative approximation methods are

the Extended Kalman filter, in which nonlinear state and measurement equations are linearized by

means of a Taylor expansion, and the grid-based approach, inwhich the state space is discretized

in a finite number of cells [see Arulampalam, Maskell, Gordon, Clapp (2002), Sections VI A and

B, respectively]. In the specific framework considered in this paper, the major difference between
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our methodology and the above approximated filters is that inthe former the approximation is not

ad-hoc but is derived analytically by means of an asymptoticexpansion forn → ∞. Moreover,

our approach is computationally straightforward, since itdoes not involve simulation, and allows

for a control of the approximation error, which is of ordero(1/n).

The model and the approximate prediction and filtering formulas are given in Section 1. The

special case of measurement model in an exponential family is discussed in Section 2. Different ap-

plications of the prediction and filtering formulas to estimation and risk management, respectively,

are considered in the remaining sections. Specifically, in Section 3 we consider the estimation of a

macro-parameter in a model with Gaussian factor. For this estimation problem, we show that the

approximate nonlinear Kalman filter designed to compute thejoint distribution of the observations

is equivalent to a standard Kalman filter applied to an approximate linear state space model. By

using this approximate filter, we derive an efficient estimator of the macro-parameters, which does

not necessitate the computation of a high-dimensional integral as the maximum likelihood estima-

tor does. An application to the computation of the Value-at-Risk (VaR) for a large homogeneous

portfolio is discussed in Section 4. It is shown that the Value-at-Risk, that is the reserves introduced

to balance the risk of the portfolio, includes a component toaccount for the nonobservability of the

common risk factor. In Section 5 the above methodology is applied to Merton’s model for credit

risk [Merton (1974)], when both default and Loss Given Default (LGD) are taken into account.

Section 6 concludes. Proofs are gathered in appendices. Forsimplicity, we focus on the most com-

mon case of a single factor. The results can be generalized tomultiple factors, but the derivations

are notationally cumbersome at some steps.

1 Approximate Prediction and Filtering

1.1 The Nonlinear State Space Model

The observations are endogenous individual variablesyi,t, for i = 1, · · · , n, t = 1, · · · , T , and

exogenous variablesxi, for i = 1, · · · , n. The latter variables are indexed by individuali only

and correspond to time invariant individual characteristics 3. The state variables, or factors,Ft

are indexed by timet only, and are unobservable. We denote byyt = (y1,t, · · · , yn,t)
′ [resp.
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X = (x′
1, · · · , x′

n)′] the set of cross-sectional observations ony (resp. onx).

As usual, the nonlinear state space model is defined by measurement and state equations, given

below in terms of conditional distributions.

State equation: The conditional distribution ofFt givenFt−1, Yt−1, X depends onFt−1 only, is

time-invariant, and admits a pdfg(ft|ft−1), for t = 1, · · · , T .

Measurement equations:Conditionally on the information setFt, Yt−1, X, the individual en-

dogenous variablesyi,t, with i = 1, · · · , n, are independent. The distribution ofyi,t givenFt,

Yt−1, X depends onFt, yi,t−1 andxi only, is time-invariant and admits the pdf:

h(yi,t|ft, yi,t−1, xi) ≡ hi,t(yi,t|ft), i = 1, · · · , n, t = 1, · · · , T.

This nonlinear state space model allows for exogenous variables in the measurement equations,

introducing observable heterogeneity across individuals. It also allows for both a micro-dynamics

by means of the individual lags in the measurement equations, and a macro-dynamics by means of

the unobservable factors. The model includes as a special case models with repeated observations

when hi,t(yi,t|ft) = h(yi,t|ft). In a parametric framework, functionsh and g may depend on

unknown parameter values. They are not explicitly introduced, except if necessary (see e.g. Section

3). Indeed, the prediction and filtering formulas are derived for fixed parameter values.

The value of the unobservable factorFt can be approximated by the cross-sectional maximum

likelihood (CSML) estimator defined by:4

f̂n,t = arg max
ft

n
∑

i=1

log hi,t(yi,t|ft). (4)

Estimatef̂n,t provides an approximation of factor valueft, which is consistent if the cross-sectional

sizen tends to infinity. However, it is not the most accurate one, since it does not take into account

the lagged observations ofy and the information on the factor dynamics. This cross-sectional

approximation of the factor plays a crucial role in the derivation of the prediction and filtering

formulas. Other cross-sectional summary statistics are also useful. Let us introduce the notation:

K
(p)
n,t =

1

n

n
∑

i=1

∂p log hi,t(yi,t|f̂n,t)

∂f p
t

, p = 2, 3, 4. (5)
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The quantity:

In,t = −K
(2)
n,t , (6)

measures the accuracy off̂n,t as an approximation offt; the quantityK(3)
n,t is involved in the bias

at order1/n of estimatorf̂n,t. Under appropriate regularity assumptions, the quantities K
(p)
n,t are

OP (1), whenn tends to infinity.

1.2 Approximate Filtering Formula

An approximation of the filtering distribution for factorFt is derived by means of the Laplace

method [see e.g. Jensen (1995)]. The form of the approximation is given in the next Proposition

1 (see Appendix 1 for the proof). This result extends the approximate filtering distribution derived

in Gagliardini and Gouriéroux (2011) to a model with micro-dynamics and exogenous variables.

PROPOSITION 1: At order1/n, the conditional distribution ofFt givenYt, Ft−1, X is equal to

the conditional distribution ofFt givenYt, X only, i.e. to the filtering distribution. This distribu-

tion is Gaussian and is given by:

N

(

f̂n,t +
1

n

[

I−1
n,t

∂ log g

∂ft
(f̂n,t|f̂n,t−1) +

1

2
I−2
n,tK

(3)
n,t

]

,
1

n
I−1
n,t

)

.

At order1/n, the filtering distribution ofFt differs from a point mass at the CSML estimatef̂n,t.

By extending the notion of granularity introduced by Gordy (2003) in the context of portfolio

VaR computation, we call this distribution the granularityadjusted (GA) filtering distribution. The

variance of the GA filtering distribution shrinks to zero at rate1/n and the mean of the filtering

distribution differs fromf̂n,t by a term of order1/n. The granularity adjustment involves the four

summary statisticŝfn,t, f̂n,t−1, In,t, K
(3)
n,t . The dynamics of the latent factor impacts the filtering

distribution through the partial derivative of the log transition pdf
∂ log g

∂ft
(f̂n,t|f̂n,t−1). Finally,

conditionally onYt andX, the current and the lagged factorsFt andFt−1 are independent at order

1/n.

The Gaussian approximate filtering distribution in Proposition 1 shares some common features

with the approximations considered in the literature on robust Kalman filtering [see e.g. Masreliez
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(1975)]. However, it differs in several respects. First, inrobust filtering the conditional distribution

of Ft+1 givenYt is assumed to be close to a Gaussian distribution, whereas inour framework it is

the conditional distribution ofFt givenYt which is almost Gaussian5. Second, in robust filtering

the errors of the analytical approximations are typically unknown 6, while in our approach the

Gaussian approximation has been derived theoretically together with its approximation error due to

the information contained in the cross-sectional observations. Third, the robust filtering literature

mostly focuses on linear measurement and state equations with non-Gaussian innovations7, while

our model fully allows for nonlinearities in both the measurement and state equations. Finally, the

approximation in Proposition 1 is not recursive, but directly in closed form. For instance, when

a new observationyT+1 is received at dateT + 1, the filtering distribution is directly recomputed

for this new date of interest by the explicit formula of Proposition 1. This computation requires

the data of datesT andT + 1 only. Therefore, there is no disadvantage in terms of data storage

compared to on-line methods providing recursive filtering solutions.

1.3 Approximate Prediction Formula

The approximate filtering formula in Proposition 1 can be used to derive the prediction formula at

order1/n, that is, the conditional distribution ofyt+1 givenYt, X. More precisely, we have by the

law of iterated expectation:

p (ỹt+1|Yt, X) = E [p (ỹt+1|Yt,Ft, X) |Yt, X] = E [Ψ(ỹt+1|yt, Ft, X)|Yt, X] ,

whereΨ(ỹt+1|yt, Ft, X) = p (ỹt+1|Yt,Ft, X) depends on the past throughyt andFt only because

of the assumptions on the state and measurement equations. Thus, the derivation of the predictive

distribution can be performed in two steps. We first derive anapproximation at order1/n of the

conditional distribution ofyt+1 givenyt, Ft andX; then,Ft is integrated out using its conditional

pdf givenYt andX in Proposition 1.

The conditional pdf ofyt+1 givenyt, Ft, X is:

Ψ(ỹt+1|yt, ft, X) =

∫ n
∏

i=1

hi,t+1(ỹi,t+1|ft+1)g(ft+1|ft)dft+1.

This pdf can be written as:

Ψ(ỹt+1|yt, ft, X) =

∫

exp

[

n
∑

i=1

log hi,t+1(ỹi,t+1|ft+1) + log g(ft+1|ft)

]

dft+1. (7)
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The integrand can be expanded around the cross-sectional approximationf̃n,t+1 to get the result be-

low (see Appendix 2), wherẽfn,t+1 is the CSML estimator offt+1 based oñyt+1, yt, X. Similarly,

we denote byK̃(p)
n,t+1, Ĩn,t+1 the summary statistics withyt+1 replaced by the generic argument

ỹt+1.

PROPOSITION 2: At order1/n, the conditional pdf ofyt+1 givenyt, Ft, X is equal to:

Ψ(ỹt+1|yt, ft, X) =

√

2π

nĨn,t+1

n
∏

i=1

hi,t+1(ỹi,t+1|f̃n,t+1)g(f̃n,t+1|ft)

· exp







1

n





1

8
K̃

(4)
n,t+1Ĩ

−2
n,t+1 +

1

2
Ĩ−1
n,t+1





∂2 log g(f̃n,t+1|ft)

∂f 2
t+1

+

(

∂ log g(f̃n,t+1|ft)

∂ft+1

)2




+
1

2
Ĩ−2
n,t+1K̃

(3)
n,t+1

∂ log g(f̃n,t+1|ft)

∂ft+1
+

5

24

[

K̃
(3)
n,t+1

]2

Ĩ−3
n,t+1

]

+ o(1/n)

}

.

The normalization factor
√

2π/n ensures that the integral ofΨ(ỹt+1|yt, ft, X) w.r.t. ỹt+1 is equal

to 1 at ordero(1/n). Alternatively, we may impose the exact validity of the unitmass restriction

by normalizing the approximate density by its numerical integral.

Then, the expression of Proposition 2 can be integrated w.r.t. the approximate Gaussian filtering

distribution ofFt given in Proposition 1 in order to get the predictive pdf. We obtain the following

result (see Appendix 3 for the proof):

9



PROPOSITION 3: At order1/n, the predictive pdf ofyt+1 givenYt, X is equal to:

p(ỹt+1|Yt, X) =

√

2π

nĨn,t+1

n
∏

i=1

hi,t+1

(

ỹi,t+1|f̃n,t+1

)

g
(

f̃n,t+1|f̂n,t

)

· exp

{

1

n

[

1

8
K̃

(4)
n,t+1Ĩ

−2
n,t+1 +

5

24

(

K̃
(3)
n,t+1

)2

Ĩ−3
n,t+1

+
1

2
Ĩ−1
n,t+1







∂2 log g
(

f̃n,t+1|f̂n,t

)

∂f 2
t+1

+





∂ log g
(

f̃n,t+1|f̂n,t

)

∂ft+1





2






+
1

2
I−1
n,t







∂2 log g
(

f̃n,t+1|f̂n,t

)

∂f 2
t

+





∂ log g
(

f̃n,t+1|f̂n,t

)

∂ft





2






+I−1
n,t

∂ log g
(

f̃n,t+1|f̂n,t

)

∂ft

∂ log g
(

f̂n,t|f̂n,t−1

)

∂ft

+
1

2
Ĩ−2
n,t+1K̃

(3)
n,t+1

∂ log g
(

f̃n,t+1|f̂n,t

)

∂ft+1
+

1

2
I−2
n,tK

(3)
n,t

∂ log g
(

f̃n,t+1|f̂n,t

)

∂ft



+ o(1/n)







.

We get a closed form expression for the predictive density. This expression depends on summary

statisticsf̃n,t+1, Ĩn,t+1, K̃
(3)
n,t+1, K̃

(4)
n,t+1, f̂n,t, f̂n,t−1, In,t, K

(3)
n,t , some of them being functions of the

selected argument̃yt+1. The formula in Proposition 3 is simplified when the argumentof interest

ỹt+1 = yt+1 corresponds to the observations, as for deriving the joint density function of the sample

(see Section 3). Indeed, in this case, we havef̃n,t+1 = f̂n,t+1, Ĩn,t+1 = In,t+1 andK̃
(p)
n,t+1 = K

(p)
n,t+1.

In particular, we see that process(yt) is a Markov process of order 2, up too(1/n).

2 Exponential Micro-model

The expressions for the filtering and prediction distributions in Section 1 capture the non-Gaussianity

of both the micro- and macro-dynamics. This effect is illustrated in this section for a model with

exponential micro-density.
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2.1 The Model

Let us assume that the conditional micro-density can be written as:

hi,t(yi,t|ft) = exp [a(yi,t)ft + b(yi,t) + c(ft)] . (8)

This is an exponential family in which the factor value is thecanonical parameter. The choice of

a canonical factor is useful to interpret the asymptotic adjustments in the filtering and prediction

distributions. More precisely, we have the following property (see Appendix 4 for the proof):

PROPOSITION 4: For an exponential micro-model with canonical factorFt, we have:

K
(p)
n,t =

dpc(f̂n,t)

df p
t

, p ≥ 2.

