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Efficiency in Large Dynamic Panel Models with Common Factors

Abstract

This paper deals with asymptotically efficient estimation in exchangeable nonlinear dynamic

panel models with common unobservable factors. These models are especially relevant for appli-

cations to large portfolios of credits, corporate bonds, or life insurance contracts. For instance, the

special case of an Asymptotic Risk Factor (ARF) model is recommended in the current regulation

in Finance (Basel II and Basel III) and Insurance (Solvency II) for risk prediction and computation

of the required capital. The specification accounts for both micro- and macro-dynamics, induced

by the lagged individual observations and the common stochastic factors, respectively. For large

cross-sectional and time dimensions n and T , respectively, we derive the efficiency bound and

introduce computationally simple efficient estimators for both the micro- and macro-parameters.

The results are based on an asymptotic expansion of the log-likelihood function in powers of 1/n,

and are linked to granularity theory. The results are illustrated with the stochastic migration model

for credit risk analysis.

Keywords: Nonlinear Panel Model, Factor Model, Probit Model, Exchangeability, Semi-parametric

Efficiency, Fixed Effects Estimator, Credit Risk, Stochastic Migration, Basel II, Granularity Ad-

justment.
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1 Introduction

This paper considers the asymptotically efficient estimation of nonlinear dynamic panel models

with common unobservable factors. We focus on exchangeable specifications that are appropriate

to analyze the set of histories of a large homogeneous population of individuals featuring serial

and cross-sectional dependence. Such a framework is often encountered in credit risk applications.

For instance, for the risk analysis in portfolios of corporate debt, the panel data are the default,

loss given default and rating migration histories of a large pool of firms in a given industrial sector

and country. The common factors represent latent macro-variables, such as the sector and country

specific business cycle, that introduce dependence across the nonlinear individual risks, such as

default, loss given default, or migration correlations. The purpose of the analysis is to predict the

future risk in a large portfolio of corporate bonds or credit derivatives issued by the firms in the

pool. The panel data may also correspond to other risk characteristics in a pool of corporate loans,

household mortgages or life insurance contracts, such as prepayment, lapse, or mortality.

The model considered in this paper involves both micro- and macro-dynamics. Conditional on

a given factor path, the individuals are assumed independent and identically distributed, with the

histories of observations yi,t, t varying, following the same time-inhomogeneous Markov process

for any individual i. The transition density h(yi,t|yi,t−1, ft; β) between dates t−1 and t depends on

the (multivariate) factor value ft and the unknown parameter β. The micro-dynamics is captured

by the lagged individual observation yi,t−1 and unknown parameter β. The macro-dynamics is

driven by the time-varying stochastic common factor ft. The latter follows a Markov process with

transition density g(ft|ft−1; θ), which depends on the unknown parameter θ. In credit risk applica-

tions, the common factor ft has to be considered unobservable in order to account for systematic

risk. When this common factor is integrated out, it introduces both non-Markovian serial depen-

dence within the individual histories, and cross-sectional dependence between individuals. The

variables yi,t are either real-valued or discrete (as for default and rating histories in the credit risk

application), while the components of the vector ft are real valued (corresponding to a continuum

of latent states). The model is potentially nonlinear in both micro- and macro-dynamics.

When the cross-sectional dimension n is fixed and the time dimension T tends to infinity, the

Maximum Likelihood (ML) estimators of micro-parameter β and macro-parameter θ are asymp-
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totically normal and efficient 1. However, this asymptotic scheme is not appropriate for a setting

involving very large n and moderately large T , as in credit risk applications. For instance, for

corporate rating data the number of firms is typically of order n ' 10, 000, while the number of

dates is about T ' 20 with yearly data. In applications to mortgage or life insurance, we typically

have n ' 100, 000− 1, 000, 000 contracts and T ' 200 months. Moreover, the numerical compu-

tation of the ML estimate is complicated since the likelihood function involves a large dimensional

integral w.r.t. the unobservable factor path.

The aim of this paper is to derive the asymptotic efficiency bound for estimating both the micro-

parameter β and the macro-parameter θ, and to introduce asymptotically efficient estimators of β

and θ that are easier to compute than the ML estimator. We consider the double asymptotics

n, T → ∞, such that T ν/n = O(1), with either ν > 1, for estimators maximizing a first-order

expansion of the log-likelihood function w.r.t. 1/n, or ν > 3/2, for estimators maximizing a more

accurate second-order expansion. We summarize our theoretical contributions as follows. First, we

show that the efficiency bound for the micro-parameter β does not depend on the parametric model

defining the macro-dynamics. In particular, this bound coincides with the parametric efficiency

bound with known transition of the factor, and also with the semi-parametric efficiency bound

when the transition of the factor is left unspecified. Second, the efficiency bound for the macro-

parameter θ is the same as if the factor values were observable. These findings correspond to

oracle properties w.r.t. the factor dynamics for the micro-parameter, and w.r.t. the factor values

for the macro-parameter. Third, the asymptotic efficiency bound can be reached by optimizing

approximated likelihood functions which do not involve integrals w.r.t. the factor path.

In Section 2 we introduce the nonlinear dynamic panel model with common factors. To pro-

vide motivation and grounding on potential applications, we first describe the Asymptotic Single

Risk Factor (ASRF) model, which is the simplest benchmark model suggested for the regulation of

credit risk in Basel II [BCBS (2001), (2003)]. Then, we present the general specification and dis-

cuss the stationarity and ergodicity assumptions needed for the asymptotic analysis. Our theoretical

results are mainly based on a second-order asymptotic expansion of the log-likelihood function in

powers of 1/n given in Section 3. The basic idea behind this expansion is that the integration of

the latent factor path is performed along the lines of the Laplace approximation. In Section 4 we

1See e.g. Douc, Moulines, Rydèn (2004) for the asymptotic properties of the ML estimator in autoregressive

models with Markov regimes.
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introduce estimators of both micro- and macro-parameters, that do not involve numerical integra-

tion w.r.t. the unobservable factor. These estimators are obtained by maximizing approximations

of the log-likelihood function at order 1/n, and 1/n2, respectively. They are called Cross-Sectional

Asymptotic (CSA) and Granularity Adjusted (GA) maximum likelihood estimators, respectively.

We study the asymptotic properties of these estimators under suitable identification conditions and

prove their asymptotic efficiency. In Section 5 we introduce an asymptotically efficient estima-

tion approach, in which the estimators of the micro- and macro-parameters can be computed in

two steps. The estimator of the micro-component is a fixed effects estimator, which considers

the factor values as nuisance parameters. The estimator of the macro-parameter is obtained by

maximizing the likelihood function of the macro-dynamics, in which the unobservable factor val-

ues are replaced by suitable cross-sectional factor approximations. In Section 6, the results of the

paper are applied to the stochastic migration model used for credit risk analysis. In this model,

the observable endogenous variable corresponds to the rating and the common stochastic factors

account for migration correlation. The patterns of the efficiency bound and the computation of the

efficient estimators are illustrated for this example. We also investigate the finite-sample properties

of the estimators in a Monte-Carlo experiment. Section 7 concludes. Appendix A.1 provides the

regularity conditions for the large sample properties of the estimators. The proofs of the results

are gathered in Appendices A.2 and A.3. The proofs rely on some Limit Theorems for uniform

stochastic convergence with panel data and technical Lemmas. The details of these Theorems and

Lemmas are provided online at Cambridge Journals Online in supplementary material to this ar-

ticle. Readers may refer to the supplementary material associated with this article, available at

Cambridge Journals Online (journals.cambridge.org/ect).

2 Exchangeable nonlinear panel model with common factors

Exchangeable nonlinear panel models with common factors are the basis for risk analysis of ho-

mogenous retail portfolios encountered in Finance and Insurance. Before describing the general

specification, we review as an illustration the Asymptotic Single Risk Factor (ASRF) model intro-

duced for default risk analysis by Vasicek (1987), (1991).
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2.1 The Asymptotic (Single) Risk Factor (ASRF) model for default

The general specification considered in Section 2.2 is motivated by the ASRF model introduced by

Vasicek (1987), (1991) and based on the Value of the Firm model [Merton (1974)]. This model,

possibly extended to include more factors, is recommended for the analysis of credit risk in Pillar

1 of Basel II regulation, concerning the minimum required capital, and in Pillar 2, concerning

internal risk models [BCBS (2001), (2003)]. The objective is to analyze the risk of a portfolio

of loans or credit derivatives, included in the balance sheet of a bank or credit institution. These

portfolios may contain several millions of individual contracts (assets) and have to be segmented

into subportfolios, which are homogeneous by the type of contract (asset) and by the type of

borrowers, including at least their ratings among their characteristics. The ASRF model is applied

to these homogeneous subportfolios separately (or jointly), with parameters and factors which can

depend on the segment. The sizes of these subportfolios may still be rather large including some

ten thousands of individual loans for mortgages and credit cards, for instance.

The basic Vasicek model is written for firms, but the same approach is applicable to household

borrowers. Let us consider a given subpopulation and a single-factor model. This model introduces

the asset Ai,t and liability Li,t as latent variables. Then, the latent model is written on the log-ratio

of asset to liability y∗i,t = log(Ai,t/Li,t) as:

y∗i,t = α + γFt + σui,t, i ∈ PaRt, t = 1, ..., T,

where PaRt denotes the Population-at-Risk, that is the set of firms in the portfolio which are still

alive at time t, and where the common factor (Ft) and the errors (ui,t) are independent standard

Gaussian white noise processes. This specification distinguishes the idiosyncratic risks ui,t, which

can be diversified, and the undiversifiable systematic risk Ft. The latter component is introduced

to represent the risk dependence. It is especially important for financial stability analysis. Indeed,

the standard stress testing methodology corresponds to assessing the impact of extreme shocks on

some components of the systematic risk factor. The coefficients α, γ, σ are independent of the

individuals, according to the definition of an homogeneous portfolio. The parameters and factors

depend on the segment, but the index of the segment is omitted for expository purpose 2. The

2When the subpopulation index k, with k = 1, ...,K, is introduced explicitly, the variables are triply indexed

by k, i, t, and the latent model becomes y∗k,i,t = αk + γkFk,t + σkuk,i,t, where k = 1, ...,K, i ∈ PaRk,t and

t = 1, ..., T . The subpopulations fixed effects are αk, γk, σk and the model allows for a crossing of fixed effects γk
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observed endogenous variable is the indicator for the default event, that occurs when the asset is

below the liability:

yi,t = 1lAi,t<Li,t = 1ly∗i,t<0.

We deduce the Probability of Default (PD) at date t conditional on the common factor:

PDt = P [yi,t = 1|yi,t−1 = 0, Ft] = Φ [− (α/σ)− (γ/σ)Ft] , (2.1)

where Φ denotes the cumulative distribution function (cdf) of the standard normal distribution.

Thus, the conditional probability of default is time-varying and driven by the common stochastic

factor Ft. To summarize, the qualitative observations yi,t are independent conditional on the factor

path with Bernoulli distribution:

yi,t|Ft ∼ B(1, PDt). (2.2)

We get a probit model in which the explanatory variable Ft is unobservable and captures the sys-

tematic default risk. This basic static model can be extended by allowing for several factors in the

given subpopulation, for a dynamics of the common factors [e.g., Duffie, Singleton (1998), Loef-

fler (2003), Dembo, Deuschel, Duffie (2004), McNeil, Wendin (2007), Duffie et al. (2009)], and

for a joint analysis of more than two rating levels by means of stochastic migration models describ-

ing the transitions between rating classes AAA, AA, ..., C, D, say (see Section 6 and references

therein).

The unconditional probability of default is PD = P[yi,t = 1] = Φ
(
−α/

√
γ2 + σ2

)
, whereas

the unconditional default correlation between any two firms i and j is:

ρ = Corr (yi,t, yj,t) =
Ψ
(
−α/

√
γ2 + σ2,−α/

√
γ2 + σ2; ρ∗

)
− PD2

PD(1− PD)
, (2.3)

where ρ∗ = γ2/ (γ2 + σ2) is the asset correlation, that is the correlation between the log as-

set/liability ratios of any two firms, and Ψ(., .; ρ∗) denotes the joint cdf of the bivariate standard

Gaussian distribution with correlation coefficient ρ∗. In the new regulation for credit risk, the re-

quired capital depends on the values of PD and ρ∗, that is, indirectly on the values α/σ and γ/σ,

and is especially sensitive to the asset correlation parameter ρ∗. In the standard implementation

of the above risk factor model, the unknown parameters PD and ρ∗ are replaced by their empir-

ical counterparts, which are close to the true values when the subpopulation sizes are large. This

with time stochastic effects Fk,t. Moreover, we get a joint multi-factor model, whenever the factors Fk,t are different

among classes.
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explains the term ”asymptotic” appearing in the usual methodology. However, it is important to

check if not only the consistency, but also the efficiency can be reached by computationally simple

estimators of the structural parameters 3.

The above ASRF model assumes that the individual fixed effects depend on the segment only,

that is, the individual fixed effects αi, γi, σi, say, are identical for two individuals in a same seg-

ment. This model assumption is compatible with the two-step approach considered in credit risk

applications. First, models with individual fixed effects are used to get the homogeneous subportfo-

lios; then the ASRF model is written for each homogeneous subportfolio to derive the distribution

of the future portfolio value and the corresponding 1% quantile, called CreditVaR. Such a two-step

procedure has been preferred in the current regulation for at least the following reasons: First,

in the standard regulation approach that applies for the banks with the least advanced risk man-

agement systems, a common segmentation can be proposed by the regulator itself. Thus, the risk

analysis is performed by the banks with a same segmentation, which facilitates the aggregation of

bank portfolios when analyzing the global risk of the system. Second, and more importantly, the

introduction of several millions of individual fixed effects beyond segment effects would dimin-

ish the estimated magnitude of idiosyncratic risks. In a regulatory perspective, this would yield

a significantly lower level of required capital. Indeed, the reserves for credit risk are typically

computed with unknown parameters directly replaced by their estimates. 4 Finally, models with-

out individual fixed effects are common in the credit risk literature on bankruptcy prediction [e.g.,

Shumway (2001), Chava, Jarrow (2004), Campbell, Hilscher, Szilagyi (2008)], where individual

heterogeneity is accounted for by observable characteristics. Duffie et al. (2009) estimate their

model on US corporate default data and find that the inclusion of individual fixed effects does not

lead to a significant improvement of the results.

3The underestimation of the asset correlation parameter in 2007-2008 played a key role in the underpricing of

Collateralized Debt Obligations (CDO) contracts and lead to severe losses during the recent subprime crisis.
4In Basel II regulation, the lack of accuracy on estimated model parameters might be taken into account by means of

reserves for estimation risk. However, in the current implementation, these reserves are usually set to zero. Moreover,

the updating of the estimated individual fixed effects would induce a large volatility of the required capital for credit

risk, with undesirable effects on financial market stability.
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2.2 The general specification

The basic ASRF model can be extended to include any number of factors and any type of para-

metric nonlinear dynamics. This extended model is introduced in this section. Let us consider

panel data yi,t for a large homogeneous population of individuals i = 1, ..., n observed at dates

t = 1, ..., T . We assume that there exists a common (multidimensional) factor such that 5:

A.1: Conditional on the factor path (ft), the individual histories (yi,t, t = 1, 2, · · · ), for i varying,

are i.i.d. time-inhomogeneous Markov processes of order 1, with transition pdf h (yi,t|yi,t−1, ft; β)

and unknown parameter β ∈ B, where B ⊂ Rq.

A.2: The factor (ft) is an exogenous Markov process of order 1 in Rm, that is, the conditional

distribution of ft given the past of the factor ft−1 = (ft−1, ft−2, ...) and of the individual histories

yi,t−1 = (yi,t−1, yi,t−2, ...), i = 1, ..., n, depends on ft−1 only, with transition pdf g(ft|ft−1; θ) and

unknown parameter θ ∈ Θ, where Θ ⊂ Rp.