Moreover:

d2c(ft)

df 2
t

= −V [a(yi,t)|Ft = ft],

[

−d2c(ft)

df 2
t

]−3/2
d3c(ft)

df 3
t

= −Skewness[a(yi,t)|Ft = ft],

[

−d2c(ft)

df 2
t

]−2
d4c(ft)

df 4
t

= −Excess Kurtosis[a(yi,t)|Ft = ft].

Therefore, the adjustment at order1/n in the filtering distribution (Proposition 1) involves the

third-order derivative of the micro-density and contains among other statistics the opposite of the

conditional skewness ofa(yi,t), that is,I−3/2
n,t K

(3)
n,t . Similarly, the adjustments in the predictive dis-

tribution (Proposition 3) involve both conditional skewness and excess kurtosis measures, through

statisticsI−3/2
n,t K

(3)
n,t , Ĩ

−3/2
n,t K̃

(3)
n,t andĨ−2

n,t K̃
(4)
n,t . Skewness and excess kurtosis summarize the proper-

ties of the conditional distribution of the transforma(yi,t) of the individual observation given the

factor value, that are involved in the adjustments at order1/n.

2.2 Examples

We provide in Table 1 the canonical parameterization and themain summary statistics for standard

exponential families. For some of them (e.g., the Bernoullifamily), the canonical parameterization
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does not coincide with the usual parameterization. From functionc(f) and the cross-sectional ML

estimator of the factor valuêfn,t, we can deduce the expressions of the statisticsK
(p)
n,t .

Example 1: Gaussian family with factor in mean

For a linear Gaussian state space model, the measurements are such thaty1,t, · · · , yn,t ∼
IIN(ft, 1) conditional onFt = ft, where the canonical factor valueft is the conditional mean,

and the conditional variance is constant, equal to1, say. The CSML estimator of the factor value

is f̂n,t = 1
n

∑n
i=1 yi,t, that is the cross-sectional average of the observations atdatet. The statistics

K
(p)
n,t are such thatIn,t = −K

(2)
n,t = 1 andK

(p)
n,t = 0 for p ≥ 3.

Example 2: Bernoulli family with stochastic probability

For qualitative observations in the Bernoulli family, we have y1,t, · · · , yn,t ∼ i.i.B(1, pt) con-

ditionally onFt = ft, where the canonical factor valueft is related to the conditional probability

pt by ft = log [pt/(1 − pt)]. The CSML estimator of the factor value iŝfn,t = log [ȳn,t/(1 − ȳn,t)],

whereȳn,t = 1
n

∑n
i=1 yi,t is the cross-sectional frequency. The statisticsK

(p)
n,t are such thatIn,t =

−K
(2)
n,t = ȳn,t(1− ȳn,t), K

(3)
n,t = −ȳn,t(1− ȳn,t)(1− 2ȳn,t) andK

(4)
n,t = −ȳn,t(1− ȳn,t)(1− 6ȳn,t +

2ȳ2
n,t).

In Example 2 with the Bernoulli family the canonical factorf = log [p/(1 − p)] admits real

positive and negative values, but in other cases the canonical factor is constrained. For instance, in

the exponential family in Table 1, the canonical factorf = λ is positive, as well as in the Gaussian

model with volatility factor. This feature has implications for the specification of the transition

distribution of the factor. A Gaussian autoregressive dynamics is appropriate for a factor admitting

values onR, while for instance an Autoregressive Gamma dynamics [Gouriéroux, Jasiak (2006)]

is appropriate for a factor admitting positive values.

3 Approximate ML Estimation of Macro-parameters

The approximate prediction formulas can be used to define efficient estimation methods. In

this section we consider a parametric nonlinear state spacemodel with macro-parameters only.

Thus, the measurement densityhi,t(yi,t|ft) is assumed known, whereas the state transition density

g(ft|ft−1; θ) is parameterized by the unknown parameter vectorθ. This setting is appropriate to
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address ML estimation in the models with exponential micro-density presented in Table 1 (see

Section 2) and allows for simple interpretations of the approximate log-likelihood function (see

Sections 3.2 and 3.3).8

3.1 The Granularity Adjusted Maximum Likelihood Estimator

The standardized log-likelihood function of observations(y1, ..., yT ) conditional on the initial ob-

servationy0 is equal to:

LnT (θ) =
1

T

T
∑

t=1

log p(yt|Yt−1, X; θ), (9)

where the predictive densityp(yt|Yt−1, X; θ) has a complicated expression, which involves high-

dimensional integrals, or equivalently the recursive steps of the nonlinear Kalman filter. Therefore,

the maximum likelihood estimator of parameterθ:

θ̂nT = arg max
θ

LnT (θ), (10)

is difficult to compute numerically.

However, from Proposition 3 we deduce that the log-likelihood function can be written as:

LnT (θ) = LGA
nT (θ) + op(1/n), (11)

where the granularity adjusted (GA) log-likelihood function is given by:

LGA
nT (θ) =

1

T

T
∑

t=1

log pGA
n (yt|Yt−1, X; θ), (12)
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andpGA
n (yt|Yt−1, X; θ) is the approximate predictive density at order1/n, such that:

log pGA
n (yt|Yt−1, X; θ) ∝ log g

(

f̂n,t|f̂n,t−1; θ
)

+
1

2n
I−1
n,t







∂2 log g
(

f̂n,t|f̂n,t−1; θ
)

∂f 2
t

+





∂ log g
(

f̂n,t|f̂n,t−1; θ
)

∂ft





2






+
1

2n
I−1
n,t−1







∂2 log g
(

f̂n,t|f̂n,t−1; θ
)

∂f 2
t−1

+





∂ log g
(

f̂n,t|f̂n,t−1; θ
)

∂ft−1





2






+
1

n
I−1
n,t−1

∂ log g
(

f̂n,t|f̂n,t−1; θ
)

∂ft−1

∂ log g
(

f̂n,t−1|f̂n,t−2; θ
)

∂ft−1

+
1

2n
I−2
n,tK

(3)
n,t

∂ log g
(

f̂n,t|f̂n,t−1; θ
)

∂ft
+

1

2
I−2
n,t−1K

(3)
n,t−1

∂ log g
(

f̂n,t|f̂n,t−1; θ
)

∂ft−1
,

(13)

where symbol∝ means equality up to terms independent ofθ. The GA log-likelihood function in

(12) provides a closed-form approximation of the exact log-likelihood function at orderop(1/n)

which is simple to compute. It only involves the statisticsf̂n,t, In,t andK
(3)
n,t . This suggests to

consider the approximate ML estimator that maximizes the GAlog-likelihood function.

DEFINITION 1: The GA ML estimator ofθ is:

θ̂GA
nT = arg max

θ
LGA

nT (θ). (14)

It is proved in Gagliardini, Gouriéroux (2010) that the GA ML estimator differs from the true

ML estimator by a term negligible at order1/n, i.e., θ̂GA
nT − θ̂nT = op(1/n). In particular, the GA

ML estimator inherits the consistency and first-order asymptotic efficiency properties of the true

ML estimator whenn, T → ∞ andT b/n = O(1) for a valueb > 1.

3.2 Gaussian Factor

Let us now consider the special case of a Gaussian factor dynamics. More precisely, let us assume

that the factor follows a stationary Gaussian autoregressive model:

Ft = µ + γ(Ft−1 − µ) + η
√

1 − γ2εt, (15)
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where the innovations areεt ∼ IIN(0, 1) and the autoregressive coefficientγ is such that|γ| < 1.

The stationary distribution ofFt is Gaussian with meanµ and varianceη2. The transition pdf is:

g(ft|ft−1; θ) =
1

√

2πη2(1 − γ2)
exp

{

− [ft − µ − γ(ft−1 − µ)]2

2η2(1 − γ2)

}

, (16)

where the macro-parameterθ = (µ, γ, η2)′ is unknown. Then, the log-densitylog g
(

f̂n,t|f̂n,t−1; θ
)

and its partial derivatives in the RHS of (13) are polynomials in f̂n,t − µ − γ(f̂n,t−1 − µ) and

f̂n,t−1 − µ − γ(f̂n,t−2 − µ) of degree less or equal to2. This explains why the GA log-likelihood

function is equivalent to the logarithm of a Gaussian pdf forf̂n,t−µ−γ(f̂n,t−1−µ), t = 1, · · · , T ,

with granularity adjustments for the mean and the variance-covariance structure at order1/n (see

Appendix 5). We get the next result:

PROPOSITION 5: In a model with Gaussian autoregressive factor and macro-parameterθ only,

a GA ML estimator ofθ can be obtained by maximizing the likelihood function of the(time-

inhomogeneous) Gaussian ARMA(1,1) model:

ξn,t = µ + γ(ξn,t−1 − µ) + η
√

1 − γ2εt +
1√
n

I
−1/2
n,t ut − γ

1√
n

I
−1/2
n,t−1ut−1, t = 1, · · · , T, (17)

where the observations areξn,t = f̂n,t + 1
2n

I−1
n,tK

(3)
n,t , and the shocks(εt), (ut) are mutually inde-

pendentIIN(0, 1) processes.

The computation of the log-likelihood function of the ARMA(1,1) process (17) does not require

the numerical inversion of a matrix of large dimension. Indeed, the(T, T ) conditional variance-

covariance matrix ofξn,t, t = 1, · · · , T , isΩn = η2(1−γ2)IdT + 1
n
Bn, whereBn is the symmetric

(T, T ) matrix with elements equal toI−1
n,t +γ2I−1

n,t−1 in position(t, t),−γI−1
n,t−1 in positions(t−1, t)

and(t, t − 1), and zeros otherwise. At order1/n, we have:

Ω−1
n =

1

η2(1 − γ2)
IdT − 1

nη4(1 − γ2)2
Bn. (18)

3.3 Approximate Linear Kalman Filter

Let us finally give an equivalent statement of Proposition 5 in terms of an approximate linear

Kalman filter.
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PROPOSITION 6: In a model with Gaussian autoregressive factor and macro-parameterθ only,

a GA ML estimator ofθ can be obtained by applying the standard Kalman filter to the linear

Gaussian state space model with state equation:

Ft = µ + γ(Ft−1 − µ) + η
√

1 − γ2εt, εt ∼ IIN(0, 1), (19)

and measurement equation:

ξn,t = Ft +
1√
n

I
−1/2
n,t ut, ut ∼ IIN(0, 1), (20)

whereξn,t = f̂n,t + 1
2n

I−1
n,tK

(3)
n,t .

By replacingFt in (19) by its expression derived from (20), we recover the recursive equa-

tion (17) in Proposition 5. Equivalently, (19)-(20) is the linear state space representation of the

ARMA(1,1) process of Proposition 5. The granularity adjustment in the measurement equation

(20) concerns both the mean and the variance. Whereas the GA for variance corresponds to the

usual asymptotic variance of̂fn,t, the GA for the mean is not correcting for the bias off̂n,t at order

1/n. The reason is that the GA maximum likelihood estimator differs from the unfeasible maxi-

mum likelihood estimator ofθ by a term of order smaller than1/n. The GA for mean is introduced

to recover the bias at order1/n of the unfeasible ML, which is not equal to zero. The estimator

of macro-parameterθ in Proposition 6 computed with the linear Kalman filter differs numerically

from the estimator in Proposition 5, when the latter is computed by using the approximate inverse

variance-covariance matrix (18).

Let us illustrate the result in Proposition 6 with the two examples introduced in Section 2.

Example 1: Gaussian family with factor in mean (cont.)

Let us consider the linear Gaussian state space modelyi,t ∼ N(ft, 1) where the factorft follows

the Gaussian autoregressive dynamics (16). SinceIn,t = 1 andK
(3)
n,t = 0, the macro-parameter

θ = (µ, γ, η2)′ can be estimated by applying the standard Kalman filter on theapproximate linear

state space model with state equation (19) and measurement equation:

f̂n,t = Ft +
1√
n

ut, ut ∼ IIN(0, 1), (21)

wheref̂n,t = ȳn,t is the cross-sectional average. The granularity adjustment concerns the variance

only.
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Example 2: Bernoulli family with stochastic probability (cont.)

Let us now consider the model with dichotomous observationsyi,t ∼ B(1, pt), where the canon-

ical factorft = log[pt/(1 − pt)] follows the Gaussian autoregressive dynamics (16). By using

In,t = ȳn,t(1 − ȳn,t) andI−1
n,tK

(3)
n,t = 2ȳn,t − 1, the measurement equation of the corresponding

approximate linear state space model becomes:

f̂n,t +
1

n
(ȳn,t − 1/2) = Ft +

1√
n

[ȳn,t(1 − ȳn,t)]
−1/2ut, ut ∼ IIN(0, 1),

where f̂n,t = log[ȳn,t/(1 − ȳn,t)]. The granularity adjustment concerns both the mean and the

variance. In particular, the variance granularity adjustment can be large when̄yn,t is close to either

0, or 1.

4 Granularity Adjustment for Value-at-Risk (VaR)

The filtering formulas are also useful for evaluating the additional capital reserves to introduce in

the current regulation to account for the unobservability of the systematic component of the risk.

These reserves are usually computed from a quantile of the conditional distribution of the future

portfolio value, called conditional Value-at-Risk (VaR).We define the standardized quantile for

an homogenous portfolio, derive the approximation at order1/n of the conditional distribution of

the future portfolio value, wheren is the portfolio size, and deduce the1/n approximation of the

required level of reserves.

4.1 The Problem

The need for tractable approximation formulas in factor models with large cross-sectional size

appeared first in Basel 2 regulation for credit risk [BCBS (2001)]. Let us consider a large homoge-

nous portfolio ofn financial risks. The total portfolio risk att + 1 can be written as:

Wn,t+1 =

n
∑

i=1

yi,t+1, (22)

where the individual risksyi,t+1, i = 1, · · · , n, are assumed to satisfy the assumptions of the non-

linear state space model in Section 1.1, with underlying factor Ft+1. For expository purpose, we

include neither exogenous variables, nor lagged observations in the measurement equations. When
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the risk variables correspond to asset values, the VaR at risk levelα, with α ∈ (0, 1) and close to

0, is the opposite of the quantile of levelα of the predictive distribution ofWn,t+1, called Profit

and Loss (P&L) distribution. When the risk variables correspond to credit losses, the CreditVaR

is computed for a confidence levelα ∈ (0, 1) close to1, and corresponds to theα-quantile of the

Loss and Profit (L&P) predictive distribution ofWn,t+1. In the sequel we focus on the second inter-

pretation. It is usual to “standardize” the VaR by considering the VaR per individual asset, which

corresponds to the (opposite of the) quantile at levelα of Wn,t+1/n. This quantityV aRn,t(α), say,

depends on the portfolio sizen and on the informationYt available at timet. The VaR can be

easily computed from the associated cumulative distribution function (cdf) ofWn,t+1/n. Let us

first focus on this function.

4.2 Approximation of the Predictive cdf of the StandardizedPortfolio Risk

We consider the future portfolio value per individual asset. (i) By applying the Central Limit

Theorem conditional on the future factor valueFt+1, we can write for largen:

Wn,t+1/n ≃ m(Ft+1) +
σ(Ft+1)√

n
Z, (23)

where:

m(ft+1) = E[yi,t+1|Ft+1 = ft+1], σ2(ft+1) = V [yi,t+1|Ft+1 = ft+1], (24)

andZ is a standard Gaussian variable independent ofFt+1, Yt. Whenn tends to infinity, the aver-

age of the individual risks att + 1 tends tom(Ft+1), which is a stochastic variable. Indeed, due to

systematic risk factorFt+1, the risk cannot be entirely diversified by increasing the portfolio size.

The termsm(Ft+1) andσ(Ft+1) (resp.Z) in the RHS of approximation (23) show the effect of cur-

rent systematic (resp. unsystematic) risks. By a standard cumulant expansion conditional onFt+1,

it is seen that the RHS of (23) provides an approximation for the conditional Laplace transform

(moment generating function) ofWn,t+1/n givenFt+1, Yt at ordero(1/n). Then, by the Fourier

Transform Inversion formula [see Duffie, Pan, Singleton (2000)], we also get an approximation at

ordero(1/n) for the conditional cdf ofWn,t+1/n under mild regularity conditions. Therefore, we

use the approximation in the RHS of (23) for our purposes.

(ii) Let us now consider the cdf of the standardized future portfolio value Wn,t+1/n given
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Ft, Yt, Z. From expansion (23) we have:

P [Wn,t+1/n ≤ w|Ft, Yt, Z] =

∫

1I
m(ft+1)+

σ(ft+1)
√

n
Z≤w

g(ft+1|Ft)dft+1 + o(1/n)

= a(w, Ft, Z/
√

n) + o(1/n), say. (25)

Under mild regularity conditions, functiona(w, f, ε) is continuously differentiable w.r.t. the argu-

mentsf andε at ε = 0 (see below). Functiona summarizes the joint effect of lagged systematic

risk and current unsystematic risk on the future portfolio risk for largen.

(iii) We deduce that the predictive cdfFn,t(w) := P [Wn,t+1/n ≤ w|Yt] of the standardized

portfolio value givenYt is:

Fn,t(w) = E
[

a(w, Ft, Z/
√

n)|Yt

]

+ o(1/n).

At this step, we can use the approximate filtering formula in Proposition 1. We get:

Fn,t(w) = E

[

a

(

w, f̂n,t +
1

n
µn,t +

1√
n

I
−1/2
n,t Z∗,

1√
n

Z

)

|Yt

]

+ o(1/n), (26)

where variableZ∗ is standard Gaussian conditional onYt, while µn,t = I−1
n,t

∂ log g

∂ft
(f̂n,t|f̂n,t−1) +

1

2
I−2
n,tK

(3)
n,t is the GA mean for the filtering distribution andI−1

n,t/n the GA variance. Since the

Laplace approximation is purely numerical and does not account for the stochastic feature of the

observations, variablesZ∗ andZ are independent conditional onYt
9.

Then, we can expand equation (26) at order1/n. SinceE[Z] = E[Z∗] =0, E[ZZ∗] = 0,

E[Z2] = E[(Z∗)2] = 1, we get:

Fn,t(w) = a(w, f̂n,t, 0) +
1

n

∂a

∂f
(w, f̂n,t, 0)µn,t

+
1

2n

[

I−1
n,t

∂2a

∂f 2
(w, f̂n,t, 0) +

∂2a

∂ε2
(w, f̂n,t, 0)

]

+ o(1/n). (27)

In the above expression we distinguish three components:

The leading term:

a(w, f̂n,t, 0) = P
[

m(Ft+1) ≤ w|Ft = f̂n,t

]

=: F∞,t(w), (28)

is the cdf ofWn,t+1/n evaluated atw and computed for a portfolio of infinite size, with

perfect knowledge of the current factor value, identified with f̂n,t. Indeed, whenn = ∞
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the portfolio value per individual assetWn,t+1/n equals the individual conditional expected

valuem(Ft+1). Thus, the predictive cdfF∞,t corresponds to the conditional distribution of

m(Ft+1) givenFt = f̂n,t [see e.g. Vasicek (1987, 1991), Schoenbucher (2002) in a static

framework, and Lamb, Perraudin, Van Landschoot (2008) in a dynamic framework]. This is

the Asymptotic Single Risk Factor (ASRF) model in Basel 2 terminology;

a first GA equal to
1

2n

∂2a

∂ε2
(w, f̂n,t, 0) is introduced to account for the finite size of the portfolio,

but still assumes a perfect knowledge of the current factor value;

the second GA
1

n

∂a

∂f
(w, f̂n,t, 0)µn,t +

1

2n
I−1
n,t

∂2a

∂f 2
(w, f̂n,t, 0) takes into account the difference

between the information sets(Ft, Yt) andYt, that is, the unobservability of the common risk

factor.

Due to the independence betweenZ andZ∗, there is no need for cross GA.

4.3 Granularity Adjustment of the Standardized VaR

Finally, the GA of the VaR is directly deduced from (27) by applying the Bahadur’s expansion.

Let us denote byQn,t (resp. Q∞,t) the quantile function corresponding toFn,t (resp. F∞,t), and

assume that the densityf∞,t(w) = dF∞,t(w)/dw exists and is strictly positive. The quantile

Q∞,t and the pdff∞,t are called Cross-Sectional Asymptotic (CSA) quantile and pdf, respectively.

The Bahadur’s expansion gives the difference between the approximate and theoretical quantile

functions in terms of the difference between the approximate and theoretical cdf’s. It has been first

derived in Bahadur (1966) for studying the asymptotic properties of the empirical quantile. In our

setting it is applied to quantilesQn,t andQ∞,t. We have:

Qn,t(α) − Q∞,t(α) = −Fn,t [Q∞,t(α)] − α

f∞,t [Q∞,t(α)]
+ o(1/n). (29)

The GA for the quantile and for the standardized VaR are obtained by replacingFn,t andF∞,t by

their expressions using (27) and (28). In particular, the GAfor the VaR is still at order1/n and

accounts for both the portfolio size and information effects discussed for the cdf.

Under suitable regularity conditions, the second-order partial derivative of functiona(w, f, ε)

w.r.t. toε at0 can be expressed in terms of the conditional distributions defining the measurement
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and state equations. For instance, let us assume that functionm is one-to-one. Then:

∂2a

∂ε2
(w, f̂n,t, 0) =

d

dw

{

f∞,t(w)E
[

σ2(Ft+1)|m(Ft+1) = w, Ft = f̂n,t

]}

=
d

dw

{

f∞,t(w)σ2[m−1(w)]
}

. (30)

The expression of the second-order derivative of functiona appeared first in Martin, Wilde (2002)

in a static framework, building on the local analysis of VaR in Gouriéroux, Laurent, Scaillet (2000)

[see also Tasche (2000)]. Equation (30) in the dynamic framework is obtained from the result in

Martin, Wilde (2002) by conditioning onFt = f̂n,t. By combining equations (27), (29) and (30),

we get the following Proposition:

PROPOSITION 7: If functionm(.) is one-to-one, the VaR at risk levelα is such that:

V aRn,t(α) = Q∞,t(α) +
1

n
[GArisk,t(α) + GAfilt,t(α)] + o(1/n),

where the GA for the finite portfolio size is:

GArisk,t(α) = −1

2

{

d log f∞,t(y)

dy
σ2[m−1(y)] +

dσ2[m−1(y)]

dy

}

y=Q∞,t(α)

,

and the GA for filtering the current factor value is:

GAfilt,t(α) = − 1

f∞,t [Q∞,t(α)]

{

µn,t
∂a

∂f
[Q∞,t(α), f̂n,t, 0] +

1

2
I−1
n,t

∂2a

∂f 2
[Q∞,t(α), f̂n,t, 0]

}

.

For a static factor model withm(f) = f , the GA for filtering the current factor value is equal

to zero, and the GA for finite portfolio size reduces to:

GArisk(α) = −1

2
σ2[Q∞(α)]

d log (f∞ · σ2)

dy
[Q∞(α)] ,

whereQ∞ andf∞ are the quantile and the pdf ofFt, respectively. This formula corresponds to the

GA derived in Wilde (2001), Martin, Wilde (2002), Gordy (2003, 2004). Proposition 7 shows how

the GA formula is extended and decomposed in models with a dynamic systematic factor.
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4.4 Examples

Let us now derive the GA in two examples with exponential micro-density (see Section 2.2).

i) Linear Gaussian state space model

Let the variablesyi,t follow the linear Gaussian state space model with measurement equations:

yi,t = Ft + σui,t, i = 1, ..., n, (31)

and state equation:

Ft = µ + γ(Ft−1 − µ) + η
√

1 − γ2εt, (32)

where(ui,t), i = 1, ..., n, and(εt) are independentIIN(0, 1) processes, and|γ| < 1. The factor

Ft follows a stationary Gaussian AR(1) process, with a stationary distribution given byN(µ, η2)

and an autoregressive parameter equal toγ. The conditional distribution ofyi,t given Ft = ft

is GaussianN(ft, σ
2), and hence the functionm(.) is given bym(f) = f , while the func-

tion σ2(f) = σ2 is constant. By using that the distribution ofFt+1 conditional onFt = ft is

N (µ + γ(ft − µ), η2(1 − γ2)), we deducea(w, f, 0) = Φ

(

w − µ − γ(f − µ)

η
√

1 − γ2

)

. By inversion

w.r.t. w, we get the CSA VaR:

Q∞,t(α) = µ + γ(f̂n,t − µ) + η
√

1 − γ2Φ−1(α),

where the factor approximation̂fn,t = ȳn,t is the cross-sectional average at datet. Let us now

derive the GA’s. From Proposition 7 the GA for the finite portfolio size is:

GArisk,t(α) =
1

2

σ2

η
√

1 − γ2
Φ−1(α),

and the GA for the filtering of the factor value is given by:

GAfilt,t(α) =
γσ2

η
√

1 − γ2

[

1

2
γΦ−1(α) − ε̂n,t

]

,

whereε̂n,t =
f̂n,t − µ − γ(f̂n,t−1 − µ)

η
√

1 − γ2
denotes the standardized residual of the state equation.

ii) Nonlinear state space model for qualitative variables

Let us consider a portfolio of (zero-coupon) corporate bonds with maturity att + 1 and unitary

nominal value, and denote byyi,t+1 the issuer default indicators. Under the assumption of zero
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recovery rate,Wn,t+1/n is the portfolio loss per individual loan att + 1. Let us assume that the

dichotomous variablesyi,t+1 are such thatyi,t+1 = 1, if y∗
i,t+1 < 0, andyi,t+1 = 0, otherwise, where

the latent variablesy∗
i,t+1 correspond to the log of the asset-to-liability ratios of the issuers at date

t+1. The variablesy∗
i,t are assumed to follow the linear Gaussian state space model (31)-(32). This

defines a nonlinear state space model for dichotomous variablesyi,t. The measurement equation is

such that the default indicatoryi,t is Bernoulli distributedB(1, pt) conditional on the factor value

Ft = ft, with conditional default probability:

pt = P [yi,t = 1|Ft = ft] = P [Ft + σui,t < 0|Ft = ft] = Φ (−ft/σ) . (33)

We get a probit model with factor. The cross-sectional factor approximation at datet is given by

f̂n,t = −σΦ−1(ȳn,t), that is a nonlinear transformation of the cross-sectionaldefault frequencȳyn,t,

while functionsm(.) andσ(.) are given by:

m(ft) = Φ (−ft/σ) , σ2(ft) = Φ (−ft/σ) [1 − Φ (−ft/σ)].

Moreover, since the conditional probability of defaultpt in (33) involves the ratioft/σ only, the

distribution of the observable variables depends on three structural parameters, that areµ/σ, η/σ

andγ.