We denote by β0 and θ0 the true values of parameters β and θ, respectively. Factor ft is as-

sumed unobservable. 6 Thus, it has to be integrated out to derive the joint density of observations

yi,t. The latent factor introduces both non-Markovian individual dynamics and dependence across

individuals. The exogeneity assumption means that: (i) there is no feedback from one specific in-

dividual history on the future factor values; and (ii) the lagged factor value includes all informative

macro-summaries of the past. The distribution of the individual histories (yi,t) is exchangeable, i.e.

invariant by permutation of the individuals. The exchangeability property is equivalent to the exis-

tence of a factor representation [de Finetti (1931), Hewitt, Savage (1955)] 7. Such exchangeability

5In an unobservable factor model, the factor process is usually defined up to some nonlinear dynamic transforma-

tion. Assumptions A.1-A.2 have to be satisfied for an appropriate choice of factor ft. As a consequence the Markov

assumption on factor ft is rather mild. For instance, let us consider a dynamic model with a factor ft satisfying As-

sumption A.1 and admitting a nonlinear moving average representation ft = a(εt, εt−1; θ), say, with εt ∼ IIN(0, 1).

Then Assumptions A.1-A.2 are satisfied with ft replaced by f∗t = (εt, εt−1)′ and h(yi,t|yi,t−1, ft;β) replaced by

h∗(yi,t|yi,t−1, f
∗
t ;β∗) = h(yi,t|yi,t−1, a(εt, εt−1; θ);β), where β∗ = (β′, θ′)′.

6As in the ASRF model for default, we can introduce explicitly the fixed effects of the segments, that is, the factors

fk,t can differ among the segments and parameters βk, θk can depend on k, with k = 1, ...,K.
7More precisely, by the de Finetti-Hewitt-Savage theorem, the infinite sequence of histories yi = (yi,t, t =

1, · · · , T ), i = 1, 2, · · · , is exchangeable if and only if there exists a sigma-field F such that yi, i = 1, 2, · · · ,

are i.i.d. conditional on F [see also Kingman (1978)]. Here, we assume that the sigma-field F is generated by the
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assumptions have been introduced in the literature on linear dynamics [see e.g. Andrews (2005)

and Hjellwig, Tjostheim (1999)]. The focus of our paper is on the efficient estimation of both

micro-parameter β and macro-parameter θ in the nonlinear exchangeable panel model A.1-A.2.

Without Assumption A.2 on the parametric factor dynamics, the model introduced in Assump-

tion A.1 might be seen as a model with time fixed effects instead of individual fixed effects. Thus,

we might expect to derive the asymptotic results from the nonlinear panel literature with individual

fixed effects by simply interchanging the roles of individual and time indices i and t, and the sizes

n and T [see e.g. Hahn, Newey (2004) for estimation of nonlinear panel models with fixed indi-

vidual effects]. However, this intuition is not correct since there are important differences between

our setting and the ones considered by the individual fixed effects panel literature:

i) In applications to credit risk the size n of the segment is much larger than the number T of

dates, and therefore the incidental parameter problem [see Neyman, Scott (1948) for the pioneering

paper and Lancaster (2000) for a review] is much less pronounced with time fixed effects than with

individual fixed effects. In particular, bias corrections in the first-order asymptotic distributions are

not required in our setting since we assume T/n→ 0.

ii) Assumption A.2 shows that the nonlinear panel model with common factor is a time series

model introduced for prediction purpose. This fact is illustrated in Section 2.1 on default risk anal-

ysis, in which the final aim is the computation of reserves by means of a quantile of the conditional

distribution of the future portfolio value, that is, the CreditVaR. Therefore, we are interested not

only in the micro-parameter β, but also in the macro-parameter θ.

iii) The parametric Assumption A.2 on the factor dynamics provides additional information,

which might allow for a more efficient estimation of the micro-parameter β.

To establish the large sample properties of the estimators, we introduce the next Assumptions

A.3, A.4 and A.5. Assumptions A.3 and A.4 concern the stationarity and mixing properties of the

factor process, and of the individual histories conditional on the factor process, respectively.

A.3: The process (ft) is strictly stationary and geometrically strong mixing, that is, α(s) = O(ρs)

as s→∞, for some ρ ∈ (0, 1), where α(s) = sup
A∈Ht−∞,B∈H∞t+s

|P(A ∩ B)− P(A)P(B)| denotes the

alpha mixing coefficient at lag s ∈ N, and Ht
−∞ = σ(ft, ft−1, ...) and H∞t+s = σ(ft+s, ft+s+1, ...)

denote the sigma-fields generated by process (ft) up to time t, and from time t+ s onward, respec-

finite-dimensional Markov process (ft).
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tively.

A.4: Conditional on the factor path (ft), the individual process (yi,t) is beta mixing, such that the

conditional beta mixing coefficients:

βt(s) ≡ sup
A∈B(R)

∫ ∣∣P [yi,t ∈ A|yi,t−s = η, ft, ft−1, ..., ft−s+1]− P
[
yi,t ∈ A|ft

]∣∣λ(η)dη, s ∈ N,

are measurable functions of ft and satisfy βt(s)→ 0 as s→∞, for any t and P-a.s., where B(R)

denotes the Borel sigma-field on R, λ is a strictly positive p.d.f. on R, and ft = (ft, ft−1, · · · ).

Assumption A.4 requires that the Markov transition distribution of yi,t conditional on yi,t−s and

the factor path converges to the long run conditional distribution of yi,t, denoted P[·|ft], as the

lag s tends to ∞. The conditional long run distribution P[·|ft] and the conditional beta mixing

coefficients βt(s) at date t depend on the factor path ft, and thus are stochastic. The beta mixing

coefficients βt(s) are assumed to converge to zero as lag s increases, for any factor path, implying

the irrelevance of the initial values of the yi,t’s in the long run conditional on the factor path. The

convergence rate can be geometric, for instance. The integration w.r.t. the factor path is expected

to decrease the decay rate of the mixing coefficients [Granger, Joyeux (1980)]. However, by the

Lebesgue Theorem, under Assumption A.4 the integrated mixing coefficients E0 [βt(s)] are such

that E0 [βt(s)] → 0 as s → ∞. The decay of the integrated mixing coefficients implies that

the initial values of the yi,t’s have no effect in the long run even after integrating out the factors.

As usual, it is convenient for expository purpose to disregard the short run effect of the initial

observations by introducing a suitable assumption on their distribution.

A.5: The initial observations yi,0, with i = 1, ..., n, are i.i.d. conditional on the factor path (ft),

with distribution corresponding to the long run distribution P[·|f0] at time t = 0.

Assumption A.5 implies that at each date t the distribution of yi,t conditional on the factor path

is the long run distribution P[·|ft]. This property is the analog of stationarity for the individual

histories conditional on the factor path.
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3 The likelihood expansion

The joint density of yT = (yi,t, t = 1, ..., T, i = 1, ..., n) and fT = (ft, t = 1, ..., T ) (conditionally

on the initial values) is given by:

l
(
yT , fT ; β, θ

)
=

n∏
i=1

T∏
t=1

h (yi,t|yi,t−1, ft; β)
T∏
t=1

g(ft|ft−1; θ) (3.1)

= lmicro
(
yT |fT ; β

)
lmacro

(
fT ; θ

)
, (say).

If the factors were observable, the terms lmicro
(
yT |fT ; β

)
and lmacro

(
fT ; θ

)
would correspond to

the conditional micro-density of the endogeneous variables, and the macro-density of the factors,

respectively. Since the factors are unobservable, the density of observations yT is obtained by

integrating out the factor path fT :

l
(
yT ; β, θ

)
=

∫
· · ·
∫ T∏

t=1

n∏
i=1

h (yi,t|yi,t−1, ft; β)
T∏
t=1

g(ft|ft−1; θ)
T∏
t=1

dft

=

∫
· · ·
∫

exp

{
n

T∑
t=1

(
1

n

n∑
i=1

log h (yi,t|yi,t−1, ft; β)

)}
T∏
t=1

g(ft|ft−1; θ)
T∏
t=1

dft. (3.2)

This likelihood function involves an integral with a large dimension increasing with T , which

complicates the analytical study of the Maximum Likelihood (ML) estimators and the numerical

computation of the ML estimates 8. However, for large n, this integral can be approximated along

the lines of the Laplace approximation [Laplace (1774)]. The use of the Laplace approximation in

8In such a model with unobservable factors, the ML estimate could be computed numerically by means of an

Expectation-Maximization (EM) algorithm [Dempster, Laird, Rubin (1977)]. The EM algorithm applies recursively

the Expectation step, which computes the function:

Q
[
(β, θ)|(β(p), θ(p))

]
= E

(β(p),θ(p))

[
log l

(
yT , fT ;β, θ

)
|yT
]
,

and the Maximization step, providing the next value of the parameter as:

(β(p+1), θ(p+1)) = arg max
(β,θ)

Q
[
(β, θ)|(β(p), θ(p))

]
.

In our nonlinear dynamic framework, the Expectation step requires the numerical approximation of function Q by

means of a Gibbs sampler [see e.g. Cappé, Moulines, Rydén (2005) for general properties, and Fiorentini, Sentana,

Shephard (2004), Duffie et al. (2009) for applications to credit and finance]. The closed form expression of the

approximate likelihood function given in Proposition 1 avoids the numerically cumbersome expectation step, while

controlling the approximation error.
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the econometric literature is as early as by Holly, Phillips (1979) and Phillips (1983) for the deriva-

tion of the marginal distribution of instrumental variable estimators. Tierney, Kadane (1986) used

this device to derive the posterior distribution in Bayesian statistics. More recently, the Laplace

approximation has been used in Arellano, Bonhomme (2009) to derive the bias of the integrated

likelihood in nonlinear panel models with individual fixed effects. Huber, Scaillet, Victoria-Feser

(2009) use the Laplace approximation to develop a tractable estimator for a multivariate logit model

in a latent factor framework in finance. In our setting with serially dependent factors, the Laplace

approximation is applied to an integral w.r.t. the full path of time effects. Specifically, we start by

defining for any parameter value β ∈ B and date t = 1, ..., T the cross-sectional ML estimator of

the factor value:

f̂n,t(β) = arg max
ft∈Fn

n∑
i=1

log h (yi,t|yi,t−1, ft; β) , (3.3)

where the compact set Fn ⊂ Rm grows when n → ∞ as described by Assumption H.7 in Ap-

pendix A.1. Then, by a Taylor expansion of the integrand in the RHS of equation (3.2) around(
f̂n,1(β)′, ..., f̂n,T (β)′

)′
, that is the maximizer of

T∑
t=1

n∑
i=1

log h(yi,t|yi,t−1, ft; β) w.r.t. the factor

path, we get:

l
(
yT ; β, θ

)
=

T∏
t=1

n∏
i=1

h
(
yi,t|yi,t−1, f̂n,t (β) ; β

) T∏
t=1

g
(
f̂n,t (β) |f̂n,t−1 (β) ; θ

)
∫
· · ·
∫

exp

{
−1

2

T∑
t=1

√
n
(
ft − f̂n,t (β)

)′
In,t (β)

√
n
(
ft − f̂n,t (β)

)}

exp

{
T∑
t=1

ψn,t (ft, ft−1; β, θ)

}
T∏
t=1

dft,

where:

In,t (β) = − 1

n

n∑
i=1

∂2 log h

∂ft∂f
′
t

(
yi,t|yi,t−1, f̂n,t (β) ; β

)
, (3.4)

and the remainder term ψn,t is defined in (a.3) in Appendix A.2.1. By introducing the change

of variables zt =
√
n [In,t (β)]1/2

(
ft − f̂n,t (β)

)
⇐⇒ ft = f̂n,t (β) + 1√

n
[In,t (β)]−1/2 zt, for

t = 1, ..., T , and expanding function exp (
∑

t ψn,t) in a power series of the n−1/2zt, the multivariate

integral in the expression of the likelihood can be written as a linear combination of power moments

of the standard Gaussian distribution, with coefficients depending on the observations. The next

proposition gives the expansion for the (nT -standardized) log-likelihood function of the sample:

LnT (β, θ) =
1

nT
log l

(
yT ; β, θ

)
, (3.5)

11



as a power series of 1/n, and controls the stochastic order of the remainder term.

PROPOSITION 1. Let Assumptions A.1-A.5 and H.1-H.13 in Appendix A.1 be satisfied.

(i) If n, T →∞ such that T ν/n = O(1), for a value ν > 1, we have:

LnT (β, θ) = L∗nT (β) +
1

n
L1,nT (β, θ) + ΨnT (β, θ), (3.6)

where:

L∗nT (β) =
1

nT

T∑
t=1

n∑
i=1

log h
(
yi,t|yi,t−1, f̂n,t (β) ; β

)
, (3.7)

L1,nT (β, θ) = −1

2

1

T

T∑
t=1

log det In,t (β) +
1

T

T∑
t=1

log g
(
f̂n,t (β) |f̂n,t−1 (β) ; θ

)
, (3.8)

with In,t(β) defined as in (3.4), and the remainder term ΨnT (β, θ) is such that sup
β∈B,θ∈Θ

|ΨnT (β, θ)| =

op(1/n) w.r.t. the true distribution.

(ii) If n, T →∞ such that T ν/n = O(1), for a value ν > 3/2, we have:

LnT (β, θ) = L∗nT (β) +
1

n
L1,nT (β, θ) +

1

n2
L2,nT (β, θ) + Ψ̃nT (β, θ), (3.9)

where the reminder term Ψ̃nT (β, θ) is such that sup
β∈B,θ∈Θ

|Ψ̃nT (β, θ)| = op(1/n
2). When the factor

is one-dimensional, i.e. m = 1, the expression of term L2,nT (β, θ) is given by:

L2,nT (β, θ) =
1

8

1

T

T∑
t=1

J4,n,t(β) +
1

2

1

T

T∑
t=1

D20,nt(β, θ) +
1

2

1

T

T∑
t=2

D02,nt(β, θ)

+
5

24

1

T

T∑
t=1

[J3,nt(β)]2 +
1

2

1

T

T∑
t=1

[D10,nt(β, θ)]
2 +

1

2

1

T

T∑
t=2

[D01,nt(β, θ)]
2

+
1

2

1

T

T∑
t=1

J3,n,t(β)D10,nt(β, θ) +
1

2

1

T

T∑
t=2

J3,n,t−1(β)D01,nt(β, θ)

+
1

T

T∑
t=2

D10,n,t−1(β, θ)D01,nt(β, θ), (3.10)

with Jp,nt(β) =
1

n

n∑
i=1

∂p log h

∂f pt

(
yi,t|yi,t−1, f̂n,t (β) ; β

)
[In,t(β)]−p/2, for p = 3, 4, and

Dpq,nt(β, θ) =
∂p+q log g

∂f pt ∂f
q
t−1

(
f̂nt (β) |f̂n,t−1 (β) ; θ

)
[In,t(β)]−p/2[In,t−1(β)]−q/2, for p, q = 0, 1, 2.

Proof. See Appendix A.2.1.
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Function L∗nT (β), called profile log-likelihood function, is the micro log-likelihood of β con-

centrated w.r.t. the factor values, as if the latter ones were nuisance parameters. It contains the

information on β which is independent of the factor dynamics. Proposition 1 shows that the lead-

ing term in the asymptotic expansion of the log-likelihood function LnT (β, θ) in powers of 1/n

involves parameter β only and is equal to L∗nT (β). The next term L1,nT (β, θ) at order 1/n is the

first to provide information on parameter θ characterizing the factor dynamics. It corresponds to

the macro log-likelihood after replacing the unobservable factor values with cross-sectional ap-

proximations depending on β. The log-det component comes from the Jacobian in the change

of variable for Laplace approximation. The term of order 1/n2 involves first- and second-order

derivatives of the macro log-density function, and third- and fourth-order derivatives of the micro

log-density w.r.t. the factor value. Its specific expression seems difficult to interpret in the general

framework. It is possible to derive L2,nT (β, θ) also in the multiple factor case (m ≥ 2), but its

expression is notationally cumbersome and is not provided here. Functions L∗nT (β), L1,nT (β, θ)

and L2,nT (β, θ) do not involve integrals w.r.t. the factor path, but only nonlinear aggregates of

sample observations. In fact, all multidimensional integrals are included in the residual terms

op(1/n), or op(1/n2). Thus, Propositions 1 (i) and (ii) provide closed-form approximations of the

log-likelihood function at order op(1/n), and op(1/n2), respectively. The condition T ν/n = O(1),

ν > 1, is used in Appendix A.2.1 to control the stochastic remainder term in the Laplace ap-

proximation at order op(1/n). This condition constrains the growth rate of the dimension Tm of

the integral in equation (3.2) relatively to the cross-sectional size n, which plays the role of the

parameter tending to infinity in our application of the Laplace approximation method. The more

restrictive condition T ν/n = O(1), ν > 3/2, is used to derive the more accurate log-likelihood

approximation at order op(1/n2).

The true log-likelihood function LnT (β, θ) is invariant to one-to-one transformations of the

factor vector f → φ(f), say, where φ is any invertible mapping in Rm. The leading term L∗nT (β)

in the log-likelihood expansion is invariant to such transformations, since it corresponds to the

concentrated micro log-likelihood. As a consequence, also the terms L1,nT (β, θ) and L2,nT (β, θ)

at order 1/n and 1/n2 are invariant to one-to-one factor transformations, as can be directly verified

from their expressions in (3.8) and (3.10) (for m = 1). In particular, the invariance of L1,nT (β, θ)

explains the log-det component−1

2

1

T

T∑
t=1

log det In,t (β). This component corresponds to the term

13



introduced by Cox, Reid (1987) in their modified profile likelihood [see also Sweeting (1987)]. 9

We can interpret the leading term in the expansions given in Proposition 1 as an example of

the asymptotic equivalence of frequentist and Bayesian methods in large sample [see e.g. Bickel,

Yahav (1969), Ibragimov, Has’minskii (1981)]. To get the intuition, let time dimension T be fixed

and parameter θ be given for a moment. Then, our specification with stochastic common factor

can be seen as a Bayesian approach w.r.t. parameter β and time effects fT . The prior distribution is

such that the density of fT given β is
T∏
t=1

g (ft|ft−1; θ), independent of β, and the prior distribution

of β is diffuse. Then, the posterior density of (β, fT ) corresponds to the RHS of equation (3.1),

while the posterior density of β corresponds to the RHS of equation (3.2), up to multiplicative

constants. Thus, as n → ∞, the “Bayesian” log posterior density LnT (β, θ) approaches the log-

likelihood L∗nT (β), which is the ”frequentist” log-likelihood for β concentrated w.r.t. parameters

ft, t = 1, ..., T . The asymptotic irrelevance of the second term in the RHS of (3.6), or (3.9),

involving the transition density of the factor corresponds to the irrelevance of the prior distribution

in large samples. Our results show that this asymptotic equivalence is still valid when the number

of time effects parameters tends to infinity: T →∞, such that T ν/n→ 0, ν > 1. 10

4 Maximum Likelihood and Maximum Approximated Likeli-

hood estimators

4.1 The estimators of micro- and macro-parameters

The ML estimator of (β, θ) is derived by maximizing the log-likelihood function LnT (β, θ) defined

in equation (3.5). Alternative estimators can be defined by maximizing jointly w.r.t. β and θ

approximations of the log-likelihood function at probability order 1/n, and 1/n2, respectively.

9When the micro-parameter β and the time effect ft are information orthogonal, that is,

E0

[
−∂

2 log h(yi,t|yi,t−1, ft;β0)
∂β∂f ′t

|ft
]

= 0, P-a.s., the score w.r.t. β of the approximated log-likelihood in

Proposition 1 (i) corresponds to the score of the profile log-likelihood in Cox, Reid (1987), and to the score of the

penalized log-likelihood in Bester, Hansen (2009), up to order op(1/n). When information orthogonality does not

apply, the scores of the three log-likelihoods differ at order Op(1/n).
10See Belloni, Chernozhukov (2009) for another extension of the asymptotic normality of the (quasi-) posterior

distribution when the number of parameters increases with the sample size. This extension is derived under different

regularity conditions.
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From Proposition 1 (i), an approximation at order op(1/n) is given by:

LCSA
nT (β, θ) = L∗nT (β) +

1

n
L1,nT (β, θ). (4.1)

This approximation defines the cross-sectional asymptotic (CSA) log-likelihood function. Simi-

larly, from Proposition 1 (ii) an approximation valid up to order op(1/n2) is:

LGA
nT (β, θ) = L∗nT (β) +

1

n
L1,nT (β, θ) +

1

n2
L2,nT (β, θ). (4.2)

This approximated log-likelihood function defines the granularity adjusted (GA) log-likelihood

function. Then, we define the maximum likelihood and maximum approximated likelihood esti-

mators as follows:

DEFINITION 1. (i) The maximum likelihood estimator is
(
β̃nT , θ̃nT

)
= arg max

β∈B,θ∈Θ
LnT (β, θ).

(ii) The CSA maximum likelihood estimator is
(
β̃CSA
nT , θ̃

CSA
nT

)
= arg max

β∈B,θ∈Θ
LCSA
nT (β, θ).

(iii) The GA maximum likelihood estimator is
(
β̃GA
nT , θ̃

GA
nT

)
= arg max

β∈B,θ∈Θ
LGA
nT (β, θ).

The CSA and GA maximum likelihood estimators are computationally more convenient than the

standard ML estimator, since the CSA and GA log-likelihood functions do not involve integrals

w.r.t. the factor path. The difference between the GA and CSA maximum likelihood estimators

is called the granularity adjustment. This terminology is explained by the link with the recent

literature on granularity adjustment in credit risk [see e.g. BCBS (2001), Gordy (2003)]. This

literature focuses on the computation of risk measures, such as the Value-at-Risk, for large ho-

mogeneous portfolios of n assets, whose values are affected by systematic risk factors. The basic

idea is to expand the risk measure around the cross-sectional asymptotic limit of an infinitely fine

grained portfolio (n =∞), and compute the adjustment at order 1/n [see Gagliardini, Gouriéroux,

Monfort (2012), Section 5, for a general presentation of granularity for risk measures]. A similar

approach is applied here on the likelihood function and ML estimators instead of being applied on

the future portfolio value distribution and its quantiles.

4.2 Identification

To analyze the asymptotic properties of the estimators in Definition 1, we introduce suitable iden-

tification assumptions for the micro- and macro-parameters. Identification is ensured by the global
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and local behaviour of the large sample limit of the likelihood function around the true param-

eter value. We exploit the asymptotic expansion of the log-likelihood function in Proposition 1

and consider the case in which the next two conditions are satisfied: (i) the micro-parameter β

is identifiable from the leading term L∗nT (β), and (ii) the full parameter vector (β, θ) is identifi-

able from the log-likelihood approximation at first-order in 1/n, that is, the CSA log-likelihood

LCSAnT (β, θ). The cases in which the identification of the micro-parameter requires the first-order

term n−1L1,nT (β, θ), or the identification of some parameters requires the second-order term

n−2L2,nT (β, θ), lead to different asymptotic behaviours of the estimators and are not considered in

this paper. Let us now derive the identification assumptions, starting from the micro-parameter.

(i) Let us first define the population counterpart of the cross-sectional estimate of the factor

value:

ft (β) = arg max
f∈Rm

E0

[
log h (yi,t|yi,t−1, f ; β) |ft

]
, (4.3)

where E0

[
.|ft
]

denotes the expectation w.r.t. the true conditional distribution of (yi,t, yi,t−1) given

ft = (ft, ft−1, ...). The pseudo-true factor value ft (β) maximizes the limiting cross-sectional log-

likelihood at date t for given parameter value β. It is a function of both parameter β and factor

path ft. Thus, ft (β) is a stochastic process, for any β ∈ B. We assume that the pseudo-true factor

value is globally and locally identified (see Assumption H.2 in Appendix A.1). By the properties

of the Kullback-Leibler discrepancy, at true parameter value β0 the pseudo-true factor value ft (β0)

coincides with the true factor value ft, P-a.s., for any t.

Let us now define the function:

L∗ (β) = plim
n,T→∞

L∗nT (β) = plim
n,T→∞

1

nT

T∑
t=1

n∑
i=1

log h
(
yi,t|yi,t−1, f̂n,t (β) ; β

)
= E0 [log h (yi,t|yi,t−1, ft (β) ; β)] , (4.4)

where the convergence is uniform w.r.t. β ∈ B, and is proved in Lemma 1 (i) (see supplementary

material). Intuitively, function L∗(β) is the asymptotic micro log-likelihood concentrated w.r.t. the

stochastic process (ft). The assumptions below concern the identification of parameter β.

A.6 (Global identification assumption for β): The mapping β → L∗ (β) is uniquely maximized

at the true parameter value β0.

A.7 (Local identification assumption for β): The matrix I∗0 = −∂
2L∗ (β0)

∂β∂β ′
is positive definite.
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The matrix I∗0 is given by:

I∗0 = E0

[
Iββ(t)− Iβf (t)Iff (t)−1Ifβ(t)

]
= E0 [UitU

′
it] , (4.5)

where Iββ(t), Iff (t), Iβf (t) and Ifβ(t) = Iβf (t)
′ denote the blocks of the conditional information

matrix at date t:

I(t) = E0

[
−∂

2 log h (yi,t|yi,t−1, ft; β0)

∂
(
β ′ , f

′
t

)′
∂
(
β ′ , f

′
t

) |ft

]
, (4.6)

and Uit =
∂ log h(yi,t|yi,t−1; ft; β0)

∂β
− Iβf (t)Iff (t)

−1∂ log h(yi,t|yi,t−1; ft; β0)

∂ft
. Thus, I∗0 is the

variance-covariance matrix of the residual Uit in the orthogonal conditional projection of the score

w.r.t. the micro-parameter on the score w.r.t the factor value given ft.

(ii) Let us now consider the macro-component of the log-likelihood. Under Assumptions A.6-

A.7, parameter β can be estimated at a rate faster than the rate for parameter θ. Hence, the relevant

criterion for identification of θ is the mapping θ → L1(β0, θ), where L1(β, θ) is the large sample

limit of L1,nT (β, θ) in equation (3.8). We have L1(β0, θ) = E0 [log g(ft|ft−1; θ)], up to a term con-

stant in θ [see Lemma 1 (ii) in the supplementary material]. Thus, the identification assumptions

for the macro-parameter are the following:

A.8 (Global identification assumption for θ): The mapping θ → E0 [log g(ft|ft−1; θ)] is uniquely

maximized at the true parameter value θ0.

A.9 (Local identification assumption for θ): The matrix I1,θθ = E0

[
−∂

2 log g (ft|ft−1; θ0)

∂θ∂θ′

]
is

positive definite.

Assumptions A.8 and A.9 are the standard global and local identification conditions for estimating

parameter θ in a model with observable factor values.

4.3 Asymptotic properties of the estimators

We consider the asymptotic properties of the CSA, GA and true ML estimators in Definition 1

under Assumptions A.1-A.9 and H.1-H.15 in Appendix A.1. Assumptions A.1-A.9 are invariant

to one-to-one transformations of the factor vector (if the transformation is independent of the pa-

rameters β, θ), whereas some of the Assumptions H.1-H.15 are not. Moreover, the CSA, GA and

true ML estimators are numerically invariant to one-to-one transformations of the factor. Thus, in
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order to establish their asymptotic properties it is enough that the regularity conditions H.1-H.15

in Appendix A.1 are satisfied for a suitable choice of the factor representation.

Let us first study the probability order of the difference between the CSA and GA ML estima-

tors on the one hand, and the true ML estimators on the other hand.

PROPOSITION 2. Under Assumptions A.1-A.9 and H.1-H.15, the CSA, GA and true ML estima-

tors in Definition 1 are such that:

β̃CSA
nT − β̃nT = op(1/n), θ̃CSA

nT − θ̃nT = Op

(
(log n)δ1√

n

)
, (4.7)

β̃GA
nT − β̃nT = op(1/n), θ̃GA

nT − θ̃nT = Op

(
(log n)δ1√

n

)
, (4.8)

for a constant δ1 > 0, if n, T →∞ such that T ν/n = O(1), ν > 1, and:

β̃CSA
nT − β̃nT = Op(1/n

2), θ̃CSA
nT − θ̃nT = Op(1/n), (4.9)

β̃GA
nT − β̃nT = op(1/n

2), θ̃GA
nT − θ̃nT = op(1/n), (4.10)

if n, T →∞ such that T ν/n = O(1), ν > 3/2.

Proof. See Appendix A.2.2.

Proposition 2 states that the CSA, GA and true ML estimators are asymptotically equivalent,

and provides the probability orders of this equivalence. If T ν/n = O(1), ν > 3/2, the GA maxi-

mum likelihood estimator provides a more accurate approximation of the true ML estimator com-

pared to the CSA maximum likelihood estimator. The accuracy of the approximation is superior

for the micro- than for the macro-parameters. Under the less restrictive condition T ν/n = O(1),

ν > 1, the CSA and GA ML estimators have the same order of accuracy in approximating the true

ML estimator, and this accuracy is again superior for the micro-parameters.

The joint asymptotic distribution of the estimators of the micro- and macro-parameters are

given in the next proposition.

PROPOSITION 3. Let Assumptions A.1-A.9 and H.1-H.15 be satisfied, and let (β̂nT , θ̂nT ) be

either the CSA, GA, or true ML estimator in Definition 1. Then, if n, T → ∞ such that T ν/n =

O(1), ν > 1, estimator (β̂nT , θ̂nT ) is consistent and asymptotically normal: √nT (β̂nT − β0

)
√
T
(
θ̂nT − θ0

)
 d−→ N

 0

0

 ,

 B∗ββ B∗βθ

B∗θβ B∗θθ

 , (4.11)
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with asymptotic variance-covariance matrix

B∗ =

 B∗ββ B∗βθ

B∗θβ B∗θθ

 =

 (I∗0 )−1 0

0 I−1
1,θθ

 ,

where I∗0 = E0

[
Iββ(t)− Iβf (t)Iff (t)

−1Ifβ(t)
]

and I1,θθ = E0

[
−∂

2 log g (ft|ft−1; θ0)

∂θ∂θ′

]
.

Proof. See Appendix A.2.3.

Proposition 3 states that the CSA, GA and ML estimators are asymptotically normal with dif-

ferent rates of convergence for the micro- and macro-component, that are root-nT and root-T ,

respectively, if T ν/n = O(1), ν > 1. The asymptotic variance-covariance matrix B∗ defines

the joint efficiency bound for estimating both micro- and macro-parameters (β, θ). Matrix B∗ is

block-diagonal for the micro- and macro-components, with the diagonal blocks corresponding to

the Hessian matrices I∗0 = −∂
2L∗ (β0)

∂β∂β ′
and I1,θθ = −∂

2L1 (β0, θ0)

∂θ∂θ′
. The zero out-of-diagonal

blocks in the efficiency bound imply that parameters β and θ can be considered independently for

estimation purpose. This justifies ex-post their interpretation as micro- and macro-parameters, re-

spectively, since parameter β (resp. θ) contains no macro-information (resp. no micro-information)

under identification Assumptions A.6-A.9. The condition T ν/n = O(1), ν > 1, implies that the

asymptotic distributions of the estimators are centered. Thus, in our framework there is no inci-

dental parameter bias [see e.g. Neyman, Scott (1948) and Lancaster (2000)].