Let us first compute the functiona(w, f, 0). Since functionm(.) is monotonically decreasing,

we have:

a(w, ft, 0) = P [m(Ft+1) ≤ w|Ft = ft] = P
[

Ft+1 ≥ −σΦ−1(w)|Ft = ft

]

= Φ

(

σΦ−1(w) + µ + γ(ft − µ)

η
√

1 − γ2

)

.

By inverting this function w.r.t.w and evaluating it atft = f̂n,t, we get the CSA VaR:

Q∞,t(α) = Φ

(

−µ + γ(f̂n,t − µ) + η
√

1 − γ2Φ−1(1 − α)

σ

)

. (34)

By the equivariance property of the VaR, the quantileQ∞,t(α) in (34) corresponds to the transfor-

mation by functionm(.) of the(1−α)-quantile of the Gaussian distribution ofFt+1 givenFt = f̂n,t.

Let us now derive the GA of the quantile. From Proposition 7, the GA for finite portfolio size is:

GArisk,t(α) =
1

2

{

Q∞,t(α)[1 − Q∞,t(α)]

φ (Φ−1[Q∞,t(α)])

(

σ

η
√

1 − γ2
Φ−1(α) − Φ−1[Q∞,t(α)]

)

+ 2Q∞,t(α) − 1

}

,
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and the GA for filtering the current factor value is:

GAfilt,t(α) = γφ(Φ−1[Q∞,t(α)])
ȳn,t(1 − ȳn,t)

(φ[Φ−1(ȳn,t)])2

{

σ

η
√

1 − γ2

(

ε̂n,t −
1

2
γΦ−1(1 − α)

)

+
1 − 2ȳn,t

ȳn,t (1 − ȳn,t)
φ[Φ−1(ȳn,t)] −

3

2
Φ−1(ȳn,t)

}

.

5 The Value of the Firm Model with Recovery

In this Section we consider a Value of the Firm model [Merton (1974), Vasicek (1991)] with

a single dynamic risk factor and a non-zero recovery rate. Wefirst introduce the model, then

derive the cross-sectional approximation of the factor value and the filtering distribution, and finally

compute the granularity adjustment of the portfolio VaR.

5.1 The model

Let Ai,t and Li,t denote the asset of firmi at datet, and the firm liability maturing at datet,

respectively. The percentage loss of the debt holder at datet is:

yi,t = 1lAi,t<Li,t

(

1 − Ai,t

Li,t

)

=

(

1 − Ai,t

Li,t

)+

. (35)

The loss variableyi,t is the product of the default indicator1lAi,t<Li,t
, that is equal to1, when

the asset value is below the liability, and0, otherwise, and of the percentage Loss Given Default

(LGD), that is1 − Ai,t

Li,t
. 10 At a given datet and for given liabilityLi,t, the second equality in (35)

corresponds to the interpretation of the lossLi,tyi,t incurred by the debt holder as the payoff of a

put option written on the firm asset with strike equal to the liability [Merton (1974)].

Let us assume that the log asset/liability ratios of the firmsfollow a linear single risk factor

(SRF) model:

log

(

Ai,t

Li,t

)

= Ft + σui,t, (36)

whereFt is a systematic risk factor common across firms,ui,t ∼ IIN(0, 1) are unsystematic

(idiosyncratic) risks independent over time and across firms, and independent of factor(Ft), and

σ is the unsystematic (idiosyncratic) volatility. Factor(Ft) follows a stationary Gaussian AR(1)

process:

Ft = µ + γ(Ft−1 − µ) + η
√

1 − γ2εt, (37)
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where the innovations areεt ∼ IIN(0, 1) and the autoregressive coefficientγ is such that|γ| < 1.

Parametersµ andη are the mean and volatility of the stationary distribution of Ft, respectively.

The specification (36)-(37) extends the SRF model introduced by Vasicek (1991) and considered

in Basel 2 regulation [BCBS (2001)] to a dynamic framework. The unobservable factorFt has a

linear effect on the latent asset/liability ratios by meansof the drift only. However, our interest is

in the individual risksyi,t. Conditional on factorFt, both the mean and the variance ofyi,t depend

on the factor. Thus, we get a model for the observable variables with both stochastic meanm(Ft)

and stochastic volatilityσ(Ft) (see Section 5.3).

The dynamic SRF model involves four structural parameters.As usual, it is interesting to in-

troduce an alternative parameterization, which is easier for interpretation and calibration purposes.

The unconditional Probability of DefaultPD and asset correlationρ are given by:11

PD = P [log (Ai,t/Li,t) < 0] = Φ

(

− µ
√

η2 + σ2

)

, (38)

and:

ρ = corr [log (Ai,t/Li,t) , log (Aj,t/Lj,t)] =
η2

η2 + σ2
, (39)

for i 6= j, respectively. Moreover, the unconditional Expected (percentage) Loss Given Default

(ELGD) is defined by:

ELGD = E

[

1 − Ai,t

Li,t

∣

∣

∣

∣

Ai,t

Li,t
< 1

]

. (40)

SinceELGD · PD = E
[

(1 − Ai,t/Li,t)
+] andlog(Ai,t/Li,t) ∼ N(µ, η2 + σ2), we deduce that

ELGD · PD is equal to the price of a put option in the Black-Scholes model with volatility

parameter
√

η2 + σ2 and risk-free rateµ +
1

2
(η2 + σ2), divided by the price of the zero-coupon

bond at the same maturity; we get [see Geske (1977) and Appendix 6]:

ELGD = 1 − exp

[

µ +
1

2
(η2 + σ2)

]

Φ

(

− µ
√

η2 + σ2
−
√

η2 + σ2

)

Φ

(

− µ
√

η2 + σ2

) (41)

Equations (38), (39) and (41) define a one-to-one mapping between the structural parameters

(µ, η, σ) and the new parameters(PD, ρ, ELGD). Indeed, we have (see Appendix 6):

µ = −τΦ−1(PD), η = τ
√

ρ, σ = τ
√

1 − ρ, (42)
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whereτ ≥ 0 is the unique solution of the equation:

PD − exp

[

1

2
τ 2 − Φ−1(PD)τ

]

Φ
[

Φ−1(PD) − τ
]

= ELGD · PD. (43)

The LHS of equation (43) is the Black-Scholes put option price as a function of volatilityτ =
√

η2 + σ2 and for given risk-neutral probabilityPD, that the put is in the money at maturity.

Thus, the solutionτ of equation (43) is similar to an implied volatility. Note that bothτ andµ

depend onPD andELGD only. To summarize, the dynamic SRF model can be parameterized in

terms of unconditional probability of defaultPD, asset correlationρ, expected loss given default

ELGD, and the autoregressive coefficient of the factorγ.

The one-to-one relationship between structural parameters (µ, η, σ) and reduced form param-

eters(PD, ρ, ELGD) is especially important for calibration. Indeed, historical estimates ofPD,

ρ andELGD are easily obtained in practice and, by inverting the relationship, we deduce consis-

tent estimates of the structural parameters. As an illustration, we give in Table 2 the values of the

structural parameters corresponding to some values of the reduced form parameters suggested by

the Basel Committee [see BCBS (2001)], i.e. Basel implied structural parameters. Specifically,

the values0.45 and0.75 for ELGD correspond to senior classes on corporate, sovereigns and

banks not secured, and subordinated classes on corporate, sovereigns and banks, respectively. The

values0.12 and0.24 for ρ are the minimal and maximal asset correlations considered in Basel 2,

respectively, for debt without guarantees, whileρ = 0.50 is the value of asset correlation for guar-

anteed debt. The values1.5% and5% for PD are representative for yearly default probabilities of

obligors in rating classes BB and B in Fitch, respectively. Some of the parameter values in Table 2

are used in the illustrations of the next subsections.

5.2 Cross-Sectional Factor Approximation and Filtering Distribution

Let us first write the dynamic SRF model as a nonlinear state space model. From equations (35)

and (36) the loss variable is such that:

yi,t = [1 − exp(Ft + σui,t)]
+ .

Thus, the measurement equations correspond to a Gaussian Tobit regression model with endoge-

nous variablelog(1 − yi,t), meanft and varianceσ2, and are characterized by the conditional
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density [Tobin (1958)]:

n
∏

i=1

h(yi,t|ft) =
∏

i:yi,t>0

[

1

σ
φ

(

log(1 − yi,t) − ft

σ

)

1

1 − yi,t

]

∏

i:yi,t=0

Φ(ft/σ), (44)

while the state equation is the Gaussian AR(1) model (37).

Let us now compute the cross-sectional factor approximation and derive the approximate fil-

tering distribution of the unobservable factor value. The cross-sectional maximum likelihood ap-

proximation of the factor value at datet is given by:

f̂n,t = arg max
ft







− 1

2σ2

∑

i:yi,t>0

[log(1 − yi,t) − ft]
2 + (n − nt) log Φ(ft/σ)







, (45)

wherent =
n
∑

i=1

1lyi,t>0 denotes the number of defaults at datet. It corresponds to the ML factor

approximation in a Tobit model with factor. The factor approximation f̂n,t is the solution of the

nonlinear first-order condition:

1

σ

∑

i:yi,t>0

[log(1 − yi,t)] − nt(f̂n,t/σ) + (n − nt)λ(f̂n,t/σ) = 0,

where:

λ(x) =
φ(x)

Φ(x)
, (46)

denotes the inverse Mill’s ratio. From Proposition 1 the approximate filtering distribution ofFt is

Gaussian with density (see Appendix 6):

N

(

f̂n,t +
1

n

[

−I−1
n,t

f̂n,t − µ − γ(f̂n,t−1 − µ)

η2(1 − γ2)
+

1

2
I−2
n,tK

(3)
n,t

]

,
1

n
I−1
n,t

)

, (47)

where the quantitiesIn,t = −K
(2)
n,t andK

(3)
n,t are given by:

In,t =
1

σ2

{nt

n
+
(

1 − nt

n

)

λ
(

f̂n,t/σ
) [

f̂n,t/σ + λ
(

f̂n,t/σ
)]}

, (48)

and:

K
(3)
n,t = − 1

σ3

(

1 − nt

n

)

λ
(

f̂n,t/σ
){

1 −
[

f̂n,t/σ + λ
(

f̂n,t/σ
)] [

f̂n,t/σ + 2λ
(

f̂n,t/σ
)]}

, (49)

respectively. The quantitiesIn,t andK
(3)
n,t depend on the information at datet through the factor

approximationf̂n,t and the default frequencynt/n only. Moreover, the quantitieŝfn,t, In,t and
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K
(3)
n,t involve parameterσ only. The other structural parametersµ, η andγ impact the filtering

distribution through the standardized residualε̂n,t =
f̂n,t − µ − γ(f̂n,t−1 − µ)

η
√

1 − γ2
and the conditional

standard deviationη
√

1 − γ2. 12

In Figure 1 we display the conditional distribution ofFt givenFt−1 = µ and the approximate

filtering distribution ofFt for different values of the cross-sectional dimensionn, that aren =

50, 100 and1000. The micro-information is such that the cross-sectional factor approximations

are f̂n,t = f̂n,t−1 = µ and the default frequency isnt/n = PD. The structural parameters are

such thatELGD = 0.45, PD = 5%, ρ = 0.12 and γ = 0.5 (see Table 2). Whenn gets

larger, the filtering distribution features a smaller variance and peaks at the cross-sectional factor

approximationf̂n,t, as an effect of the increasing micro-information. The meanof the approximate

filtering distributions differs fromf̂n,t because of the bias adjustment.

In Figure 2 we investigate the effect of the micro-information on the mean and the standard

deviation of the filtering distribution ofFt for n = 100. Whennt/n = PD and ε̂n,t = 0, the

mean of the filtering distributions is close tôfn,t and the standard deviation is increasing w.r.t.f̂n,t

(upper left Panel). When̂fn,t = µ andε̂n,t = 0, the filtering distribution of the factorFt is not very

sensitive to the default frequencynt/n (upper right Panel). Finally, when̂fn,t = µ andnt/n = PD,

the mean of the filtering distribution is decreasing w.r.t. the standardized residualε̂n,t (lower left

Panel). For given cross-sectional factor approximationf̂n,t, the mean of the filtering distribution

is larger (resp., smaller) than̂fn,t whenε̂n,t < c (resp.,ε̂n,t > c), wherec =
1

2
η
√

1 − γ2I−1
n,t K

(3)
n,t

is close to zero. Since the coefficient off̂n,t in the mean of the filtering distribution ofFt is

1 − 1

n

I−1
n,t

η2(1 − γ2)
< 1, a cross-sectional shock in̂fn,t at datet is transmitted less than fully to the

mean of the filtering distribution ofFt. This effect is more pronounced when the autoregressive

coefficient is large and close to1 (lower right Panel).