The result in Proposition 3 is a consequence of the expansion of the likelihood function in

Proposition 1. Indeed, under identification Assumptions A.6-A.7 and the regularity conditions in

Appendix A.1, for large n and T the relevant term for estimation of parameter β is L∗nT (β). The

corresponding limit log-likelihood function is L∗ (β) , and the efficiency bound B∗ββ for β is the

inverse of the Hessian I∗0 . Similarly, the efficiency bound B∗θθ for θ is the inverse of the Hessian

I1,θθ. Moreover, the (standardized) ML estimators of β and θ are asymptotically independent.

Therefore, the efficiency bound B∗ββ for β given in Proposition 3 is the same as the efficiency

bound for β with known transition density of the factor. Finally, the information matrix I∗0 is

smaller than the information matrix I∗∗0 = E0 [Iββ(t)] corresponding to the case of observable

factor, while matrix I1,θθ is equal to the information for θ with observable factor. Estimator θ̂nT is

asymptotically equivalent to the unfeasible ML estimator θ̂∗∗T = arg max
θ

T∑
t=1

log g (ft|ft−1; θ), that

uses the true factor values. Therefore, the unobservability of the factor has no efficiency impact
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asymptotically for estimating θ, but has an impact for estimating β. Indeed, the factor values can

be estimated at a rate close to 1/
√
n (see Proposition 5 below), a rate which is faster than the rate

1/
√
T for estimating θ, if T ν/n = O(1), ν > 1, and slower than the rate 1/

√
nT for estimating β.

Proposition 3 shows that the computationally convenient CSA and GA ML estimators are

asymptotically efficient estimators of parameters β and θ (see also Section 5 for other asymp-

totically efficient estimators). This result concerns first-order asymptotics only. It is out of the

scope of the present paper to get the higher-order expansion of the asymptotic distribution of

the standardized estimators
[√

nT
(
β̂nT − β0

)′
,
√
T
(
θ̂nT − θ0

)′]′
in the sense of Ghosh, Subra-

manyam (1974) and Pfanzagl, Wefelmeyer (1978), for instance to correct for the higher-order bias

in n and/or T . It is likely difficult to derive the higher-order expansions due to the double asymp-

totics and the different rates of convergence of the estimators of micro- and macro-parameters.

The GA ML estimator is closer to the unfeasible ML estimator than the CSA ML estimator is, if

T ν/n = O(1), ν > 3/2, and likely inherits its finite-sample properties. In some applications to

credit risk, the ML and GA ML estimators can feature worse finite-sample properties than the CSA

ML estimator [see Gourieroux, Jasiak (2012)]. Therefore, we may expect different higher-order

expansions for the CSA and GA ML estimators.

4.4 Semi-parametric efficiency

The efficiency bound B∗ββ for parameter β in Proposition 3 is independent of the parametric model

g(ft|ft−1; θ), θ ∈ Rp, for the transition density of the factor, that is, factor distribution free. This

suggests that the efficiency result extends to a semi-parametric setting. Specifically, the asymptotic

semi-parametric efficiency bound B for β is the efficiency bound for estimating β in the semi-

parametric model in which the transition g(ft|ft−1) of the factor is a functional parameter. The

semi-parametric efficiency bound B can be computed by using Stein’s heuristic [Stein (1956),

Severini, Tripathi (2001)]. More precisely, let gθ = g(ft|ft−1; θ) be a well-specified parametric

model for the transition of ft with parameter θ ∈ Rp that satisfies Assumptions A.8-A.9 and the

regularity conditions H.12-H.15 in Appendix A.1, and letB∗ββ(gθ) be the corresponding parametric

efficiency bound for estimating β.

DEFINITION 2. The semi-parametric efficiency bound B is defined by:

B = max
gθ

B∗ββ(gθ),
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where the maximization is performed w.r.t. the well-specified parametric models gθ for the transi-

tion of ft that satisfy Assumptions A.8-A.9 and H.12-H.15.

The result in Proposition 3 shows that B∗ββ(gθ) is independent of gθ. Therefore, we deduce:

COROLLARY 4. Under Assumptions A.1-A.7 and H.1-H.11, and if n, T →∞ such that T ν/n =

O(1), ν > 1, the semi-parametric efficiency bound for β is equal to the parametric efficiency

bound: B = B∗ββ = E0

[
Iββ(t)− Iβf (t)Iff (t)−1Ifβ(t)

]−1
.

Thus, any well-specified parametric model gθ is the least-favorable one in the sense of Cham-

berlain (1987). Proposition 3 and Corollary 4 show that the knowledge of the parametric model

for the transition of the factor, and even the knowledge of the transition itself, are irrelevant for the

asymptotically efficient estimation of micro-parameter β. 11

4.5 Approximation of the factor values

Given a consistent estimator of the micro-parameter β, we can use the cross-sectional aggregate

f̂n,t(β) to get consistent approximations of the factor value ft. 12

DEFINITION 3. Let β̂nT denote either the CSA, GA, or true ML estimator of the micro-parameter

β in Definition 1. Then a cross-sectional approximation of the factor value at date t is:

f̂nT,t = f̂n,t

(
β̂nT

)
,

for t = 1, ..., T , where f̂n,t (β) is defined in equation (3.3).

For any given date t, the factor approximation f̂nT,t depends on the whole individual histories

and is a kind of smoothed factor value. Its asymptotic properties are given in the next proposition.

PROPOSITION 5. Suppose Assumptions A.1-A.9 and H.1-H.15 hold, and let n, T → ∞ such

that T ν/n = O(1), ν > 1. Then:

i) For any date t, conditional on ft we have:
√
n
(
f̂nT,t − ft

)
d−→ N

(
0, Iff (t)

−1
)
.

11The proof of Proposition 3 shows that the CSA and GA ML estimators of parameter β based on a misspecified

factor model remain consistent and first-order asymptotically efficient (but not the CSA and GA ML estimators of

parameter θ).
12Approximations of factor values in panel data with large cross-sectional and time dimensions have been proposed

in, e.g., Forni, Reichlin (1998), Forni, Hallin, Lippi, Reichlin (2000), Bai, Ng (2002), Stock, Watson (2002), Connor,

Hagmann, Linton (2012). All these papers consider linear factor models for the micro-dynamics.
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ii) sup
1≤t≤T

∥∥∥f̂nT,t − ft∥∥∥ = Op

(
(log n)δ2√

n

)
, where δ2 = γ2 + γ3/2 + 2/d3 + 1/2 and constants

γ2, γ3 ≥ 0, d3 > 0 are defined in Assumptions H.8-H.10 in Appendix A.1.

Proof. See Appendix A.2.4.

Conditionally on the factor path, the factor approximation converges to the true factor value

ft at rate 1/
√
n. Since β̂nT is root-nT consistent, estimator f̂nT,t is asymptotically equivalent to

the unfeasible ML estimator f̂n,t (β0) for known micro-parameter β0. The asymptotic variance

Iff (t)
−1 of f̂nT,t is the inverse of the Fisher information for estimating ft in the cross-section at

date t with known β0. The uniform convergence in Proposition 5 ii) follows from the convergence

of f̂n,t(β) to ft(β) uniformly in β ∈ B and t = 1, ..., T (see Limit Theorem 1 in the supplementary

materials) and the root-nT consistency of estimator β̂nT (see Proposition 3). Proposition 5 ii) is

not invariant to one-to-one transformations of the factor, since the regularity assumptions include

tail conditions on the factor distribution (see Assumptions H.8-H.10).

5 Two-step efficient estimators

In this section we introduce another asymptotically efficient estimation approach, in which the

estimators of the micro- and macro-parameters can be computed in two steps and are easy to

interpret.

DEFINITION 4. The two-step estimator is defined by:

β̂∗nT = arg max
β∈B

T∑
t=1

n∑
i=1

log h
(
yi,t|yi,t−1, f̂n,t (β) ; β

)
,

and:

θ̂∗nT = arg max
θ∈Θ

T∑
t=1

log g
(
f̂ ∗nT,t|f̂ ∗nT,t−1; θ

)
,

where f̂n,t(β) is defined in equation (3.3) and f̂ ∗nT,t = f̂n,t

(
β̂∗nT

)
for t = 1, ..., T .

In the first step, the estimator β̂∗nT of the micro-parameter is obtained by maximizing the profile

likelihood function L∗nT (β) defined in equation (3.7). Thus, β̂∗nT is the time fixed effects estimator

of β which considers the ft values as additional unknown parameters. Since the function L∗nT (β)
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does not involve the transition pdf of the factor, the estimator β̂∗nT does not depend on the specifi-

cation of the factor dynamics. In this sense, β̂∗nT is a semi-parametric estimator, which is not the

case for the CSA and GA ML estimators. Estimator β̂∗nT is used to derive cross-sectional approx-

imations f̂ ∗nT,t of the factor values. These cross-sectional factor approximations correspond to the

ML estimates of the time fixed effects. In the second step, the approximations of the factor values

are used to derive the approximation of the macro-likelihood function
T∑
t=1

log g
(
f̂ ∗nT,t|f̂ ∗nT,t−1; θ

)
.

By maximizing this approximate likelihood w.r.t. θ, we get an estimator of the macro-parameter.

The asymptotic distribution of the two-step estimator is given in the next proposition.

PROPOSITION 6. Suppose Assumptions A.1-A.9 and H.1-H.15 hold, and let n, T → ∞ such

that T ν/n = O(1), ν > 1. Then the estimators in Definition 4 are such that:

i) β̂∗nT − β̃nT = Op(1/n), θ̂∗nT − θ̃nT = Op

(
(log n)δ1√

n

)
, for δ1 > 0 as in Proposition 2.

ii) The estimator (β̂∗′nT , θ̂
∗′
nT )′ is consistent and asymptotically normal such that: √nT (β̂∗nT − β0

)
√
T
(
θ̂∗nT − θ0

)
 d−→ N

 0

0

 ,

 (I∗0 )−1 0

0 I−1
1,θθ

 ,

where matrices I∗0 and I1,θθ are given in Proposition 3.

Proof. See Appendix A.2.5.

From Propositions 2 and 6 i), the two-step estimator of the micro-parameter provides a less

accurate approximation of the true ML estimator compared with the CSA and GA ML estimators.

However, the semi-parametric estimator β̂∗nT still achieves asymptotically the (semi-) parametric

efficiency bound. In other words, the conditional likelihood estimator of β (based on concentrating

out the ft) is first-order asymptotically equivalent to the full likelihood estimator of β.

The first-order asymptotic distribution of the fixed effects estimator β̂∗nT in Proposition 6 (ii)

is not surprising in view of Theorem 1 in Hahn, Newey (2004), who consider a nonlinear setting

with micro-density h(yi,t|αi; β) and individual fixed effects αi. In particular, the interpretation of

the asymptotic variance I∗0 in equation (4.5) as the outer product of the residual in the orthogonal

projection of the score w.r.t. the micro-parameter on the score w.r.t. the fixed effect, is the same as

in Theorem 1 in Hahn, Newey (2004). However, Proposition 6 cannot be obtained by interchanging

the individual and time indices, and also the sizes n and T , and by letting ρ → 0 in Hahn, Newey
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(2004), where their parameter ρ > 0 is such that n/T → ρ. Indeed, in our paper the micro-

density h(hi,t|yi,t−1, ft; β) depends on the lagged variable yi,t−1, and our asymptotic results are

under a probability measure such that the time effects ft define a stochastic process with parametric

dynamics and are not a sequence of fixed constants. Hahn, Kuersteiner (2002) consider a linear

dynamic panel model with individual fixed effects and prove that the (bias-corrected) fixed effects

estimator is asymptotically efficient in the sense of Hayek’s convolution theorem. Proposition

6 differs from Hahn, Kuersteiner (2002) since we define the efficiency bound as the asymptotic

variance of the ML estimator under a parametric dynamics of the random time effects.

6 Stochastic migration model

In this section we illustrate the finite sample properties of the two-step estimators in Definition 4

with a stochastic migration model.

6.1 The model

The stochastic migration model has been introduced to analyze the dynamics of corporate rat-

ings and is a basic element for the prediction of future credit risk in an homogeneous pool of

credits [e.g., Gupton et al (1997), Gordy, Heitfield (2002), Gagliardini, Gouriéroux (2005a, b),

Feng, Gouriéroux, Jasiak (2008), Koopman, Lucas, Monteiro (2008)]. A basic stochastic migra-

tion model is the ordered qualitative model with one factor, which extends the ASRF model of

Section 2.1 to more than two alternatives. Let us denote by yi,t, with t varying, the sequence of

ratings for corporation i. The possible ratings are k = 1, 2, ..., K, say 13. The micro-dynamic

13In practice, the alternative k = K corresponds typically to default, which is an absorbing state. Then, the

stationarity and mixing conditions in Assumptions A.3-A.4 are not satisfied and the estimators might be inconsistent.

A stationary and mixing framework can be recovered if we assume that the number n of operating firms in the portfolio

is kept constant in time by replacing each defaulted firm by a new one, whose initial rating is randomly distributed

across classes k = 1, ...,K − 1 according to some distribution. This mechanism reflects the ”static pool” definition of

Standard & Poor’s [see Brady and Bos (2002)]. Then, the methodology can be applied considering the model for the

transitions between rating classes k = 1, ...,K−1 [see Gagliardini, Gouriéroux (2005b)]. For expository purpose, we

do not consider an absorbing state here and refer to Gagliardini, Gouriéroux (2005b), Section 4.2, for more details.
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model specifies the transition matrices with elements depending on the factor value:

πlk,t = P [yi,t = k|yi,t−1 = l, ft] = G

(
ck − γlft − αl

σl

)
−G

(
ck−1 − γlft − αl

σl

)
,

where c1 < c2 < ... < cK−1 and αl, γl, σl, l = 1, ..., K are unknown micro-parameters, and

c0 = −∞, cK = +∞. Function G is the cdf of a probability distribution, that corresponds to

the standard normal distribution for the probit model, when G(x) = Φ(x), and to the logistic

distribution for the logit model, when G(x) = 1/ (1 + e−x). Thus, we get a set of ordered probit

or logit models with latent factors and common parameters, since the thresholds ck appear in

each row of the transition matrix. The ratios al,k,t = (ck − γlft − αl) /σl in the above transition

probabilities identify semiparametrically the micro-parameters and the factor values up to location

and scale transformations. Assumptions A.6-A.7 for semi-parametric identification are satisfied

if we impose the constraints c1 = 0, σ1 = 1, α1 = 0, γ1 = 1 when K > 2, and additionally

σ2 = 1 when K = 2 (see Appendix A.3). For instance, the vector of free micro-parameters is

β = (αl, γl, σl, l = 2, ..., K, ck, k = 2, ..., K) when K > 2. Finally, we assume for illustration a

single common factor ft, which follows a linear Gaussian autoregressive process:

ft = µ+ ρft−1 + σηt, (6.1)

where (ηt) is IIN(0, 1), and µ, ρ and σ are unknown macro-parameters.

6.2 Estimation of the micro-parameters

The micro log-density is given by:

log h (yi,t|yi,t−1, ft; β)

=
K∑
k=1

K∑
l=1

1 {yi,t = k, yi,t−1 = l} log

[
G

(
ck − γlft − αl

σl

)
−G

(
ck−1 − γlft − αl

σl

)]
.

The estimators of the factor values given β are:

f̂n,t(β) = arg max
ft

K∑
k=1

K∑
l=1

Nlk,t log

[
G

(
ck − γlft − αl

σl

)
−G

(
ck−1 − γlft − αl

σl

)]
, t = 1, ..., T,

(6.2)

and depend on the data through the aggregate counts Nlk,t of transitions from rating l at time t− 1

to rating k at time t, for k, l = 1, ..., K and t = 1, ..., T . The two-step (semi-)parametrically
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efficient estimator of the micro-parameter is:

β̂∗nT = arg max
β

K∑
k=1

K∑
l=1

T∑
t=1

Nlk,t log

[
G

(
ck − γlf̂n,t(β)− αl

σl

)
−G

(
ck−1 − γlf̂n,t(β)− αl

σl

)]
.

(6.3)

This estimator is computed from the aggregate data on rating transition counts (Nlk,t).