5.3 The Granularity Adjustment for Portfolio VaR

Let us first derive the functionsm(ft+1) andσ2(ft+1) [see equations (24) in Section 4.2]. Condi-

tional on the future value of the factorFt+1, the loss variable:

yi,t+1 = [1 − exp(Ft+1 + σui,t+1)]
+,
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corresponds to the payoff of a European put option with strike 1, time-to-maturity1 and current

value of the underlying asset equal toexp(Ft+1), in the Black-Scholes model with volatility pa-

rameterσ and risk-free rateσ2/2. Then, we have (see Lemma 1 in Appendix 6):

m(ft+1) = E[1lui,t+1<−Ft+1/σ(1 − exp(Ft+1 + σui,t+1))|Ft+1 = ft+1]

= Φ(−ft+1/σ) − exp

(

ft+1 +
σ2

2

)

Φ (−ft+1/σ − σ) , (50)

which corresponds to the Black-Scholes price of the put option divided by the zero-coupon bond

price of the same maturity. The functionm is monotone decreasing, since the variableyi,t+1

is decreasing w.r.t.Ft+1. To compute the derivative of functionm, let us writem(ft+1) =
∫ −ft+1/σ

−∞ [1 − exp(ft+1 + σu)]φ(u)du. Then, the derivative of functionm is given by:

dm(ft+1)

dft+1
= − exp(ft+1)

∫ −ft+1/σ

−∞
exp(σu)φ(u)du = − exp

(

ft+1 +
σ2

2

)

Φ (−ft+1/σ − σ) ≤ 0,

(51)

which is the delta of the put multiplied byexp(ft+1). The functionσ2(ft+1) is given by (see

Appendix 6):

σ2(ft+1) = m(ft+1)[1 − m(ft+1)] − exp

(

ft+1 +
σ2

2

)

Φ (−ft+1/σ − σ)

+ exp(2ft+1 + 2σ2)Φ (−ft+1/σ − 2σ) . (52)

This is the variance of the payoff of a short-term put option with strike1 and underlying asset price

exp(Ft+1) in the Black-Scholes model. Finally, the derivative ofσ2(ft+1) w.r.t. ft+1 is given by

(see Appendix 6):

dσ2(ft+1)

dft+1
= −2 exp

(

ft+1 +
σ2

2

)

Φ (−ft+1/σ − σ) [1 − Φ(−ft+1/σ)]

+2 exp
(

2ft+1 + 2σ2
)

Φ (−ft+1/σ − 2σ) − 2 exp
(

2ft+1 + σ2
)

[Φ (−ft+1/σ − σ)]2.

(53)

Functionsm(ft+1) andσ2(ft+1) as well as their first-order derivatives involve micro-parameter

σ. These functions are displayed in Figure 3 for a value ofσ corresponding toELGD = 0.45,

PD = 5% andρ = 0.12 (see Table 2).

Let us now compute the functiona(w, f̂n,t, 0) [see equation (28) in Section 4.2]. We have:

a(w, f̂n,t, 0) = P [m(Ft+1) ≤ w|Ft = f̂n,t] = P [Ft+1 ≥ m−1(w)|Ft = f̂n,t] (54)

= Φ

(

−m−1(w) − µ − γ(f̂n,t − µ)

η
√

1 − γ2

)

, (55)
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wherem−1 denotes the inverse of functionm and we used thatm is monotone decreasing. The

conditional pdf ofm(Ft+1) givenFt = f̂n,t is obtained by differentiating functiona w.r.t. w and is

given by:

f∞,t(w) =
∂a(w, f̂n,t, 0)

∂w
= − 1

η
√

1 − γ2
φ

(

−m−1(w) − µ − γ(f̂n,t − µ)

η
√

1 − γ2

)

dm−1(w)

dw

=
1

η
√

1 − γ2
φ

(

m−1(w) − µ − γ(f̂n,t − µ)

η
√

1 − γ2

) exp

(

−m−1(w) − σ2

2

)

Φ

(

−m−1(w)

σ
− σ

) , (56)

where we used (51).

The next Proposition 8 gives the CSA VaR and the GA in the Valueof the Firm model with

dynamic factor and non-zero recovery rate (see Appendix 6 for the proof).

PROPOSITION 8: (i) The CSA VaR at confidence levelα is given by:

Q∞,t(α) = m
[

Q∗
∞,t(1 − α)

]

, (57)

where:

Q∗
∞,t(1 − α) = µ + γ(f̂n,t − µ) + η

√

1 − γ2Φ−1(1 − α), (58)

functionm is defined in (50), and̂fn,t is the cross-sectional factor approximation in (45).

(ii) The granularity adjustment is
1

n
[GArisk,t(α) + GAfilter,t(α)], where the GA for risk is:

GArisk,t(α) = −1

2

1

dm

dft+1

[Q∗
∞,t(1 − α)]

{(

1

η
√

1 − γ2
Φ−1(α) +

1

σ
λ

[

−
Q∗

∞,t(1 − α)

σ
− σ

]

− 1

)

·σ2[Q∗
∞,t(1 − α)] +

dσ2

dft+1
[Q∗

∞,t(1 − α)]

}

, (59)

the GA for filtering is:

GAfilt,t(α) = −γ
dm

dft+1
[Q∗

∞,t(1 − α)]I−1
n,t

{

1

η
√

1 − γ2

(

ε̂n,t −
1

2
γΦ−1(1 − α)

)

− 1

2
I−1
n,tK

(3)
n,t

}

,

(60)

and where functionsλ[.], dm[.]/dft+1, σ2[.] and dσ2[.]/dft+1 are given in (46), (51), (52) and

(53), respectively, the summary statisticsIn,t and K
(3)
n,t are given in (48) and (49), and̂εn,t =

f̂n,t − µ − γ(f̂n,t−1 − µ)

η
√

1 − γ2
.
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By the equivariance property of the quantile function undermonotone decreasing transfor-

mations, theα-quantileQ∞,t(α) is the transformation by functionm of the (1 − α)-quantile

Q∗
∞,t(1 − α) of the Gaussian distribution ofFt+1 given Ft = f̂n,t. The CSA VaR depends on

the unconditional meanµ and volatilityη of the systematic factor, on its autoregressive coefficient

γ, as well as on the factor approximation̂fn,t, through the Gaussian quantileQ∗
∞,t(1 − α). It

depends on the idiosyncratic volatility parameterσ through transformationm. The GA for risk

involves parametersµ, η, σ andγ and depends on the information through the Gaussian quantile

Q∗
∞,t(1 − α) only. Similarly, the GA for filtering involves the four structural parameters and de-

pends on the information throughQ∗
∞,t(1 − α), the standardized residualε̂n,t and quantitiesIn,t

andK
(3)
n,t .

In Figure 4 we display the CSA VaR, the risk and filtering components of the GA, as well as

the GA VaR forn = 100 andn = 1000, as functions of the cross-sectional factor approximation

f̂n,t. The default frequency at datet is nt/n = PD and the lagged value of the cross-sectional

factor approximation iŝfn,t−1 = µ. The parameters are such thatELGD = 0.45, PD = 5%,

ρ = 0.12 andγ = 0.5 (see Table 2). The confidence level isα = 0.995. The CSA VaR is

decreasing w.r.t.f̂n,t, since larger factor values imply larger asset/liability ratios. The patterns

of the GA components for risk and filtering are very different. The GA for risk admits positive

values and is decreasing w.r.t.f̂n,t over the displayed range of factor values[µ− 3η, µ+3η], while

the GA for filtering admits both positive and negative valuesand is increasing w.r.t.̂fn,t. Indeed,

whenf̂n,t is large, the standardized residualε̂n,t is also large and positive, and thus the mean of the

approximate filtering distribution is smaller than̂fn,t (see Figure 2). This granularity adjustment

in the filtering distribution implies a less optimistic factor value at datet compared tof̂n,t, which

yields an upward adjustment for the portfolio VaR. For a portfolio of n = 100 contracts, the GA is

large and relevant for most values of the cross-sectional factor approximation̂fn,t. Forn = 1000,

the GA is about5%-10% of the CSA VaR for moderate to large values off̂n,t, and is mostly due to

the filtering of the unobservable factor value.

In Figure 5 we display the CSA VaR, the GA VaR and the risk and filtering GA components for

PD = 1.5%. Compared to Figure 4, the CSA VaR is smaller for the corresponding factor values,

the GA for risk is slightly smaller and the GA for filtering is larger. This results in granularity

adjustments that are very large for portfolio sizen = 100, and about20% of the CSA VaR for
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moderate factor values whenn = 1000.

The last Figures 6 and 7 illustrate the dynamic features of CSA and GA VaR. The third Panel in

Figure 6 provides a simulated path of the factor and its cross-sectional approximation. We observe

that f̂n,t has some tendency to smooth the underlying factor values. The two upper panels are

describing the evolution of the losses with zero and non-zero recovery rates. When the non-zero

recovery rate is taken into account, the loss is smaller and smoother. The corresponding evolution

of the VaR measures and their components are displayed in Figure 7. The GA VaR is larger and

smoother than the CSA VaR. Moreover, whereas the risk component of the granularity adjustment

is always positive and rather stable in time, its filtering component varies quite a lot in time and

can eventually take negative values. Table 3 displays the (cross-) autocorrelograms of the CSA and

GA VaR series computed by Monte-Carlo simulation. The GA VaRseries is more persistent.

Finally, it is necessary to check if the GA VaR is preferable to the CSA VaR in terms of the

frequency and dynamic pattern of violations. In Table 4 we report the values of different summary

statistics associated with predictability test procedures [Giacomini, White (2006)]. More precisely,

the conditional VaR satisfies the conditional moment restriction:

P [Wn,t+1/n ≤ V aRn,t(α)|Yt] = α ⇔ E
[

1lWn,t+1/n≥V aRn,t(α) − (1 − α)|Yt

]

= 0.

Thus, a battery of specification tests can be introduced by considering the unconditional moment

restrictions:

E
[

ξt

(

1lWn,t+1/n≥V aRn,t(α) − (1 − α)
)]

= 0,

whereξt is a selected instrument function of the informationYt. We provide in Table 4 the values

of different such statistics, computed by Monte-Carlo. When the instrument is constantξt = 1

(second row of Table 4), we get the standard criterion for ex-post validation in Basel 2, that corre-

sponds to the frequency of violations in excess of the nominal risk level1− α. Other instrumental

variables are selected in rows 3-8 of Table 4, and the resultsare displayed in terms of correlation

between1lWn,t+1/n≥V aRn,t(α) − (1−α) and these instruments. It is immediately seen that the values

of the summary statistics are significantly smaller in absolute value for the GA VaR.
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6 Concluding Remarks

Recently there have been several developments in the literature on nonlinear factor models with

individual observations and macro-factors. These developments are especially relevant in Finance

and Insurance when large homogenous portfolios of individual contracts, such as loans, mortgages,

revolving credits, Credit Default Swaps, life insurance contracts, are involved. This paper shows

how the difficulties encountered with nonlinear Kalman recursions can be solved by an appropriate

use of the micro-information. The granularity principle followed in this paper consists in expand-

ing the quantity of interest with respect to1/n, wheren is the cross-sectional dimension. The

term of order0 in 1/n corresponds to the Asymptotic Single Risk Factor model, that is, to the

virtual case of an infinite cross-sectional size; the next term of order1/n provides the granular-

ity adjustment. We have developped this principle for the filtering and predictive distributions in

nonlinear state space models with a large number of measurement equations. Then, we have seen

how the results can be applied for the approximation of the maximum likelihood estimator of a

macro-parameter in a factor model, and of the conditional VaR of a large homogenous portfolio.

33



Figure Legends

Figure 1: The Figure displays the conditional distribution ofFt givenFt−1 = µ = 3.05 (solid line)

and the approximate filtering distribution ofFt for different values of cross-sectional dimensionn,

that aren = 50 (dashed line),n = 100 (dashed-dotted line) andn = 1000 (dotted line). The micro-

information is such that̂fn,t = f̂n,t−1 = µ andnt/n = PD, for all n. The structural parameters

are such thatELGD = 0.45, PD = 5%, ρ = 0.12 andγ = 0.5 (see Table 2).

Figure 2: The Figure displays the mean of the approximate filtering distribution ofFt (solid lines),

and the2.5% and97.5% quantiles of the approximate filtering distribution ofFt (dotted lines),

as a function of different micro-information sets forn = 100. In the upper left Panel, we set

nt/n = PD andε̂n,t = 0 and letf̂n,t vary. The structural parameters are such thatELGD = 0.45,

PD = 5%, ρ = 0.12 andγ = 0.5 (see Table 2). In the upper right Panel, we setf̂n,t = µ = 3.05

andε̂n,t = 0 and letnt/n vary. In the lower left Panel, we set̂fn,t = µ andnt/n = PD and letε̂n,t

vary. Finally, in the lower right Panel the same situation isdisplayed as in the lower left Panel but

with γ = 0.95.

Figure 3: The four Panels display the patterns of functionsm(ft+1), dm(ft+1)/dft+1, σ2(ft+1),

anddσ2(ft+1)/dft+1, respectively. The structural parameterσ is such thatELGD = 0.45, PD =

5%, ρ = 0.12 (see Table 2).

Figure 4: The left Panel displays the CSA VaR (dashed line), the GA VaR for n = 100 (solid line)

and the GA VaR forn = 1000 (dotted line) as functions of the cross-sectional factor approximation

f̂n,t. The middle and right Panels display the GA component for risk, and the GA component for

filtering, respectively. The information set is such thatnt/n = PD andf̂n,t−1 = µ. The confidence

level isα = 0.995. The structural parameters are such thatELGD = 0.45, PD = 5%, ρ = 0.12

andγ = 0.5 (see Table 2). In particular, the unconditional factor meanis µ = 3.05.

Figure 5: The left Panel displays the CSA VaR (dashed line), the GA VaR for n = 100 (solid line)

and the GA VaR forn = 1000 (dotted line) as functions of the cross-sectional factor approximation

f̂n,t. The middle and right Panels display the GA component for risk, and the GA component for

filtering, respectively. The information set is such thatnt/n = PD andf̂n,t−1 = µ. The confidence
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level isα = 0.995. The structural parameters are such thatELGD = 0.45, PD = 1.5%, ρ = 0.12

andγ = 0.5 (see Table 2). In particular, the unconditional factor meanis µ = 4.799.