To compare the finite-sample distribution of estimator β̂∗nT and the semi-parametric efficiency

bound, we perform a Monte-Carlo study. We consider the two-state case K = 2 and assume

a logistic function G. Under the semi-parametric identification constraints c1 = α1 = 0 and

γ1 = σ1 = σ2 = 1, the micro-parameter to estimate is β = (γ2, α2)′. The parameter values used in

the Monte-Carlo study are displayed in Table 1.

Table 1: Parameter values

α1 = 0 γ1 = 1 σ1 = 1 α2 = −0.5 γ2 = 1 σ2 = 1

c0 = −∞ c1 = 0 c2 = +∞ µ = 0.1 ρ = 0.5 σ = 0.5

In Figures 1 and 2, we consider the sample sizes n = 200, T = 20, and n = 1000, T = 20,

respectively. In each figure, the two panels display the finite sample distributions of the estimators

of the two micro-parameters (solid lines), that are the components of β̂∗nT . We also display for each

micro-parameter the Gaussian distribution (dashed lines) with mean equal to the true parameter

value and variance equal to the semi-parametric efficiency bound divided by nT . The estimator

β̂∗nT is computed from equation (6.3) by numerical optimization. To evaluate the profile micro-

loglikelihood function for any given β, the estimate f̂n,t(β) in equation (6.2) is computed by grid

search. As expected from the stochastic migration literature, the γ2 parameter, which represents the

sensitivity of the transition probabilities with respect to the systematic factor, is the most difficult to

estimate. Its asymptotic variance is larger and the convergence of the finite sample distribution to

the asymptotic one is slower. A comparison of Figures 1 and 2 shows that the standard deviations

of the estimators decrease by a factor of about 2 when passing from n = 200 to n = 1000, as

suggested by the rate of convergence
√
nT of the micro-parameters estimators. Finally, the latter

estimators feature a rather small finite sample bias.

The semi-parametric efficiency bound for β = (γ2, α2)′ is easily derived from Proposition 3

and is given by:

B∗ββ = E0

 µ1,t−1π12,t (1− π12,t) · µ2,t−1π22,t (1− π22,t)

µ1,t−1π12,t (1− π12,t) + µ2,t−1π22,t (1− π22,t) γ2
2

 f 2
t ft

ft 1

−1

,
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where π12,t = 1/(1+e−ft), π22,t = 1/(1+e−γ2ft−α2) and µ1,t−1 = P
[
yi,t−1 = 1|ft−1

]
= 1−µ2,t−1.

The matrix Bββ involves the probabilities µ1,t−1 and µ2,t−1 of the lagged states, conditional on the

factor path, and the conditional variances of the indicator of state 2, that are π21,t(1 − π21,t) and

π22,t(1 − π22,t), respectively, according to the previous state. The matrix Bββ depends on macro-

parameters µ, ρ, σ2 by means of the expectation E0.

Let us now study the pattern of the semi-parametric efficiency bound of parameter γ2 as a func-

tion of the autoregressive coefficient ρ and the unconditional variance σ2

1−ρ2 of the factor process

(ft). Figure 3 displays the asymptotic standard deviation
(

1
nT
B∗γ2γ2

)1/2 as a function of these two

macro-parameters, where n = 1000 and T = 20, and the semi-parametric efficiency bound B∗γ2γ2
is approximated numerically by Monte-Carlo integration. The values of the micro-parameters and

of µ are given in Table 1. The semi-parametric efficiency bound is decreasing w.r.t. the factor

variance. The pattern is almost flat w.r.t. the autoregressive coefficient ρ of the factor, except for

values of ρ close to 1, where the semi-parametric efficiency bound diverges to infinity.

6.3 Estimation of the macro-parameters

Let us now consider the efficient estimation of the macro-parameter θ = (µ, ρ, σ2)
′. The estima-

tor is based on the cross-sectional approximations of the factor values f̂ ∗nT,t = f̂n,t

(
β̂∗nT

)
from

equations (6.2) and (6.3). The estimators µ̂ and ρ̂ are obtained by OLS on the regression:

f̂ ∗nT,t = µ+ ρf̂ ∗nT,t−1 + ut, t = 2, ..., T.

The estimator of parameter σ2 is given by σ̂2 =
1

T − 1

T∑
t=2

û2
t , where ût = f̂ ∗nT,t− µ̂− ρ̂f̂ ∗nT,t−1 are

the OLS residuals. The estimator θ̂∗ = (µ̂, ρ̂, σ̂2)
′ achieves the asymptotic efficiency bound with

observable factor, that is, the Cramer-Rao bound for θ in the linear Gaussian model (6.1). Thus,

the asymptotic efficiency bound is such that the estimators of (µ, ρ)′ and σ2 are asymptotically

independent, root-T consistent, with asymptotic variance:

B∗(µ,ρ) = σ2
0E

 1 ft

ft f 2
t

−1

=

 σ2
0 + µ2

0
1+ρ0
1−ρ0 −µ0(1 + ρ0)

−µ0(1 + ρ0) 1− ρ2
0

 ,

for (µ, ρ)′, and B∗σ2 = 2σ4
0 , for σ2.

Figures 4 and 5 display the distributions (solid lines) of the efficient estimators µ̂, ρ̂ and σ̂2 in

the Monte-Carlo study for sample sizes n = 200, T = 20, and n = 1000, T = 20, respectively.
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The parameter values are given in Table 1. We also display Gaussian distributions (dashed lines)

centered at the true values of the parameters, with variances equal to the efficiency bounds divided

by T . As expected, it is more difficult to estimate the autoregressive coefficient ρ and the variance

σ2 than to estimate the intercept µ. The estimators ρ̂ and σ̂2 feature moderate downward biases. By

comparing Figure 4 and Figure 5, we notice that the standard deviations of the estimators are rather

similar for the two sample sizes and do not scale with n. Moreover, by comparing Figure 2 and

Figure 5, it is seen that the discrepancy between the finite-sample distribution and the asymptotic

efficiency bound is more pronounced for the macro-parameters than for the micro-parameters for

our sample sizes. These findings are a consequence of the different convergence rates of the two

types of estimators, that are
√
T and

√
nT , respectively.

7 Concluding remarks

We have considered nonlinear dynamic panel models with common unobservable factors, in which

it is possible to disentangle the micro- and the macro-dynamics, the latter ones being captured by

the factor dynamics. Such models are often encountered in finance and insurance when the joint

individual risks dynamics are followed in large homogenous pools of individual contracts such

as corporate loans, household mortgages, or life insurance contracts. In such applications the

model allows to disentangle the dynamics of systematic and unsystematic risks. These models

are also appropriate for extracting the business cycle from tendency surveys [Gouriéroux, Mon-

fort (2009)], to disentangle inequality and mobility features in the dynamic analysis of income

distributions, or to analyze longevity risk [e.g. Lee, Carter (1972), Schrager (2006), Gouriéroux,

Monfort (2008)]. The considered specifications include both segment fixed effects and dynamic

factors, but no individual fixed effects. For large cross-sectional and time dimensions n, T → ∞,

such that T ν/n = O(1), ν > 1, we have derived the semi-parametric efficiency bound of the

parameter β characterizing the micro-dynamics. This semi-parametric efficiency bound takes into

account the factor unobservability, and coincides with the bound for known factor transition. The

efficiency bound for parameter θ characterizing the macro-dynamics is the same as if the factor

were observable. Moreover, we have shown that the efficiency bound for (β, θ) can be reached

by estimators that do not involve numerical integration w.r.t. the factor path and thus are easy to

implement. These results require a large cross-sectional dimension to approximate the likelihood
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function by a closed form expression. When T ν/n = O(1), ν > 3/2, the higher-order terms in this

expansion around n =∞ are the basis for granularity adjustments, which yield asymptotically ef-

ficient estimators, that are more accurate approximations of the true ML estimator. For prediction

purposes, it could be useful to include time-invariant observable individual characteristics xi in the

micro-density h(yi,t|yi,t−1, xi, ft; β). The results in the paper can be easily extended to this case.

The condition T ν/n = O(1), ν > 1, implies that in our framework the incidental parameters

problem does not induce a bias in the first-order asymptotic distribution of the estimators. An

interesting venue for future research is to investigate the properties of the CSA, GA and true ML

estimators, as well as of the two-step estimators, when T/n converges to a non-zero constant.

This asymptotic scheme is common in the panel literature with individual fixed effects, which

focuses on bias correction of the fixed effects estimator [see e.g. Woutersen (2002), Hahn, Newey

(2004), Arellano, Hahn (2006), Bester, Hansen (2009), Hahn, Kuersteiner (2011) for analytical

bias correction, and Hahn, Newey (2004), Dhaene, Jochmans, Thuysbaert (2006), Gourieroux,

Phillips, Yu (2010) for bias correction by jackknife and indirect inference]. When n, T →∞ such

that T/n → c (say), c > 0, it is possible to prove that the fixed effects estimator β̂∗nT , as well as

the CSA and GA ML estimators of β are asymptotically normal, with variance-covariance matrix

(I∗0 )−1, and feature an asymptotic bias. Since the true ML estimator of β admits an interpretation

as a random effects estimator (see Section 3), the results in Hahn, Kuersteiner, Cho (2005) and

Arellano, Bonhomme (2009) suggest that the true ML estimator of parameter β could be first-

order asymptotically unbiased when T/n → c, c > 0. The proof of this conjecture is beyond the

scope of the present paper.
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Figure 1: Distribution of the two-step semiparametrically efficient estimators of the micro-
parameters, sample size n = 200 and T = 20.
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The solid lines give the pdf of the two-step semiparametrically efficient estimators of parameter γ (upper Panel, true

value 1) and parameter α (lower Panel, true value −0.5). The pdf is computed by a kernel density estimator. Sample

sizes are n = 200 and T = 20. The dashed lines in the two Panels give the pdf of a normal distribution centered at

the true value of the parameter and with variance equal to the semi-parametric efficiency bound divided by nT.
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Figure 2: Distribution of the two-step semiparametrically efficient estimators of the micro-
parameters, sample size n = 1000 and T = 20.
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The solid lines give the pdf of the two-step semiparametrically efficient estimators of parameter γ (upper Panel, true

value 1) and parameter α (lower Panel, true value −0.5). The pdf is computed by a kernel density estimator. Sample

sizes are n = 1000 and T = 20. The dashed lines in the two Panels give the pdf of a normal distribution centered at

the true value of the parameter and with variance equal to the semi-parametric efficiency bound divided by nT.
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Figure 3: Semiparametric efficiency bound of the micro-parameter γ2.
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37



Figure 4: Distribution of the two-step efficient estimators of the macro-parameters, sample size
n = 200 and T = 20.
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The solid lines give the pdf of the two-step efficient estimators of parameter μ (upper Panel, true value 0.1), parameter

ρ (central Panel, true value 0.5) and parameter σ 2 (lower Panel, true value 0.25). The pdf is computed by a kernel

density estimator. Sample sizes are n = 200 and T = 20. The dashed lines in the three Panels give the pdf of

a normal distribution centered at the true value of the parameter and with variance equal to the efficiency bound

divided by T.
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Figure 5: Distribution of the two-step efficient estimators of the macro-parameters, sample size
n = 1000 and T = 20.
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The solid lines give the pdf of the two-step efficient estimators of parameter μ (upper Panel, true value 0.1), parameter

ρ (central Panel, true value 0.5) and parameter σ 2 (lower Panel, true value 0.25). The pdf is computed by a kernel

density estimator. Sample sizes are n = 1000 and T = 20. The dashed lines in the three Panels give the pdf of

a normal distribution centered at the true value of the parameter and with variance equal to the efficiency bound

divided by T.
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APPENDIX A

In Appendix A.1 we provide the list of regularity conditions for the asymptotic analysis. The proofs of

Propositions 1, 2, 3, 5 and 6 are given in Appendix A.2. They rely on Limit Theorems 1-3 and Lemmas 1-8,

which are provided in the supplementary material. Appendix A.3 presents the proof of identification of the

micro-parameters in the stochastic migration model. We denote by ‖A‖ the Frobenius norm of matrix A.

Moreover, bi, ci, di and γi, for i = 1, 2, ..., denote constants in the regularity conditions, while C1, C2, ...

denote generic constants used in the proofs.

A.1 Regularity conditions

In addition to Assumptions A.1-A.9, we use the regularity conditions given below to derive the large sample

properties of the estimators. Due to the invariance of the true and approximate log-likelihood functions

under one-to-one factor transformations f → φ(f), the validity of Propositions 1, 2, 3 and 6 only requires

that the regularity conditions are satisfied for a suitable choice of the factor process.

H.1: The parameter sets B ⊂ Rq and Θ ⊂ Rp are compact. The true parameter values β0 and θ0 are

interior points of sets B and Θ, respectively.

H.2: The mapping f → E0

[
log h (yi,t|yi,t−1, f ;β) |ft

]
defined on Rm admits a unique maximum, denoted

by ft(β), for any parameter value β ∈ B and any factor path ft, P-a.s. Moreover,

E0

[
∂ log h(yi,t|yi,t−1, ft(β);β)

∂ft
|ft
]

= 0, and the matrix E0

[
−∂

2 log h(yi,t|yi,t−1, ft(β);β)
∂ft∂f ′t

|ft
]

is posi-

tive definite, for any β ∈ B and any factor path ft, P-a.s.

H.3: The micro-density is such that (i) sup {h(yi,t|yi,t−1, ft;β) : yi,t, yi,t−1 ∈ R, ft ∈ Rm, β ∈ B} < ∞,

and (ii) E0

sup
β∈B

∣∣∣∣∣∂|α| log h(yi,t|yi,t−1, ft(β);β)
∂α(β′, f ′t)′

∣∣∣∣∣
8
 <∞, for any multi-index α ∈ Nq+m with |α| ≤ 3.

H.4: For any β ∈ B: (i) The pseudo-true factor value ft(β) is a measurable mapping of the factor path

ft ∈ R∞, where R∞ denotes the set of real sequences, and measurability is defined w.r.t. the Borel field

B(R∞), i.e., the smallest sigma-field of subsets of R∞ containing all finite-dimensional rectangles;

(ii) The cross-sectional log-likelihood Lt(β) = E0[log h(yi,t|yi,t−1, ft(β);β)|ft] is measurable w.r.t. ft;

(iii) The Hessian matrix It(β) = E0

[
−∂

2 log h(yi,t|yi,t−1, ft(β);β)
∂(β′, f ′t)′∂(β′, f ′t)

|ft
]

is measurable w.r.t. ft.

H.5: P [ξt,1 ≥ u] ≤ b1 exp
(
−c1u

d1
)

as u → ∞, for some constants b1, c1, d1 > 0, where

ξt,1 = max{ξ∗t,1, ξ∗∗t,1}, with ξ∗t,1 =
(

inf
β∈B

inf
f∈Rm:‖f−ft(β)‖≤η∗

λt(β, f)
)−1

, λt(β, f) > 0 denotes the smallest
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eigenvalue of the positive definite matrix It(β, f) ≡ E0

[
−∂

2 log h(yi,t|yi,t−1, f ;β)
∂f∂f ′

|ft
]

, η∗ > 0, and

ξ∗∗t,1 = sup
α∈Nq+m:|α|≤5

sup
β∈B

E0

 sup
f∈Rm:‖f−ft(β)‖≤η∗

∣∣∣∣∣∂|α| log h(yi,t|yi,t−1, f ;β)
∂α(β′, f ′)′

∣∣∣∣∣
2

|ft

.

H.6: The process ξt,2 = sup
β∈B
‖ft(β)‖ is such that P [ξt,2 ≥ u] ≤ b2 exp

(
−c2u

d2
)

as u → ∞, for some

constants b2, c2, d2 > 0.

H.7: The set Fn ⊂ Rm is (i) compact and convex, for any n ∈ N, and such that (ii) Brn(0) ⊂ Fn,

where Brn(0) denotes the open ball in Rm centered at 0 and with radius rn = [(2/c2) log(n)]1/d2 and (iii)

Fn ⊂ BRn(0), where Rn = O([log(n)]γ1) for a constant γ1 with γ1 ≥ 1/d2.

H.8: There exists a constant γ2 ≥ 0 such that:

Kt ≡ inf
n≥1

inf
β∈B

inf
f∈Fn:f 6=ft(β)

[log(n)]γ2
2KLt(f, ft(β);β)
‖f − ft(β)‖2

> 0,

for any t, P-a.s., where KLt(f, ft(β);β) ≡ E0

[
log
(
h(yi,t|yi,t−1, ft(β);β)
h(yi,t|yi,t−1, f ;β)

)
|ft
]

.

H.9: There exists a constant γ3 ≥ 0 such that:

Rt ≡ sup
n≥1

[log(n)]−γ3E0

[
sup
β∈B

sup
f∈Fn

∥∥∥∥∂ log h(yi,t|yi,t−1, f ;β)
∂(β′, f ′)′

∥∥∥∥4

|ft

]
<∞,

for any t, P-a.s. Moreover E0

[
R2
t

]
<∞.

H.10: P [ξt,3 ≥ u] ≤ b3 exp
[
−c3u

d3
]

as u → ∞, for some constants b3, c3, d3 > 0, where

ξt,3 = max{K−1
t ,Γt}, with Γt ≡ sup

n≥1
sup
β∈B

sup
f∈Fn

[log(n)]−γ3 E0

[∥∥∥∥∂ log h(yi,t|yi,t−1, f ;β)
∂f

∥∥∥∥2

|ft

]
.

H.11: (i) There exists a constant γ4 ≥ 0 such that P[ξt,4 ≥ u] ≤ b4 exp
(
−c4u

d4
)
, as u → ∞, for

some constants b4, c4, d4 > 0, where ξt,4 = sup
n≥1

sup
f∈Fn

sup
β∈B

[log(n)]−γ4E0

[
| log h(yi,t|yi,t−1, f ;β)| |ft

]
.

(ii) There exists a constant γ5 ≥ 0 such that E0

[
sup
β∈B

sup
f∈Fn

| log h(yi,t|yi,t−1, f ;β)|4
]

= O ([log(n)]γ5) and

E0

[
sup
β∈B

sup
f∈Fn

∥∥∥∥∂ log h(yi,t|yi,t−1, f ;β)
∂(β′, f ′)′

∥∥∥∥
]

= O ([log(n)]γ5). (iii) Conditions (i) and (ii) are satisfied when

replacing log h(yi,t|yi,t−1, f ;β) by
∂|α| log h(yi,t|yi,t−1, f ;β)

∂α(β′, f ′)′
, for any multi-index α ∈ Nq+m with |α| ≤ 5.

H.12: The stationary distribution Pθ of Markov process (ft) associated with the transition density g(ft|ft−1; θ)

is such that sup
θ∈Θ

Pθ[ft ∈ Fcn] = O
(
e−γ6n

2
)

, for a constant γ6 > 0.
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H.13: The function G(Ft; θ) = log g(ft|ft−1; θ), where Ft = (f ′t , f
′
t−1)′, is:

(i) differentiable w.r.t. Ft ∈ R2m and θ ∈ Θ, and such that (ii) E

[
sup
θ∈Θ

sup
β∈B

∥∥∥∥∂G(Ft(β); θ)
∂θ

∥∥∥∥
]
<∞ and

(iii) P [ξt,5 ≥ u] ≤ b5 exp
(
−c5u

d5
)

, as u → ∞, for some constants b5, c5, d5 > 0, where

ξt,5 = sup
θ∈Θ

sup
β∈B

sup
F∈R2m:‖F−Ft(β)‖≤η∗

∥∥∥∥∥∂|α|G(F ; θ)
∂Fα

∥∥∥∥∥, η∗ > 0, for any multi-index α ∈ N2m such that |α| ≤ 3.

H.14: Assumption H.13 is satisfied for G(Ft; θ) =
∂2 log g(ft|ft−1; θ)

∂θ∂θ′
,

=
∂2 log g(ft|ft−1; θ)

∂θ∂f ′t
, and =

∂2 log g(ft|ft−1; θ)
∂θ∂f ′t−1

.

H.15: The macro-score is such that E0

[∥∥∥∥∂ log g(ft|ft−1; θ0)
∂θ

∥∥∥∥4
]
<∞.

Assumption H.1 is a standard condition on parameter sets and true parameter values. Assumptions

H.2-H.5 concern the micro log-density and the pseudo-true factor values. Specifically, Assumption H.2

corresponds to the global and local identification conditions for the pseudo-true factor value ft (β) as max-

imizer of the asymptotic cross-sectional likelihood function. In Assumption H.3 (i) the micro-density is

upper bounded, uniformly w.r.t. the factor value and micro-parameter. Assumption H.3 (ii) requires finite

higher-order moments for log h(yi,t|yi,t−1, f ;β) and its derivatives w.r.t. β and f , evaluated at f = ft(β),

uniformly in β ∈ B. The measurability conditions in Assumption H.4, together with Assumption A.3, are

used to prove that the pseudo-true factor value ft(β), the cross-sectional log-likelihood Lt(β) and the Hes-

sian matrix It(β) are strictly stationary and ergodic processes, for any given value of the micro-parameter

β ∈ B. Assumption H.5 strengthens the local identification condition of the pseudo-true factor value in

Assumption H.2. It requires that matrix It(β, f) is positive definite for any factor value f in a neighborhood

of ft(β), uniformly w.r.t. the micro-parameter β ∈ B, and for any factor path ft, P-a.s. Moreover, Assump-

tion H.5 implies a tail condition on the stationary distribution of the positive process ξ∗1,t. This condition is

satisfied, when the factor paths associated with very small eigenvalues λt(β, f), for some parameter value

β ∈ B and factor value f close to ft(β), are sufficiently unfrequent. Assumptions H.5 also implies a tail

condition for the stationary distribution of process ξ∗∗t,1 involving higher-order derivatives of the micro log-

density function. Assumptions H.1-H.5 are used to show that the Regularity Conditions RC.2 and RC.3 in

Limit Theorem 3 are satisfied when proving the uniform convergence of the profile log-likelihood function

L∗nT (β), and of its second-order derivative matrix w.r.t. β [see Lemmas 1 (i) and 6 (1i) in the supplementary

material].

Assumptions H.6, H.7 (i)-(ii), H.8-H.10 are used in Limit Theorem 1 to derive the uniform rate of
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convergence of the factor approximations. Specifically, Assumption H.6 concerns the tail of the stationary

distribution of process sup
β∈B
‖ft(β)‖. Assumptions H.7 (ii) and (iii) introduce lower and upper bounds on

the growth rate of set Fn as n → ∞. These bounds are given in terms of expanding balls with radii of the

order of powers of log(n). Under Assumptions H.6 and H.7 (ii), the pseudo-true factor value ft(β) is in

Fn, for any 1 ≤ t ≤ T and β ∈ B, with probability approaching (w.p.a.) 1 at rate O(T/n2). Assumption

H.8 concerns the identifiability of the pseudo-true factor values from the asymptotic cross-sectional log-

likelihood function. For any given micro-parameter value β and date t, the mapping f → KLt(f, ft(β);β)

is a Kullback-Leibler divergence of the conditional p.d.f. h(·|·, f ;β) parametrized by f ∈ Fn from the

pseudo-true conditional p.d.f. h(·|·, ft(β);β) given ft under misspecification. From the global identification

Assumption H.2, we have KLt(f, ft(β);β) > 0, for any factor value f 6= ft(β), parameter value β and

date t, P-a.s. Assumption H.8 strenghtens this condition by requiring that mapping f → KLt(f, ft(β);β)

is lower bounded by a quadratic function proportional to the squared distance ‖f − ft(β)‖2, uniformly in

β ∈ B, f ∈ Fn and n ∈ N. The scale factor is allowed to converge to zero at most at a logarithmic

rate, as set Fn increases. Assumption H.9 introduces a uniform bound on the higher-order moments of the

score of the log-density w.r.t. factor value f ∈ Fn and parameter β ∈ B. The conditional moment of

order 4 is allowed to diverge at a logarithmic rate as Fn increases. Assumption H.10 is a tail condition on

the stationary distribution of the processes K−1
t and Γt. These processes correspond to the inverse of the

measureKt related to the conditional Kullback-Leibler discrepancy for cross-sectional factor approximation,

and the measure Γt of second-order conditional moment of the score of the log-density w.r.t. ft: they are

both functions of the factor path ft. Assumption H.10 is satisfied when the probability mass of Kt in a

neighbourhood of zero, and the probability mass for large values of Γt, are small.

Assumption H.11 introduces tail conditions and uniform bounds on conditional moments of the log

micro-density, and of its derivatives w.r.t. factor ft and parameter β. This assumption is used in Lemma 2

(see the supplementary material) to show the convergence in probability of the cross-sectional log-likelihood

function, and of its derivatives w.r.t. the factor values, uniformly over the parameter value β ∈ B, factor

value f ∈ Fn, and dates 1 ≤ t ≤ T .

Assumptions H.12-H.15 concern the macro log-density and its derivatives w.r.t. factor values and macro-

parameter θ. Specifically, Assumption H.12 requires that the tail of the stationary distribution of the factor

process are sufficiently thin, uniformly w.r.t. the macro-parameter θ. This condition is used in Proposition

A.2 (see Appendix A.2.1) to show that the contribution to the log-likelihood function coming from factor

paths admitting some values outside set Fn is asymptotically negligible. Assumptions H.13 (i) and (ii)

require that function log g(ft|ft−1; θ) is differentiable w.r.t. the factor values and the macro-parameter θ,

with uniformly finite expectation of the first-order derivative w.r.t. θ. Assumption H.13 (iii) is a condition on
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the tail of process ξt,5 involving the derivatives of log g(ft|ft−1; θ) w.r.t. the factor values. Assumption H.15

is a bound on the fourth-order moment of the macro-score
∂ log g(ft|ft−1; θ0)

∂θ
. Assumptions H.13-H.15 are

used to show that Regularity Condition RC.1 in Limit Theorem 2 is satisfied when proving the convergence

of L1,nT (β, θ), and of the Hessian
∂2L1,nT (β, θ)

∂θ∂θ′
, uniformly in β ∈ B, θ ∈ Θ [see Lemmas 1 (ii) and 6

(1ii) in the supplementary material].

A.2 Proofs of the asymptotic results

A.2.1 Proof of Proposition 1

i) Preliminary expansions

Let us write the joint density in equation (3.2) as l
(
yT ;β, θ

)
=
∫

exp [nφnT (fT ;β)] gT (fT ; θ)dfT ,

where fT = (f ′1, f
′
2, ..., f

′
T )′ ∈ RTm, function φnT is defined by φnT (fT ;β) =

T∑
t=1

Ln,t(ft;β), with

Ln,t(ft;β) =
1
n

n∑
i=1

log h(yi,t|yi,t−1, ft;β), and gT (fT ; θ) =
T∏
t=1

g(ft|ft−1; θ). Let εn ↓ 0 be a sequence

indexed by n, and let Bεn (̂fnT (β)) denote the open ball in RTm with radius εn centered in f̂nT (β) =

(f̂n,1(β)′, ..., f̂n,T (β)′)′. The integral in l
(
yT ;β, θ

)
can be decomposed as:

l
(
yT ;β, θ

)
=

∫
Bεn (̂fnT (β))

exp [nφnT (fT ;β)] gT (fT ; θ)dfT

+
∫
Bεn (̂fnT (β))c∩FnT

exp [nφnT (fT ;β)] gT (fT ; θ)dfT

+
∫
Bεn (̂fnT (β))c∩FcnT

exp [nφnT (fT ;β)] gT (fT ; θ)dfT , (a.1)

where FnT = Fn × · · · × Fn ⊂ RTm and Fn ⊂ Rm is the sequence of sets involved in the definition of

estimator f̂n,t(β) [see equation (3.3)].

Let us consider the first integral in the RHS of equation (a.1). We apply the Laplace approximation

method with an explicit expression for the remainder term.

PROPOSITION A.1. We have:∫
Bεn (̂fnT (β))

exp [nφnT (fT ;β)] gT (fT ; θ)dfT =
(

2π
n

)Tm/2
exp [nTL∗nT (β) + TL1,nT (β, θ)] ΛnT (β, θ),

where:

ΛnT (β, θ) =
1

(2π)Tm/2

∫
ZnT (β)

exp

(
−1

2

T∑
t=1

z′tzt

)

· exp

[
T∑
t=1

ψn,t

(
f̂n,t(β) +

[In,t(β)]−1/2

√
n

zt, f̂n,t−1(β) +
[In,t−1(β)]−1/2

√
n

zt−1;β, θ

)]
dz, (a.2)
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the function ψn,t is defined by:

ψn,t(ft, ft−1;β, θ) = n[Ln,t(ft;β)− Ln,t(f̂n,t(β);β)] +
n

2
[ft − f̂n,t(β)]′[In,t(β)][ft − f̂n,t(β)]

+ log g(ft|ft−1; θ)− log g(f̂n,t(β)|f̂n,t−1(β); θ), (a.3)

and the integration domain is ZnT (β) =

{
z = (z′1, ..., z

′
T )′ ∈ RTm :

T∑
t=1

z′tIn,t(β)−1zt ≤ nε2
n

}
.

Proof of Proposition A.1: By the definition of function ψn,t in equation (a.3), we have:

∫
Bεn (̂fnT (β))

exp [nφnT (fT ;β)] gT (fT ; θ)dfT =
T∏
t=1

n∏
i=1

h
(
yi,t|yi,t−1, f̂n,t (β) ;β

) T∏
t=1

g
(
f̂n,t (β) |f̂n,t−1 (β) ; θ

)
·
∫
Bεn (̂fnT (β))

exp

{
T∑
t=1

(
ψn,t(ft, ft−1;β, θ)− n

2
[ft − f̂n,t(β)]′[In,t(β)][ft − f̂n,t(β)]

)}
dfT .

Let us introduce the change of variable from ft to zt =
√
n[In,t(β)]1/2[ft− f̂n,t(β)], for t = 1, ..., T . Then,

we get: ∫
Bεn (̂fnT (β))

exp [nφnT (fT ;β)] gT (fT ; θ)dfT =
(

2π
n

)Tm/2 T∏
t=1

[det In,t (β)]−1/2

·
T∏
t=1

n∏
i=1

h
(
yi,t|yi,t−1, f̂n,t (β) ;β

) T∏
t=1

g
(
f̂n,t (β) |f̂n,t−1 (β) ; θ

)
ΛnT (β, θ). (a.4)

By the definition of functions L∗nT (β) and L1,nT (β, θ) in equations (3.7)-(3.8), the conclusion follows. �

Let us now consider the next two terms in the RHS of equation (a.1). We bound these two terms at the

beginning of the proof of Proposition A.2. The second integral in the RHS of equation (a.1) is asymptotically

negligible for the expansion of the log-likelihood function in powers of 1/n, if the sequence εn converges to

zero slowly enough, namely if
T

nε2
n

= O(n−µ1) for some µ1 > 0. This condition on sequence εn = o(1) can

be satisfied if T ν/n = O(1), with ν > 1. The third integral in the RHS of equation (a.1) is asymptotically

negligible if the set Fn expands fastly enough as n→∞, whereas the tails of the factor distribution are not

too heavy (see Assumption H.12).