Figure 6: The upper and middle Panels display a simulated time series of default frequencies and

percentage portfolio losses, respectively. The lower Panel displays the corresponding time series

of factor values (circles) and cross-sectional factor approximations (squares). The portfolio size

is n = 100. The structural parameters are such thatELGD = 0.45, PD = 5%, ρ = 0.12 and

γ = 0.5 (see Table 2). In particular, the unconditional factor meanis µ = 3.05.

Figure 7: The upper Panel displays a simulated time series of CSA VaR (dashed line) and GA

VaR (solid line) for portfolio sizen = 100 and confidence levelα = 0.995. The middle and lower

Panels display the corresponding time series of GA risk and filtering components. The structural

parameters are such thatELGD = 0.45, PD = 5%, ρ = 0.12 andγ = 0.5 (see Table 2).
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Notes

1This model is sometimes called Hidden Markov Model (HMM) in the literature [see e.g.

Cappé, Moulines, Rydén (2005) for a review on inference inHMM].

2This model is extended in Section 1 to allow for the effect of exogenous regressors and lagged

observations in the measurement equation.

3The approximate filtering and predictive distributions at horizon 1 derived in the paper are also

valid when observable macro-variableszt, say, are introduced in the state equation, and possibly

time dependent individual exogenous variableszi,t, say, are introduced in the measurement equa-

tions. However, as usual in state space models, the filteringand predictive distributions at horizon

strictly larger than 1 require the specification of the dynamics of the variableszi,t andzt.

4The terminology CSML is convenient but a bit abusive since, if the micro-densityhi,t(yi,t|ft; β)

depends on an unknown micro-parameterβ, the CSML estimator̂fn,t(β) also depends onβ. In

some sense we are concentrating the micro log-likelihood function with respect toft considered as

a “nuisance” parameter.

5See Bates (2009), p. 25, for approximations written on the same conditional distribution as

ours. These approximations are used in the numerical implementation of an algorithm that updates

the Laplace transform of the filtering distribution when thejoint dynamics of observations and

latent states is affine.

6Except in the special model of contamination considered in Schick, Mitter (1994).

7Except for instance Cipra and Rubio (1991), who take into account a nonlinear measurement

equation with additive non-Gaussian innovations.

8When the model involves both a micro-parameter vectorβ in the measurement densityhi,t(yi,t|ft; β)

and a macro-parameter vectorθ in the transition densityg(ft|ft−1; θ), the analysis of the properties

of the ML and approximated ML estimators is remarkably more complicated. Indeed the ML esti-

mators of parametersβ andθ feature different rates of convergence. This general case is studied in
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Gagliardini, Gouriéroux (2010) by using a different approach to approximate the likelihood func-

tion. Specifically, in Gagliardini, Gourieroux (2010) the state space representation is not exploited

and an asymptotic expansion of the log-likelihood functionis derived by applying the Laplace

approximation to the integral w.r.t. the full factor path betweent = 1 andt = T .

9More precisely, variableZ∗ corresponds to the change of variableZ∗ =
√

nI
1/2
n,t (Ft − f̂n,t −

1

n
µn,t) in the conditional expectation w.r.t.Ft givenYt.

10The results in this section are easily extended to the modelyi,t = 1lAi,t<Li,t

(

1 − δ
Ai,t

Li,t

)

,

whereδ is a parameter such that0 ≤ δ ≤ 1 [Eom, Helwege, Huang (2004)]. In this model, when

the firm is in default and the assets are liquidated, only the part δAi,t can be recovered by the debt

holder, and the liquidation cost(1 − δ)Ai,t is lost. Whenδ = 1, we get model (35), while in the

other extreme caseδ = 0, we get the standard Value of the Firm model with pure defaultand zero

recovery rate [see Example ii) in Section 4.4].

11These summary statistics have to be distinguished from their conditional counterparts given

the observed histories of individual risks. The latter onesare path dependent due to the unobserv-

ability of the factor and the nonlinear dependence of the individual risks(yi,t) with respect to the

factor. Thus, model (35)-(37) implies both conditional heteroscedasticity and dynamic conditional

correlation in the underlying log asset/liability ratios.

12We have noted in Section 5.1 that parametersσ, µ andη are easily calibrated (see e.g. Table 2).

Thus, the factor value at datet can be estimated by considering the cross-sectional ML estimator

of ft given in (45) withσ replaced by its calibrated approximation,f̂ ∗
n,t, say. Then, the remaining

structural parameterγ is easily deduced from the historical correlation betweenf̂ ∗
n,t andf̂ ∗

n,t−1.
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Table 1: Canonical parameters and summary statistics in exponential families.

Family
Canonical

parameter

Cross-sectional

ML
Functionc(f) Transforma(y)

Bernoulli

B(1, p)
f = log

(

p
1−p

)

f̂n,t = log

(

ȳn,t

1 − ȳn,t

)

c(f) = − log (1 + exp f) a(y) = y

Poisson

P(λ)
f = log λ f̂n,t = log ȳn,t c(f) = − exp f a(y) = y

Exponential

γ(1, λ)
f = λ f̂n,t = 1/ȳn,t c(f) = log f a(y) = −y

Gaussian

N(m, 1)
f = m f̂n,t = ȳn,t c(f) = −f 2/2 a(y) = y

Gaussian

N(0, σ2)
f = 1/σ2 f̂n,t = 1/σ̂2

n,t c(f) = 1
2
log f a(y) = −1

2
y2

In the third column,̄yn,t =
1

n

n
∑

i=1

yi,t and σ̂2
n,t =

1

n

n
∑

i=1

y2
i,t denote the cross-sectional mean and second-order

moment, respectively, at datet.
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Table 2: Reduced form and structural parameters.

Reduced form parameters Structural parameters

ELGD PD ρ µ η σ

0.12 4.799 0.766 2.074

0.45 1.5% 0.24 4.799 1.083 1.928

0.50 4.799 1.564 1.564

0.12 3.050 0.642 1.739

0.45 5% 0.24 3.050 0.908 1.616

0.50 3.050 1.311 1.311

0.12 16.993 2.713 7.346

0.75 1.5% 0.24 16.993 3.836 6.827

0.50 16.993 5.537 5.537

0.12 10.669 2.247 6.085

0.75 5% 0.24 10.669 3.178 5.655

0.50 10.669 4.587 4.587
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Table 3: ACF and cross ACF of CSA VaR and GA VaR.

l Corr(Xt, Xt−l) Corr(Yt, Yt−l) Corr(Xt, Yt−l) Corr(Yt, Xt−l)

0 1 1 0.86 0.86

1 0.37 0.55 0.34 0.63

2 0.18 0.24 0.17 0.27

3 0.09 0.12 0.08 0.13

4 0.04 0.06 0.04 0.07

5 0.02 0.03 0.02 0.03

6 0.01 0.02 0.01 0.02

7 0.01 0.01 0.01 0.01

8 0.01 0.01 0.00 0.01

9 0.00 0.01 0.00 0.01

10 0.00 0.01 0.00 0.01

11 0.00 0.01 0.00 0.00

12 0.00 0.00 0.00 0.00

The series areXt = Q∞,t(α) andYt = Q∞,t(α) +
1

n
[GArisk(α) + GAfilt(α)]. The portfolio

size isn = 100 and the confidence level isα = 0.995. The structural parameters are such that

ELGD = 0.45, PD = 5%, ρ = 0.12 andγ = 0.5 (see Table 2). Correlations are computed by

Monte-Carlo simulation on time series of lengthT = 100000.
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Table 4: Backtesting of CSA VaR and GA VaR.

CSA GA

E [Ht] 0.008 −0.001

Corr (Ht, Ht−1) −0.007 −0.004

Corr (Ht, Ht−2) 0.002 −0.000

Corr
(

Ht, f̂n,t−1

)

0.054 −0.022

Corr
(

Ht, f̂n,t−2

)

0.005 0.002

Corr (Ht, Wn,t−1/n) −0.034 0.019

Corr (Ht, Wn,t−2/n) −0.002 0.002

The indicator Ht = 1lWn,t/n≥V aRn,t−1(α) − (1 − α) is computed by using

V aRn,t−1(α) = Q∞,t−1(α) for the CSA VaR andV aRn,t−1(α) = Q∞,t−1(α) +

1

n
[GArisk,t−1(α) + GAfilt,t−1(α)] for the GA VaR. The confidence level isα =

0.995. The structural parameters are such thatELGD = 0.45, PD = 5%, ρ = 0.12

andγ = 0.5 (see Table 2). All quantities are computed by Monte-Carlo simulation on

a time series of lengthT = 100000.
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Figure 1: Conditional distribution ofFt given Ft−1 and approximate filtering distribution ofFt

given the micro-information.
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Figure 2: The effect of micro-information on the approximate filtering distribution ofFt.
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Figure 3: Functionsm(ft+1) andσ2(ft+1) and their first-order derivatives.
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Figure 4: CSA and GA VaR as a function of the cross-sectional factor approximation,PD = 5%.
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Figure 5: CSA and GA VaR as a function of the cross-sectional factor approximation,PD = 1.5%.
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Figure 6: Time series of simulated default frequencies, portfolio losses, systematic factors and
cross-sectional approximations of the factor.
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Figure 7: Time series of simulated CSA VaR, GA VaR, and GA riskand filtering components.
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APPENDIX 1: Proof of Proposition 1

(i) Let us first derive the conditional distribution ofFt givenYt, Ft−1,X. Its density is:

p(ft|Yt, Ft−1,X) =

n
∏

i=1

hi,t(yi,t|ft)g(ft|ft−1)

∫ n
∏

i=1

hi,t(yi,t|ft)g(ft|ft−1)dft

.

To approximate this distribution at order1/n, we consider its Laplace transform:

E [exp(uFt)|Yt, Ft−1,X] =

∫

euft

n
∏

i=1

hi,t(yi,t|ft)g(ft|ft−1)dft

∫ n
∏

i=1

hi,t(yi,t|ft)g(ft|ft−1)dft

=

∫

exp

(

uft +

n
∑

i=1

log hi,t(yi,t|ft) + log g(ft|ft−1)

)

dft

∫

exp

(

n
∑

i=1

log hi,t(yi,t|ft) + log g(ft|ft−1)

)

dft

, u ∈ R,

and perform a Laplace approximation of the integrals in the numerator and denominator for largen. By the
same arguments as in the proof of Theorem 1 in Gagliardini, Gouriéroux (2011), we get:

E [exp(uFt)|Yt, Ft−1,X] = exp

[

u

(

f̂n,t +
1

n

[

I−1
n,t

∂ log g

∂ft
(f̂n,t|ft−1) +

1

2
I−2
n,tK

(3)
n,t

])

+
u2

2n
I−1
n,t + o(1/n)

]

. (A.1)

Since at order1/n the log ofE [exp(uFt)|Yt, Ft−1,X] involves terms inu andu2 only, the distribution of
Ft givenYt, Ft−1,X is Gaussian at order1/n:

N

(

f̂n,t +
1

n

[

I−1
n,t

∂ log g

∂ft
(f̂n,t|ft−1) +

1

2
I−2
n,t K

(3)
n,t

]

,
1

n
I−1
n,t

)

. (A.2)

(ii) Sincef̂n,t−1 converges toft−1 asn → ∞, at order1/n we can replaceft−1 by f̂n,t−1 in the RHS of
(A.1) and in (A.2). Thus, the distribution in (A.2) becomes independent ofFt−1 up too(1/n), and coincides
with the conditional distribution ofFt givenYt,X at order1/n. The conclusion follows.
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APPENDIX 2: Proof of Proposition 2

Let us expand the integrand in (7) aroundft+1 = f̃n,t+1. We have:

Ψ (ỹt+1|yt, ft,X) =

∫

exp

[

n
∑

i=1

log hi,t+1

(

ỹi,t+1|f̃n,t+1

)

− n

2
Ĩn,t+1

(

ft+1 − f̃n,t+1

)2

+
n

6
K̃

(3)
n,t+1

(

ft+1 − f̃n,t+1

)3
+

n

24
K̃

(4)
n,t+1

(

ft+1 − f̃n,t+1

)4
+ · · ·

+ log g
(

f̃n,t+1|ft

)

+
∂ log g

∂ft+1

(

f̃n,t+1|ft

)(

ft+1 − f̃n,t+1

)

+
1

2

∂2 log g

∂f2
t+1

(

f̃n,t+1|ft

)(

ft+1 − f̃n,t+1

)2
+ · · ·

]

dft+1.

Let us introduce the change of variable:

Z∗ =
√

nĨ
1/2
n,t+1

(

ft+1 − f̃n,t+1

)

⇔ ft+1 = f̃n,t+1 +
1√
n

Ĩ
−1/2
n,t+1Z

∗.