PROPOSITION A.2. Under Assumptions A.1-A.5 and H.1-H.13, if T ν/n = O(1), for ν > 1, and
T

nε2
n

=

O(n−µ1), for µ1 > 0, then:

LnT (β, θ) = L∗nT (β) +
1
n
L1,nT (β, θ) +

1
nT

log
[
ΛnT (β, θ) + op

(
n−µ2

)]
,

for any µ2 > 0, where the term op
(
n−µ2

)
is uniform w.r.t. β ∈ B, θ ∈ Θ, and function ΛnT (β, θ) is defined

in equation (a.2).
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Proof of Proposition A.2: (*) The second integral in the RHS of equation (a.1) is such that:∫
Bεn (̂fnT (β))c∩FnT

exp [nφnT (fT ;β)] gT (fT ; θ)dfT =
T∏
t=1

n∏
i=1

h
(
yi,t|yi,t−1, f̂n,t (β) ;β

)
·
∫
Bεn (̂fnT (β))c∩FnT

exp
(
−n[φnT (̂fnT (β);β)− φnT (fT ;β)]

)
gT (fT ; θ)dfT

≤
T∏
t=1

n∏
i=1

h
(
yi,t|yi,t−1, f̂n,t (β) ;β

)
exp (−nτnT (β)) = exp [nTL∗nT (β)− nτnT (β)] , (a.5)

where:

τnT (β) = inf
fT∈Bεn (̂fnT (β))c∩FnT

[φnT (̂fnT (β);β)− φnT (fT ;β)]. (a.6)

(**) The third integral in the RHS of equation (a.1) is such that:∫
Bεn (̂fnT (β))c∩FcnT

exp [nφnT (fT ;β)] gT (fT ; θ)dfT ≤ H̄nTPθ[fT ∈ FcnT ] ≤ H̄nTTPθ [ft ∈ Fcn]

= O
(
TH̄nT e−γ6n

2
)
, (a.7)

uniformly in β ∈ B, θ ∈ Θ, where H̄ = sup{h(yi,t|yi,t−1, ft;β) : yi,t, yi,t−1 ∈ R, ft ∈ Rm, β ∈ B} < ∞

[Assumption H.3 (i)] and γ6 > 0 (Assumption H.12).

(***) Then, from equation (a.1), inequality (a.5), the bound in (a.7), and Proposition A.1, we get:

l
(
yT ;β, θ

)
=
(

2π
n

)Tm/2
exp [nTL∗nT (β) + TL1,nT (β, θ)] [ΛnT (β, θ) + ∆nT (β, θ)] , (a.8)

where:

0 ≤ ∆nT (β, θ) ≤
(

2π
n

)−Tm/2
exp [T |L1,nT (β, θ)|]

·
{

exp [−nτnT (β)] + exp
[
nT (|L∗nT (β)|+ C1)− γ6n

2
]}
, (a.9)

for a constant C1 > 0. To bound the RHS of inequality (a.9) we need the uniform asymptotic behaviour

of functions L∗nT (β) and L1,nT (β, θ). These functions involve mixtures of cross-sectional and time series

aggregates. We prove in Lemma 1 in the supplementary material that L∗nT (β) and L1,nT (β, θ) converge in

probability to the corresponding population quantities L∗(β) = E0[log h(yi,t|yi,t−1, ft(β);β)] and:

L1(β, θ) = −1
2
E0 [log det It,ff (β)] + E0[log g(ft(β)|ft−1(β); θ)], (a.10)

where It,ff (β) = E0

[
−∂

2 log h (yi,t|yi,t−1, ft (β) ;β)
∂f∂f ′

|ft
]

, uniformly in β ∈ B, θ ∈ Θ. Moreover,

sup
β∈B
|L∗(β)| <∞ and sup

β∈B,θ∈Θ
|L1(β, θ)| <∞ from Assumptions H.1, H.3, H.5 and H.13. We deduce that:

sup
β∈B
L∗nT (β) = Op(1), sup

β∈B,θ∈Θ
L1,nT (β, θ) = Op(1). (a.11)
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Let us now prove that:

inf
β∈B

τnT (β) ≥ C2
ε2
n

[log(n)]C3
, (a.12)

w.p.a. 1, for some constants C2, C3 > 0, where τnT (β) is defined in equation (a.6). We have:

inf
β∈B

τnT (β) = inf
β∈B

inf
fT∈Bεn (̂fnT (β))c∩FnT

T∑
t=1

[Ln,t(f̂n,t(β);β)− Ln,t(ft;β)]

= inf
β∈B

inf
fT∈Bεn (̂fnT (β))c∩FnT

T∑
t=1

Ln,t(f̂n,t(β);β)− Ln,t(ft;β)

‖f̂n,t(β)− ft‖2
‖f̂n,t(β)− ft‖2

≥

(
inf

1≤t≤T
inf
β∈B

inf
ft∈Fn

Ln,t(f̂n,t(β);β)− Ln,t(ft;β)

‖f̂n,t(β)− ft‖2

)
ε2
n.

In Lemma 2 in the supplementary material we prove that the term in the round brackets is lower bounded

by C2[log(n)]−C3 , w.p.a. 1, for some constants C2, C3 > 0. Then, the lower bound (a.12) follows.

From inequalities (a.9) and (a.12), the bounds in (a.11), and condition
T

nε2
n

= O(n−µ1), µ1 > 0, we get:

sup
β∈B

sup
θ∈Θ

∆nT (β, θ) ≤ exp
{
− C2nε

2
n

[log(n)]C3

[
1 +Op

(
T [log(n)]C3

nε2
n

)
+O

(
T [log(n)]C3+1

nε2
n

)]}
+ exp

{
−γ6n

2 [1 +Op(T/n)]
}

= op(n−µ2),

for any µ2 > 0. By taking the log on equation (a.8), Proposition A.2 follows. �

ii) CSA log-likelihood expansion [proof of Proposition 1 (i)]

In order to derive an expansion of the log-likelihood function at order op(1/n) from Proposition A.2,

we have to control the term ΛnT (β, θ) uniformly in β ∈ B, θ ∈ Θ. Since ΛnT (β, θ) can take values both

above, or below, 1, we need a uniform upper bound on the absolute value of log ΛnT (β, θ). Such a bound is

provided next.

PROPOSITION A.3. Under Assumptions A.1-A.5 and H.1-H.13, if T ν/n = O(1), for ν > 1, and
T

nε2
n

=

O(n−µ1), for µ1 > 0, then:

LnT (β, θ) = L∗nT (β) +
1
n
L1,nT (β, θ) +

1
nT

log
[
ΛnT (β, θ) + op

(
n−µ2

)]
,

and:

|log (ΛnT (β, θ))| ≤ C4Tεn[log(n)]C5 , (a.13)

uniformly in β ∈ B, θ ∈ Θ, w.p.a. 1, for any µ2 > 0 and some constants C4, C5 > 0.

Proof of Proposition A.3: (*) Let us perform a Taylor expansion of function ψn,t defined in equation (a.3)

around (ft, ft−1) = (f̂n,t(β), f̂n,t−1(β)), and then use this expansion to derive an upper bound for term
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ψn,t

(
f̂n,t (β) +

1√
n

[In,t (β)]−1/2 zt, f̂n,t−1 (β) +
1√
n

[In,t−1 (β)]−1/2 zt−1;β, θ
)

in the RHS of equation

(a.2). To simplify the notation, we consider the case m = 1. We get for z ∈ ZnT (β):∣∣∣∣ψn,t(f̂n,t (β) +
1√
n

[In,t (β)]−1/2 zt, f̂n,t−1 (β) +
1√
n

[In,t−1 (β)]−1/2 zt−1;β, θ
)∣∣∣∣

≤ 1
3!
√
n
J̃3,nt(β)|zt|3 +

1√
n
D̃10,nt(β, θ)|zt|+

1√
n
D̃01,nt(β, θ)|zt−1|, (a.14)

where J̃3,nt(β) = sup
ft:|ft−f̂n,t(β)|≤εn

∣∣∣∣∂3Ln,t (ft;β)
∂f3

t

∣∣∣∣ |In,t (β)|−3/2 and D̃pq,nt(β, θ) = |In,t (β)|−p/2 |In,t−1 (β)|−q/2

· sup
ft,ft−1

{∣∣∣∣∂p+q log g
∂fpt ∂f

q
t−1

(ft|ft−1; θ)
∣∣∣∣ : |ft − f̂n,t(β)| ≤ εn, |ft−1 − f̂n,t−1(β)| ≤ εn

}
, for p + q = 1. We use

Lemma 3 in the supplementary material to get upper bounds for the coefficients J̃3,nt(β), D̃10,nt(β, θ), and

D̃01,nt(β, θ) in the RHS of inequality (a.14), uniformly in β ∈ B, θ ∈ Θ and 1 ≤ t ≤ T . By exploiting

the tail conditions in Assumptions H.5 and H.13 (iii), and T ν/n = O(1), ν > 1, the bounds diverge slowly

with sample sizes n, T , namely as powers of log(n). More precisely, let us define the sequence:

κn = 2[log(n)/C6]C7 , n ∈ N, (a.15)

where constants C6, C7 > 0 are such that C6 ≤ min{c1, c5} and C7 ≥ max{3/d1, 2/d5}, for c1, d1

and c5, d5 defined in Assumptions H.5 and H.13 (iii), respectively. If z ∈ ZnT (β), we have ‖z‖2 ≤

[ sup
1≤t≤T

sup
β∈B

In,t(β)]nε2
n. This implies |zt| ≤ ‖z‖ ≤

√
nεnκ

1/2
n for any t, w.p.a. 1, since sup

1≤t≤T
sup
β∈B

In,t(β) ≤

κn w.p.a. 1 from Lemma 3 (ii). Then, by Lemma 3 (iii-iv) and inequality (a.14), we get:∣∣∣∣∣
T∑
t=1

ψn,t

(
f̂n,t (β) +

1√
n

[In,t (β)]−1/2 zt, f̂n,t−1 (β) +
1√
n

[In,t−1 (β)]−1/2 zt−1;β, θ
)∣∣∣∣∣

≤ 1
3!
κ3/2
n εn‖z‖2 + 2Tκ3/2

n εn, (a.16)

uniformly in β ∈ B, θ ∈ Θ, w.p.a. 1.

(**) Let us now use inequality (a.16) to derive uniform upper and lower bounds for ΛnT (β, θ), whose

expression is given in equation (a.2).

a) Uniform upper bound. From inequality (a.16) we have (for m = 1):

ΛnT (β, θ) ≤ e2Tκ
3/2
n εn

(2π)T/2

∫
RT

exp
(
−1

2

(
1− 1

3
κ3/2
n εn

)
‖z‖2

)
dz =

e2Tκ
3/2
n εn(

1− 1
3κ

3/2
n εn

)T/2
∼ exp

(
13
6
Tκ3/2

n εn

)
, (a.17)

uniformly in β ∈ B, θ ∈ Θ.
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b) Uniform lower bound. If ‖z‖2 ≤ nε2
n inf

1≤t≤T
inf
β∈B

In,t(β), then z ∈ ZnT (β). Moreover, from Lemma 3 (i)

we have inf
1≤t≤T

inf
β∈B

In,t(β) ≥ κ−1
n , w.p.a. 1. Thus, from (a.2) and (a.16) we get:

ΛnT (β, θ) ≥ e−2Tκ
3/2
n εn

(2π)T/2

∫
‖z‖2≤nε2n/κn

exp
(
−1

2

(
1 +

1
3
κ3/2
n εn

)
‖z‖2

)
dz

=
e−2Tκ

3/2
n εn

(2π)T/2

∫ √nε2n/κn
0

∫
ST−1

exp
(
−1

2

(
1 +

1
3
κ3/2
n εn

)
r2

)
rT−1dz′dr,

w.p.a. 1, where rT−1dz′dr is the integration element in spherical coordinates in dimension T and ST−1

denotes the unit sphere in dimension T . By using
∫
ST−1

dz′ =
2πT/2

Γ(T/2)
and the change of variable from r

to u =
1
2

(
1 +

1
3
κ3/2
n εn

)
r2, we get:

ΛnT (β, θ) ≥ e−2Tκ
3/2
n εn(

1 + 1
3κ

3/2
n εn

)T/2 1
Γ(T/2)

∫ an

0
uT/2−1 exp (−u) du,

where an =
1
2
nε2

nκ
−1
n

(
1 +

1
3
κ3/2
n εn

)
. The quantity qnT =

1
Γ(T/2)

∫ an

0
uT/2−1 exp (−u) du is the

value at an of the cumulative distribution function (cdf) of a Gamma distribution γ(T/2) with parameter

T/2. Equivalently, qnT = P[XnT ≤ 1], where the random variableXnT is such that anXnT ∼ γ(T/2). The

moment generating function of XnT is MnT (s) = E [exp(−sXnT )] =
(

1 +
s

an

)−T/2
, for s ∈ R+. Thus,

MnT (s) ∼ exp
(
− Ts

2an

)
→ 1, as n, T → ∞, for any s ∈ R+, since T/an = o(1) from the condition

T

nε2
n

= O(n−µ1), µ1 > 0. Thus, XnT converges in distribution to the constant 1, as n, T → ∞. This

implies qnT = 1 + o(1). Thus, we get:

ΛnT (β, θ) ≥ e−2Tκ
3/2
n εn(

1 + 1
3κ

3/2
n εn

)T/2 (1 + o(1)) ∼ exp
(
−13

6
Tκ3/2

n εn

)
, (a.18)

uniformly in β ∈ B, θ ∈ Θ, w.p.a. 1. From bounds (a.17)-(a.18), and the expression of κn in (a.15), the

upper bound (a.13) in Proposition A.3 follows. �

To prove the CSA expansion in Proposition 1 (i), we use Proposition A.3. If n, T → ∞ such that

T ν/n = O(1), for ν > 1, then there exists a sequence εn ↓ 0 such that
T

nε2
n

= O(n−µ1), for some

µ1 > 0, and εn[log(n)]C5 = o(1), for constant C5 of Proposition A.3. Thus, from Proposition A.3 and

equation (a.8), we deduce that equation (3.6) holds with ΨnT (β, θ) =
1
nT

log [ΛnT (β, θ) + ∆nT (β, θ)],

where ∆nT (β, θ) ≥ 0, ∆nT (β, θ) = op(n−µ2), for any µ2 > 0, and | log ΛnT (β, θ)| = op(T ), uniformly in

β ∈ B, θ ∈ Θ. Then, from the monotonicity of the logarithm, we have w.p.a. 1:

ΨnT (β, θ) ≤ 1
nT

max {log[2ΛnT (β, θ)], log[2∆nT (β, θ)]}

≤ O

(
1
nT

)
+

1
nT

max {log[ΛnT (β, θ)], 0} = op(1/n),
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and ΨnT (β, θ) ≥ 1
nT

log[ΛnT (β, θ)] = op(1/n), uniformly in β ∈ B and θ ∈ Θ. Proposition 1 (i) follows.

iii) GA log-likelihood expansion [proof of Proposition 1 (ii)]

In order to derive an expansion of the log-likelihood function at order op(1/n2), we need a more accurate

analysis of the term ΛnT (β, θ) compared to Proposition A.3. A uniform asymptotic expansion for ΛnT (β, θ)

at order op(T/n) is provided in Proposition A.4 below under an additional condition on the convergence

rate of sequence εn, namely
√
Tε2

n = O(n−µ3), with µ3 > 0. This condition is compatible with condition
T

nε2
n

= O(n−µ1), with µ1 > 0, if n, T →∞ such that T ν/n = O(1), with ν > 3/2.

PROPOSITION A.4. Under Assumptions A.1-A.5 and H.1-H.13, if T ν/n = O(1), with ν > 3/2, and if

εn is such that
T

nε2
n

= O(n−µ1) and
√
Tε2

n = O(n−µ3), for some µ1, µ3 > 0, then:

LnT (β, θ) = L∗nT (β) +
1
n
L1,nT (β, θ) +

1
nT

log
[
ΛnT (β, θ) + op

(
n−µ2

)]
,

for any µ2 > 0, and:

ΛnT (β, θ) = 1 +
T

n
L2,nT (β, θ) + op(T/n), (a.19)

uniformly in β ∈ B, θ ∈ Θ.