Then, we get:

Ψ (ỹt+1|yt, ft,X) =

n
∏

i=1

hi,t+1

(

ỹi,t+1|f̃n,t+1

)

g
(

f̃n,t+1|ft

)

√

2π

nĨn,t+1

·E
{

exp

[

1√
n

(

1

6
K̃

(3)
n,t+1Ĩ

−3/2
n,t+1(Z

∗)3 + Ĩ
−1/2
n,t+1

∂ log g

∂ft+1

(

f̃n,t+1|ft

)

Z∗
)

+
1

n

(

1

24
K̃

(4)
n,t+1Ĩ

−2
n,t+1(Z

∗)4 +
1

2
Ĩ−1
n,t+1

∂2 log g

∂f2
t+1

(

f̃n,t+1|ft

)

(Z∗)2
)

+ o(1/n)

]}

=:
n
∏

i=1

hi,t+1

(

ỹi,t+1|f̃n,t+1

)

g
(

f̃n,t+1|ft

)

√

2π

nĨn,t+1

Jn, say,

where the expectation in termJn is w.r.t. the standard Gaussian variableZ∗. By expanding the exponential
function, we get:

Jn = exp

{

1

n
E

[

1

24
K̃

(4)
n,t+1Ĩ

−2
n,t+1(Z

∗)4 +
1

2
Ĩ−1
n,t+1

∂2 log g

∂f2
t+1

(

f̃n,t+1|ft

)

(Z∗)2
]

+
1

2n
E

[

(

1

6
K̃

(3)
n,t+1Ĩ

−3/2
n,t+1(Z

∗)3 + Ĩ
−1/2
n,t+1

∂ log g

∂ft+1

(

f̃n,t+1|ft

)

Z∗
)2
]

+ o(1/n)

}

= exp

{

1

n

[

1

8
K̃

(4)
n,t+1Ĩ

−2
n,t+1 +

1

2
Ĩ−1
n,t+1

∂2 log g

∂f2
t+1

(

f̃n,t+1|ft

)

+
5

24

[

K̃
(3)
n,t+1

]2
Ĩ−3
n,t+1

+
1

2
Ĩ−1
n,t+1

(

∂ log g

∂ft+1

(

f̃n,t+1|ft

)

)2

+
1

2
K̃

(3)
n,t+1Ĩ

−2
n,t+1

∂ log g

∂ft+1

(

f̃n,t+1|ft

)

]

+ o(1/n)

}

,

where we usedE
[

(Z∗)2
]

= 1, E
[

(Z∗)4
]

= 3, E
[

(Z∗)6
]

= 15 and that odd-order moments ofZ∗ vanish.
The conclusion follows.
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APPENDIX 3: Proof of Proposition 3

The conditional density ofyt+1 givenYt andX is given by:

Ψ (ỹt+1|Yt,X) =

∫

Ψ (ỹt+1|yt, ft,X) Ψ (ft|Yt,X) dft,

whereΨ (ỹt+1|yt, ft,X) is given in Proposition 2 andΨ (ft|Yt,X) is the Gaussian pdf given in Proposition
1 at order1/n. Thus, we get:

Ψ (ỹt+1|Yt,X) =

√

2π

nĨn,t+1

n
∏

i=1

hi,t+1

(

ỹi,t+1|f̃n,t+1

)

· exp

{

1

n

[

1

8
K̃

(4)
n,t+1Ĩ

−2
n,t+1 +

5

24

[

K̃
(3)
n,t+1

]2
Ĩ−3
n,t+1

]

+ o(1/n)

}

·
∫

g
(

f̃n,t+1|ft

)

exp











1

2n






Ĩ−1
n,t+1







∂2 log g
(

f̃n,t+1|ft

)

∂f2
t+1

+





∂ log g
(

f̃n,t+1|ft

)

∂ft+1





2






+Ĩ−2
n,t+1K̃

(3)
n,t+1

∂ log g
(

f̃n,t+1|ft

)

∂ft+1







1
√

2πI−1
n,t /n

exp

{

−nIn,t

2

(

ft − f̂n,t −
1

n
ξn,t

)2
}

dft,

where:

ξn,t = I−1
n,t

∂ log g
(

f̂n,t|f̂n,t−1

)

∂ft
+

1

2
I−2
n,t K

(3)
n,t .

The integral:

A :=

∫

g
(

f̃n,t+1|ft

)

exp











1

2n






Ĩ−1
n,t+1







∂2 log g
(

f̃n,t+1|ft

)

∂f2
t+1

+





∂ log g
(

f̃n,t+1|ft

)

∂ft+1





2






+Ĩ−2
n,t+1K̃

(3)
n,t+1

∂ log g
(

f̃n,t+1|ft

)

∂ft+1







1
√

2πI−1
n,t /n

exp

{

−nIn,t

2

(

ft − f̂n,t −
1

n
ξn,t

)2
}

dft,

is approximated at order1/n by a Laplace approximation. We expand the integrand aroundft = f̂n,t such
that:

g
(

f̃n,t+1|ft

)

exp

{

−nIn,t

2

(

ft − f̂n,t −
1

n
ξn,t

)2
}

= exp







log g
(

f̃n,t+1|f̂n,t

)

+
∂ log g

(

f̃n,t+1|f̂n,t

)

∂ft

(

ft − f̂n,t

)

+
1

2

∂2 log g
(

f̃n,t+1|f̂n,t

)

∂f2
t

(

ft − f̂n,t

)2
+ · · ·

−nIn,t

2

(

ft − f̂n,t

)2
+ In,tξn,t

(

ft − f̂n,t

)

− In,t

2n
ξ2
n,t

}

.
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Then, we introduce the change of variables:

Z∗ =
√

nI
1/2
n,t

(

ft − f̂n,t

)

⇔ ft = f̂n,t +
1√
n

I
−1/2
n,t Z∗.

We get:

A = g
(

f̃n,t+1|f̂n,t

)

exp











1

2n






Ĩ−1
n,t+1







∂2 log g
(

f̃n,t+1|f̂n,t

)

∂f2
t+1

+





∂ log g
(

f̃n,t+1|f̂n,t

)

∂ft+1





2






+Ĩ−2
n,t+1K̃

(3)
n,t+1

∂ log g
(

f̃n,t+1|f̂n,t

)

∂ft+1
− In,tξ

2
n,t



+ o(1/n)







·E



exp





1√
n



I
−1/2
n,t

∂ log g
(

f̃n,t+1|f̂n,t

)

∂ft
+ I

1/2
n,t ξn,t



Z∗ +
I−1
n,t

2n

∂2 log g
(

f̃n,t+1|f̂n,t

)

∂f2
t

(Z∗)2







 ,

whereZ∗ is a standard Gaussian variable. By developing the exponential function, we have:

E



exp





1√
n



I
−1/2
n,t

∂ log g
(

f̃n,t+1|f̂n,t

)

∂ft
+ I

1/2
n,t ξn,t



Z∗ +
I−1
n,t

2n

∂2 log g
(

f̃n,t+1|f̂n,t

)

∂f2
t

(Z∗)2









= exp











1

2n






I−1
n,t

∂2 log g
(

f̃n,t+1|f̂n,t

)

∂f2
t

+



I
−1/2
n,t

∂ log g
(

f̃n,t+1|f̂n,t

)

∂ft
+ I

1/2
n,t ξn,t





2





+ o(1/n)











.

Thus:

Ψ (ỹt+1|Yt,X) =

√

2π

nĨn,t+1

n
∏

i=1

hi,t+1

(

ỹi,t+1|f̃n,t+1

)

g
(

f̃n,t+1|f̂n,t

)

· exp

{

1

n

[

1

8
K̃

(4)
n,t+1Ĩ

−2
n,t+1 +

5

24

[

K̃
(3)
n,t+1

]2
Ĩ−3
n,t+1

+
1

2
Ĩ−1
n,t+1







∂2 log g
(

f̃n,t+1|f̂n,t

)

∂f2
t+1

+





∂ log g
(

f̃n,t+1|f̂n,t

)

∂ft+1





2






+
1

2
Ĩ−2
n,t+1K̃

(3)
n,t+1

∂ log g
(

f̃n,t+1|f̂n,t

)

∂ft+1
− 1

2
In,tξ

2
n,t

+
1

2
I−1
n,t

∂2 log g
(

f̃n,t+1|f̂n,t

)

∂f2
t

+
1

2



I
−1/2
n,t

∂ log g
(

f̃n,t+1|f̂n,t

)

∂ft
+ I

1/2
n,t ξn,t





2
















.

By replacingξn,t by its definition, and rearranging terms, the conclusion follows.
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APPENDIX 4: Proof of Proposition 4

(i) The first-order derivative of the log-density w.r.t. thefactor value is:

∂ log hi,t (yi,t|ft)

∂ft
=

1

hi,t (yi,t|ft)

∂hi,t (yi,t|ft)

∂ft
= a(yi,t) +

dc (ft)

df
.

By usingE

[

1

hi,t (yi,t|ft)

∂hi,t (yi,t|ft)

∂ft
|Ft = ft

]

= 0, we get:

dc (ft)

df
= −E [a(yi,t)|Ft = ft] ,

and:
∂ log hi,t (yi,t|ft)

∂ft
= a(yi,t) − E [a(yi,t)|Ft = ft] .

(ii) The second-order derivative is:

∂2 log hi,t (yi,t|ft)

∂f2
t

=
1

hi,t (yi,t|ft)

∂2hi,t (yi,t|ft)

∂f2
t

−
(

∂ log hi,t (yi,t|ft)

∂ft

)2

=
d2c (ft)

df2
. (A.3)

By usingE

[

1

hi,t (yi,t|ft)

∂2hi,t (yi,t|ft)

∂f2
t

|Ft = ft

]

= 0, we get:

d2c (ft)

df2
= −E

[

(

∂ log hi,t (yi,t|ft)

∂ft

)2

|Ft = ft

]

= −V [a(yi,t)|Ft = ft] .

(iii) The third-order derivative is:

∂3 log hi,t (yi,t|ft)

∂f3
t

=
d3c (ft)

df3
.

Now, we have:

∂3 log hi,t (yi,t|ft)

∂f3
t

=
1

hi,t (yi,t|ft)

∂3hi,t (yi,t|ft)

∂f3
t

− 1

hi,t (yi,t|ft)

∂2hi,t (yi,t|ft)

∂f2
t

(

∂ log hi,t (yi,t|ft)

∂ft

)

−2

(

∂ log hi,t (yi,t|ft)

∂ft

)(

∂2 log hi,t (yi,t|ft)

∂f2
t

)

.

By substituting:

1

hi,t (yi,t|ft)

∂2hi,t (yi,t|ft)

∂f2
t

=
∂2 log hi,t (yi,t|ft)

∂f2
t

+

(

∂ log hi,t (yi,t|ft)

∂ft

)2

,

from (A.3), we get:

∂3 log hi,t (yi,t|ft)

∂f3
t

=
1

hi,t (yi,t|ft)

∂3hi,t (yi,t|ft)

∂f3
t

− 3

(

∂ log hi,t (yi,t|ft)

∂ft

)(

∂2 log hi,t (yi,t|ft)

∂f2
t

)

−
(

∂ log hi,t (yi,t|ft)

∂ft

)3

. (A.4)
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By usingE

[

1

hi,t (yi,t|ft)

∂3hi,t (yi,t|ft)

∂f3
t

|Ft = ft

]

= 0, E

[

∂ log hi,t (yi,t|ft)

∂ft
|Ft = ft

]

= 0 and
∂2 log hi,t (yi,t|ft)

∂f2
t

=

d2c (ft)

df2
, we get:

d3c (ft)

df3
= E

[

∂3 log hi,t (yi,t|ft)

∂f3
t

|Ft = ft

]

= −E

[

(

∂ log hi,t (yi,t|ft)

∂ft

)3

|Ft = ft

]

= −E
[

(a(yi,t) − E [a(yi,t)|ft])
3 |Ft = ft

]

.

(iv) Finally, the fourth-order derivative is:

∂4 log hi,t (yi,t|ft)

∂f4
t

=
d4c (ft)

df4
.

Now, we have:

∂4 log hi,t (yi,t|ft)

∂f4
t

=
1

hi,t (yi,t|ft)

∂4hi,t (yi,t|ft)

∂f4
t

− 1

hi,t (yi,t|ft)

∂3hi,t (yi,t|ft)

∂f3
t

(

∂ log hi,t (yi,t|ft)

∂ft

)

−3

(

∂2 log hi,t (yi,t|ft)

∂f2
t

)2

− 3

(

∂ log hi,t (yi,t|ft)

∂ft

)(

∂3 log hi,t (yi,t|ft)

∂f3
t

)

−3

(

∂ log hi,t (yi,t|ft)

∂ft

)2 ∂2 log hi,t (yi,t|ft)

∂f2
t

.

By substituting [see (A.4)]:

1

hi,t (yi,t|ft)

∂3hi,t (yi,t|ft)

∂f3
t

=
∂3 log hi,t (yi,t|ft)

∂f3
t

+ 3

(

∂ log hi,t (yi,t|ft)

∂ft

)(

∂2 log hi,t (yi,t|ft)

∂f2
t

)

+

(

∂ log hi,t (yi,t|ft)

∂ft

)3

,

we get:

∂4 log hi,t (yi,t|ft)

∂f4
t

=
1

hi,t (yi,t|ft)

∂4hi,t (yi,t|ft)

∂f4
t

−6

(

∂ log hi,t (yi,t|ft)

∂ft

)2(∂2 log hi,t (yi,t|ft)

∂f2
t

)

−
(

∂ log hi,t (yi,t|ft)

∂ft

)4

−3

(

∂2 log hi,t (yi,t|ft)

∂f2
t

)2

− 4

(

∂ log hi,t (yi,t|ft)

∂ft

)(

∂3 log hi,t (yi,t|ft)

∂f3
t

)

.

By using thatE

[

1

hi,t (yi,t|ft)

∂4hi,t (yi,t|ft)

∂f4
t

|Ft = ft

]

= 0, E

[

∂ log hi,t (yi,t|ft)

∂ft
|Ft = ft

]

= 0,
∂2 log hi,t (yi,t|ft)

∂f2
t

=

d2c (ft)

df2
= −E

[

(

∂2 log hi,t (yi,t|ft)

∂f2
t

)2

|Ft = ft

]

and
∂3 log hi,t (yi,t|ft)

∂f3
t

=
d3c (ft)

df3
, we get:

d4c (ft)

df4
= E

[

∂4 log hi,t (yi,t|ft)

∂f4
t

|Ft = ft

]

= 3E

[

(

∂2 log hi,t (yi,t|ft)

∂f2
t

)2

|Ft = ft

]2

− E

[

(

∂ log hi,t (yi,t|ft)

∂ft

)4

|Ft = ft

]

= −
{

E
[

(a(yi,t) − E [a(yi,t)|Ft = ft])
4 |Ft = ft

]

− 3V [a(yi,t)|Ft = ft]
2
}

.
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APPENDIX 5: Proof of Proposition 5

Let us first rewrite the RHS of (13). By usinglog g(f̂n,t|f̂n,t−1; θ) = −1

2
log(2πσ2) − ǫ̂n,t(θ)2

2σ2
,

∂ log g(f̂n,t|f̂n,t−1; θ)

∂ft
= − ǫ̂n,t(θ)

σ2
,

∂2 log g(f̂n,t|f̂n,t−1; θ)

∂f2
t

= − 1

σ2
,

∂ log g(f̂n,t|f̂n,t−1; θ)

∂ft−1
=

γǫ̂n,t(θ)

σ2

and
∂2 log g(f̂n,t|f̂n,t−1; θ)

∂f2
t−1

= −γ2

σ2
, whereǫ̂n,t(θ) = f̂n,t−µ− γ(f̂n,t−1 −µ) andσ = η

√

1 − γ2, we get:

log pGA
n (yt|Yt−1,X; θ) ∝ −1

2
log(2πσ2) − 1

2nσ2
(I−1

n,t + γ2I−1
n,t−1)

− 1

2σ2

[

1 − 1

nσ2
(I−1

n,t + γ2I−1
n,t−1)

]

ε̂n,t(θ)2

− 1

2nσ2

(

I−1
n,tK

(3)
n,t − γI−1

n,t−1K
(3)
n,t−1

)

ε̂n,t(θ) − γ

nσ4
I−1
n,t−1ε̂n,t(θ)ε̂n,t−1(θ).

Thus from (12), the GA log-likelihood function can be written as:

LGA
nT (θ) = −1

2
ωn(θ) − 1

2Tσ2
Un(θ)′

(

IdT − 1

nσ2
Bn(θ)

)

Un(θ) + o(1/n), (A.5)

up to a constant term inθ, whereUn(θ) is a(T, 1) vector with elements:

Un,t(θ) = ε̂n,t(θ) +
1

2n

(

I−1
n,tK

(3)
n,t − γI−1

n,t−1K
(3)
n,t−1

)

= ξn,t − µ − γ(ξn,t−1 − µ),

the symmetric(T, T ) matrix Bn(θ) has elements equal toI−1
n,t + γ2I−1

n,t−1 in position (t, t), −γI−1
n,t−1 in

positions(t−1, t) and(t, t−1), and zeros otherwise, and the scalarωn(θ) is given byωn(θ) = log(2πσ2)+

1

σ2nT

T
∑

t=1

(I−1
n,t + γ2I−1

n,t−1).

Now, we have:
1

σ2

(

IdT − 1

nσ2
Bn(θ)

)

= Ωn(θ)−1 + o(1/n), (A.6)

whereΩn(θ) = σ2IdT +
1

n
Bn(θ). Moreover:

1

T
log det Ωn(θ) = log σ2 +

1

T
log det

(

IdT +
1

nσ2
Bn(θ)

)

= log σ2 +
1

T
log

(

1 +
1

nσ2
trBn(θ) + o(T/n)

)

= log σ2 +
1

σ2nT
trBn(θ) + o(1/n) = ωn(θ) + o(1/n). (A.7)

By replacing (A.6) and (A.7) into (A.5), we get:

LGA
nT (θ) = − 1

2T
log detΩn(θ) − 1

2Tσ2
Un(θ)′Ωn(θ)−1Un(θ) + o(1/n).

By noting thatΩn(θ) is the variance-covariance matrix of the errorsσεt + 1√
n
I
−1/2
n,t ut − γ 1√

n
I
−1/2
n,t−1ut−1,

where(εt) and(ut) are independent Gaussian white noise processes, the conclusion follows.
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APPENDIX 6: The Value of the Firm model

1. Unconditional ELGD [proof of equation (41)]
We use the next Lemma 1:

Lemma 1: LetZ be a standard Gaussian variable. Then:

E[exp(aZ)|Z < b] =
E[exp(aZ)1lZ<b]

P [Z < b]
= exp

(

a2

2

)

Φ(b − a)

Φ(b)
,

for anya, b ∈ R.
Proof of Lemma 1: We have:

E[exp(aZ)1lZ<b] =

∫ b

−∞
eazφ(z)dz = exp

(

a2

2

)
∫ b

−∞
φ(z − a)dz = exp

(

a2

2

)

Φ(b − a).

The conclusion follows.

QED

Let us now prove equation (41). Sincelog (Ai,t/Li,t) = Ft + σui,t ∼ N(µ, η2 + σ2), we have:

ELGD = 1−E [exp (Ft + σui,t) |Ft + σui,t < 0] = 1− eµE

[

exp
(

√

η2 + σ2Z
)

|Z < − µ
√

η2 + σ2

]

,

whereZ ∼ N(0, 1). Then, equation (41) follows from Lemma 1 witha =
√

η2 + σ2 andb = − µ
√

η2 + σ2
.

2. Parameterization in terms ofPD, ρ,ELGD [proof of equations (42) and (43)]
From equations (38) and (39) we haveµ = −τΦ−1(PD), η = τ

√
ρ andσ = τ

√
1 − ρ whereτ =

√

η2 + σ2, which yields (42). Moreover, equation (41) can be rewritten as:

ELGD · PD = PD − exp

(

−τΦ−1(PD) +
1

2
τ2

)

Φ
[

Φ−1(PD) − τ
]

.

Thus, parameterτ solves the equationA(τ) = ELGD · PD, where functionA is given by:

A(τ) = PD − exp

(

−τΦ−1(PD) +
1

2
τ2

)

Φ
[

Φ−1(PD) − τ)
]

, τ ≥ 0.

Let us now prove that functionA is monotone. Its derivative is given by:

dA(τ)

dτ
=

[

(Φ−1(PD) − τ)Φ
(

Φ−1(PD) − τ
)

+ φ(Φ−1(PD) − τ)
]

exp

(

−τΦ−1(PD) +
1

2
τ2

)

= B[Φ−1(PD) − τ ] exp

(

−τΦ−1(PD) +
1

2
τ2

)

,

whereB(x) = xΦ(x) + φ(x). We havedB(x)/dx = Φ(x) ≥ 0, andB(−∞) = 0. ThusB(x) ≥ 0 for
all x. We deduce thatdA(τ)/dτ ≥ 0 and functionA is monotone increasing onR+, with A(0) = 0 and
A(+∞) = PD. Thus, equation (43) admits a unique solution as long as0 < ELGD < 1.
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3. Approximate filtering distribution [proof of equation (4 7)]
From (44) the cross-sectional log-likelihood at datet is given by:

Ln(ft) =

n
∑

i=1

log h(yi,t|ft) = − 1

2σ2

∑

i:yi,t>0

[log(1 − yi,t) − ft]
2 + (n − nt) log Φ(ft/σ).

The derivatives of the log-likelihood function w.r.t.ft are:

∂Ln(ft)

dft
=

1

σ2

∑

i:yi,t>0

[log(1 − yi,t) − ft] + (n − nt)
1

σ
λ(ft/σ),

∂2Ln(ft)

df2
t

= −nt

σ2
+ (n − nt)

1

σ2
λ′(ft/σ),

∂3Ln(ft)

df3
t

= (n − nt)
1

σ3
λ′′(ft/σ),

whereλ(x) =
φ(x)

Φ(x)
, λ′(x) = −λ(x)[x + λ(x)] andλ′′(x) = −λ(x){1 − [x + λ(x)][x + 2λ(x)]}. From

K
(l)
n,t =

1

n

∂lLn(f̂n,t)

df l
t

, for l = 2, 3, equations (48) and (49) follow. Finally, the derivative ofthe log transition

density of the factor is:
∂ log g

∂ft
(ft|ft−1) = −ft − µ − γ(ft−1 − µ)

η2(1 − γ2)
,

and from Proposition 1 we get (47).

4. Function σ2(ft+1) and its derivative [proof of equations (52) and (53)]
We have:

m(2)(ft+1) := E[y2
i,t+1|Ft+1 = ft+1] = E[1lui,t+1<−Ft+1/σ(1 − exp(Ft+1 + σui,t+1))

2|Ft+1 = ft+1]

= E[1lui,t+1<−Ft+1/σ|Ft+1 = ft+1] − 2 exp(ft+1)E[1lui,t+1<−Ft+1/σ exp(σui,t+1)|Ft+1 = ft+1]

+ exp(2ft+1)E[1lui,t+1<−Ft+1/σ exp(2σui,t+1)|Ft+1 = ft+1].

Then, from Lemma 1 we get:

m(2)(ft+1) = Φ (−ft+1/σ) − 2 exp

(

ft+1 +
σ2

2

)

Φ (−ft+1/σ − σ) + exp(2ft+1 + 2σ2)Φ (−ft+1/σ − 2σ)

= m(ft+1) − exp

(

ft+1 +
σ2

2

)

Φ (−ft+1/σ − σ) + exp(2ft+1 + 2σ2)Φ (−ft+1/σ − 2σ) .

Thus, by usingσ2(ft+1) = m(2)(ft+1) − m(ft+1)
2, equation (52) follows.

To compute the derivative ofm(2)(ft+1) w.r.t. ft+1, write m(2)(ft+1) =
∫ −ft+1/σ
−∞ [1 − exp(ft+1 +

σu)]2φ(u)du. Then:

dm(2)(ft+1)

dft+1
=

d

dft+1

∫ −ft+1/σ

−∞
[1 − exp(ft+1 + σu)]2φ(u)du

= −2 exp(ft+1)

∫ −ft+1/σ

−∞
exp(σu)[1 − exp(ft+1 + σu)]φ(u)du

= −2 exp(ft+1)E
[

1lui,t+1<−Ft+1/σ {exp(σui,t+1) − exp(Ft+1 + 2σui,t+1)} |Ft+1 = ft+1

]

= −2 exp

(

ft+1 +
σ2

2

)

Φ (−ft+1/σ − σ) + 2 exp
(

2ft+1 + 2σ2
)

Φ (−ft+1/σ − 2σ) .
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Then, we get the derivative ofσ2(ft+1):

dσ2(ft+1)

dft+1

=
dm(2)(ft+1)

dft+1
− 2m(ft+1)

dm(ft+1)

dft+1

= −2 exp

(

ft+1 +
σ2

2

)

Φ (−ft+1/σ − σ) + 2 exp
(

2ft+1 + 2σ2
)

Φ (−ft+1/σ − 2σ)

+2

[

Φ(−ft+1/σ) − exp

(

ft+1 +
σ2

2

)

Φ (−ft+1/σ − σ)

]

exp

(

ft+1 +
σ2

2

)

Φ (−ft+1/σ − σ)

= −2 exp

(

ft+1 +
σ2

2

)

Φ (−ft+1/σ − σ) [1 − Φ(−ft+1/σ)] + 2 exp
(

2ft+1 + 2σ2
)

Φ (−ft+1/σ − 2σ)

−2 exp
(

2ft+1 + σ2
)

[Φ (−ft+1/σ − σ)]2,

which yields equation (53).

5. Derivation of the GA [proof of Proposition 8]
The GA is derived by using Proposition 7. Let us first considerthe GA for risk. We have:

dσ2[m−1(w)]

dw
=

dσ2

dft+1
[m−1(w)]

dm

dft+1
[m−1(w)]

,

and from (56):

log f∞,t(w) = − [m−1(w) − µ − γ(f̂n,t − µ)]2

2η2(1 − γ2)
− m−1(w) − log Φ

[

−m−1(w)

σ
− σ

]

,

up to an additive constant, which yields:

∂ log f∞,t(w)

∂w
= −

[

m−1(w) − µ − γ(f̂n,t − µ)

η2(1 − γ2)
+ 1 − 1

σ
λ

(

−m−1(w)

σ
− σ

)

]

dm−1(w)

dw

=

[

−m−1(w) − µ − γ(f̂n,t − µ)

η2(1 − γ2)
− 1 +

1

σ
λ

(

−m−1(w)

σ
− σ

)

]

1

dm

dft+1
[m−1(w)]

.

Then, from Proposition 7 and equations (57) and (58), the GA for risk (59) follows.
Let us now consider the GA for filtering. From (55), the first- and second-order derivatives of function

a(w, ft, 0) w.r.t. ft at f̂n,t are given by:

∂a

∂ft
(w, f̂n,t, 0) =

γ

η
√

1 − γ2
φ

(

m−1(w) − µ − γ(f̂n,t − µ)

η
√

1 − γ2

)

,

∂2a

∂f2
t

(w, f̂n,t, 0) =
γ2

η2(1 − γ2)

[

m−1(w) − µ − γ(f̂n,t − µ)

η
√

1 − γ2

]

φ

(

m−1(w) − µ − γ(f̂n,t − µ)

η
√

1 − γ2

)

.

Then, from Proposition 7 and equations (47) and (56), the GA for filtering (60) follows.
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