Proof of Proposition A.4: We perform a Taylor expansion of function ψn,t in (a.3) around (ft, ft−1) =

(f̂n,t(β), f̂n,t−1(β)). The expansion is of fifth-order for the part of the function in the RHS of the first line

in equation (a.3), and of third order for the part of the function in the second line in equation (a.3), so that

the remainder term involves a power n−3/2. To simplify the notation, we consider the case m = 1. We get:

ψn,t

(
f̂n,t (β) +

1√
n

[In,t (β)]−1/2 zt, f̂n,t−1 (β) +
1√
n

[In,t−1 (β)]−1/2 zt−1;β, θ
)

=
1

3!
√
n
J3,nt(β)z3

t +
1

4!n
J4,nt(β)z4

t +
1√
n
D10,nt(β, θ)zt +

1√
n
D01,nt(β, θ)zt−1

+
1

2n
D20,nt(β, θ)z2

t +
1

2n
D02,nt(β, θ)z2

t−1 +
1
n
D11,nt(β, θ)ztzt−1 +Rn,t(zt, zt−1;β, θ), (a.20)

where the remainder term is such that:

|Rn,t(zt, zt−1;β, θ)| ≤ 1
5!n3/2

J̃5,nt(β)|zt|5 +
1

3!n3/2

3∑
j=0

(
3
j

)
D̃3−j,j,nt(β, θ)|zt|3−j |zt−1|j , (a.21)

with J̃5,nt(β) = sup
ft:|ft−f̂n,t(β)|≤εn

∣∣∣∣∂5Ln,t (ft;β)
∂f5

t

∣∣∣∣ |In,t (β)|−5/2 and D̃pq,nt(β, θ) = |In,t (β)|−p/2 |In,t−1 (β)|−q/2

· sup
ft,ft−1

{∣∣∣∣∂p+q log g
∂fpt ∂f

q
t−1

(ft|ft−1; θ)
∣∣∣∣ : |ft − f̂n,t(β)| ≤ εn, |ft−1 − f̂n,t−1(β)| ≤ εn

}
, for p + q = 3. Let us

write the exponential exp

(
T∑
t=1

ψn,t

)
in equation (a.2) as a series, and interchange the series and the integral
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by applying the Lebesgue theorem on the bounded domainZnT (β). We get ΛnT (β, θ) =
∞∑
j=0

1
j!

Λj,nT (β, θ),

where:

Λj,nT (β, θ) =
1

(2π)T/2

∫
ZnT (β)

exp
(
−1

2
‖z‖2

)

·

[
T∑
t=1

ψn,t

(
f̂n,t(β) +

[In,t(β)]−1/2

√
n

zt, f̂n,t−1(β) +
[In,t−1(β)]−1/2

√
n

zt−1;β, θ

)]j
dz. (a.22)

We analyze the terms Λj,nT (β, θ), for j = 0, 1, ..., separately. By replacing expansion (a.20) into equation

(a.22), we show below that:

Λ0,nT (β, θ) = 1 + op(T/n), (a.23)

Λ1,nT (β, θ) =
1

8n

T∑
t=1

J4,nt(β) +
1

2n

T∑
t=1

D20,nt(β, θ) +
1

2n

T∑
t=2

D02,nt(β, θ) + op(T/n), (a.24)

Λ2,nT (β, θ) =
5

12n

T∑
t=1

J3,nt(β)2 +
1
n

T∑
t=1

D10,nt(β, θ)2 +
1
n

T∑
t=2

D01,nt(β, θ)2 +
1
n

T∑
t=1

J3,nt(β)D10,nt(β, θ)

+
1
n

T∑
t=2

J3,n,t−1(β)D01,nt(β, θ) +
2
n

T∑
t=2

D10,n,t−1(β, θ)D01,nt(β, θ) + op (T/n) , (a.25)

and:
∞∑
j=3

1
j!
|Λj,nT (β, θ)| = op(T/n), (a.26)

uniformly in β ∈ B, θ ∈ Θ. By combining equations (a.23)-(a.26), equation (a.19) follows.

a) Proof of equivalence (a.23). We have Λ0,nT (β, θ) = 1− 1
(2π)T/2

∫
ZnT (β)c

exp
(
−1

2
‖z‖2

)
dz. Let

us derive an upper bound for the integral
1

(2π)T/2

∫
ZnT (β)c

exp
(
−1

2
‖z‖2

)
z2k
t dz, with k ∈ N and t =

1, ..., T . If z ∈ ZnT (β)c, we have ‖z‖2 ≥ [ inf
1≤t≤T

inf
β∈B

In,t(β)]nε2
n ≥ nε2

nκ
−1
n , w.p.a. 1, from Lemma 3 (i) .

We get:

1
(2π)T/2

∫
ZnT (β)c

exp
(
−1

2
‖z‖2

)
z2k
t dz ≤

1
(2π)T/2

∫
‖z‖2≥nε2nκ

−1
n

exp
(
−1

2
‖z‖2

)
z2k
t dz

≤ 1
(2π)T/2T

∫ ∞
√
nε2nκ

−1
n

∫
ST−1

exp(−r2/2)rT+2k−1dz′dr

=
1

T2T/2−1Γ(T/2)

∫ ∞
√
nε2nκ

−1
n

exp(−r2/2)rT+2k−1dr, (a.27)

uniformly in 1 ≤ t ≤ T and β ∈ B, where we have used spherical coordinates as in the proof of Proposition

A.3. By the change of variable from r to u =
1
2
r2, we have:

1
2T/2−1Γ(T/2)

∫ ∞
√
nε2nκ

−1
n

exp(−r2/2)rT+2k−1dr =
2kΓ(T/2 + k)

Γ(T/2)
1

Γ(T/2 + k)

∫ ∞
ān

e−uuT/2+k−1du, (a.28)
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where ān =
1
2
nε2

nκ
−1
n . The RHS involves the survivor function of the Gamma distribution γ(T/2 + k)

evaluated at ān. Since ān →∞ as n→∞, to upper bound the RHS of equation (a.28) it is enough to upper

bound the cdf of the Gamma distribution in the right tail. By repeated partial integration, we get for any

s ≥ 1 and δ ≥ 1:

1
Γ(δ)

∫ ∞
s

e−uuδ−1du =
e−ssδ−1

Γ(δ)
+
e−ssδ−2

Γ(δ − 1)
+ · · ·+ e−ssl+1

Γ(l + 2)
+

1
Γ(l + 1)

∫ ∞
s

e−uuldu

≤ e−s(sδ−1 + sδ−2 + · · ·+ sl+1) +
∫ ∞
s

e−uudu ≤ (bδc+ 1)e−ssδ−1, (a.29)

where bδc denotes the integer part of δ and l = δ − bδc is the decimal part of δ. From inequality (a.27) and

equation (a.28), and by using bound (a.29) with s = ān and δ = T/2 + k, we get:

sup
1≤t≤T

sup
β∈B

1
(2π)T/2

∫
ZnT (β)c

exp
(
−1

2
‖z‖2

)
z2k
t dz ≤

2kΓ(T/2 + k)
Γ(T/2)

T/2 + k + 1
T

e−ān āT/2+k−1
n .

By the Stirling’s formula, we have
Γ(T/2 + k)

Γ(T/2)
= O(T k) for large T . Moreover, from condition

T

nε2
n

=

O(n−µ1), µ1 > 0, we have:

e−ān āT/2+k−1
n = exp

{
−nε

2
n

2κn

[
1 + o

(
Tκn log(n)

nε2
n

)]}
≤ exp

(
−nε

2
n

4κn

)
= o(n−µ4),

for any µ4 > 0. Thus, we get for any k ∈ N:

sup
1≤t≤T

sup
β∈B

1
(2π)T/2

∫
ZnT (β)c

exp
(
−1

2
‖z‖2

)
z2k
t dz = op

(
n−µ4

)
, (a.30)

for any µ4 > 0. In particular, equivalence (a.23) follows.

b) Proof of equivalence (a.24). By the symmetry of the domain of integration ZnT (β) we have:

Λ1,nT (β, θ) =
1

4!n

T∑
t=1

J4,nt(β)a2,nT,t(β) +
1

2n

T∑
t=1

D20,nt(β, θ)a1,nT,t(β)

+
1

2n

T∑
t=2

D02,nt(β, θ)a1,nT,t−1(β) +
T∑
t=1

1
(2π)T/2

∫
ZnT (β)

exp
(
−1

2
‖z‖2

)
Rn,t(zt, zt−1;β, θ)dz,

(a.31)

where we use the notation ak,nT,t(β) =
1

(2π)T/2

∫
ZnT (β)

exp
(
−1

2
‖z‖2

)
z2k
t dz. To control the RHS of

equation (a.31), we use Lemma 4 in the supplementary material, which provides uniform upper bounds for

terms Jp,nt(β) and Dpq,nt(β, θ) involving higher-order partial derivatives w.r.t. the factor values. From

inequality (a.21) and Lemma 4, the last term in the RHS of equation (a.31) is Op

(
Tκn

n3/2

)
= op(T/n),

uniformly in β ∈ B, θ ∈ Θ, where sequence κn is defined in (a.15). By using the bound in (a.30), we have

a2,nT,t = 3 + op(n−µ5) and a1,nT,t = 1 + op(n−µ5), uniformly in t = 1, ..., T and β ∈ B, for any µ5 > 0.

Then, from equation (a.31) and Lemma 4 in the supplementary material, we get equivalence (a.24).
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c) Proof of equivalence (a.25). By the symmetry of domain ZnT (β), we have:

Λ2,nT (β, θ) =
1

(3!)2n

T∑
t=1

J3,nt(β)2a3,nT,t(β) +
1
n

T∑
t=1

D10,nt(β, θ)2a1,nT,t(β)

+
1
n

T∑
t=2

D01,nt(β, θ)2a1,nT,t−1(β) +
2

3!n

T∑
t=1

J3,nt(β)D10,nt(β, θ)a2,nT,t(β)

+
2

3!n

T∑
t=2

J3,n,t−1(β)D01,nt(β, θ)a2,nT,t−1(β) +
2
n

T∑
t=2

D10,n,t−1(β, θ)D01,nt(β, θ)a1,nT,t−1(β) +Op

(
T 2κ2

n

n2

)
.

From equation (a.30) we get a3,nT,t(β) = 15 + op(n−µ6) uniformly, for any µ6 > 0. Then, from Lemmas

3 and 4 in the supplementary material, equivalence (a.25) follows.

d) Proof of equivalence (a.26). We use Lemma 5 in the supplementary material, which provides the

following uniform upper bounds for Λj,nT (β, θ), for any integer j ≥ 3:

Λj,nT (β, θ) ≤ C∗j

(
T 2κjn
n2

)
, (a.32)

and:

Λj,nT (β, θ) ≤ C8κ
2j
n j!

(
T

n
+
√
Tε2

n

)j
, (a.33)

uniformly in β ∈ B, θ ∈ Θ, w.p.a. 1, for some constants C∗j > 0, j = 3, 4, ..., and C8 > 0, and where

sequence κn is defined in (a.15). The sequence of constants C∗j in bound (a.32) diverges rapidly as j

increases, and the sequence C∗j κ
j
n/j! might not be summable. This explains why, for any given J ≥ 3

independent of n and T , we use the bound in (a.32) for j ≤ J and the bound in (a.33) for j > J , to get

w.p.a. 1:

∞∑
j=3

1
j!
|Λj,nT (β, θ)| ≤

J∑
j=3

C∗j
T 2κjn
j!n2

+
∞∑

j=J+1

C8κ
2j
n

(
T

n
+
√
Tε2

n

)j

=
J∑
j=3

C∗j
T 2κjn
j!n2

+ C8
ρJ+1
nT

1− ρnT
= op(T/n) +Op

(
ρJ+1
nT

)
,

uniformly in β ∈ B, θ ∈ Θ, where ρnT = κ2
n

(
T

n
+
√
Tε2

n

)
= o(n−µ7), for any µ7 such that 0 <

µ7 < min{µ3, 1 − 1/ν}, if T ν/n = O(1), for ν > 3/2, and
√
Tε2

n = O(n−µ3), µ3 > 0. If we choose

J ≥ max{3, 1/µ7 − 1}, we get ρJ+1
nT = o(n−1), which implies equation (a.26). �

From Lemmas 3 and 4 in the supplementary material, we have that
T

n
L2,nT (β, θ) = op(1), uniformly

in β ∈ B, θ ∈ Θ. Then, from Proposition A.4 and the expansion of the logarithm in a neighbourhood of 1,

Proposition 1 (ii) follows.
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A.2.2 Proof of Proposition 2

The proof is in two steps. We first show the consistency of the estimators, which is then used to derive the

stochastic difference between the estimators.

i) Consistency of the estimators

Let us prove the consistency of the estimators when n, T → ∞ such that T ν/n = O(1), ν > 1. We

start with the ML estimator (β̃nT , θ̃nT ). Let us first prove that β̃nT is consistent. For any ε > 0 we have:

P
[
‖β̃nT − β0‖ ≥ ε

]
≤ P

[
sup

β∈B:‖β−β0‖≥ε
LnT (β, θ̃nT ) ≥ LnT (β̃nT , θ̃nT )

]

≤ P

[
sup

β∈B:‖β−β0‖≥ε
LnT (β, θ̃nT ) ≥ LnT (β0, θ0)

]
.

By using Proposition 1 (i), Lemma 1 (i) in the supplementary material, and the second bound in (a.11), we

get:

P
[
‖β̃nT − β0‖ ≥ ε

]
≤ P

[
sup

β∈B:‖β−β0‖≥ε
L∗(β)− L∗(β0) ≥ op(1)

]
, (a.34)

where L∗(β) is the probability limit of L∗nT (β) defined in equation (4.4). The probability in the RHS of

inequality (a.34) is o(1), since sup
β∈B:‖β−β0‖≥ε

L∗(β)− L∗(β0) < 0 by global identification Assumption A.6,

continuity of function L∗(β) and compactness of set B.

Let us now show that θ̃nT is consistent. For any ε > 0 we have:

P
[
‖θ̃nT − θ0‖ ≥ ε

]
≤ P

[
sup

θ∈Θ:‖θ−θ0‖≥ε
LnT (β̃nT , θ) ≥ LnT (β̃nT , θ̃nT )

]

≤ P

[
sup

θ∈Θ:‖θ−θ0‖≥ε
LnT (β̃nT , θ) ≥ LnT (β̃nT , θ0)

]
.

Using Proposition 1 (i), Lemma 1 (ii), and the consistency of β̃nT , the RHS probability is such that:

P

[
sup

θ∈Θ:‖θ−θ0‖≥ε
LnT (β̃nT , θ) ≥ LnT (β̃nT , θ0)

]
= P

[
sup

θ∈Θ:‖θ−θ0‖≥ε

1
n

[L1,nT (β̃nT , θ)− L1,nT (β̃nT , θ0)] ≥ op (1/n)

]

= P

[
sup

θ∈Θ:‖θ−θ0‖≥ε
L1(β0, θ)− L1(β0, θ0) ≥ op (1)

]
,

where L1(β, θ) is the probability limit of L1,nT (β, θ) defined in equation (a.10). Therefore we get:

P
[
‖θ̃nT − θ0‖ ≥ ε

]
≤ P

[
sup

θ∈Θ:‖θ−θ0‖≥ε
L1(β0, θ)− L1(β0, θ0) ≥ op (1)

]
.

The RHS probability is o(1), since sup
θ∈Θ:‖θ−θ0‖≥ε

L1(β0, θ) − L1(β0, θ0) < 0 from global identification

Assumption A.8, continuity of mapping θ → L1(β0, θ) and the compactness of set Θ. The consistency of

θ̃nT follows.
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The proof of the consistency of (β̃CSAnT , θ̃CSAnT ) and (β̃GAnT , θ̃
GA
nT ) is similar, by replacing criterionLnT (β, θ)

with LCSAnT (β, θ), and LGAnT (β, θ), respectively, in the above arguments.

ii) Stochastic difference between estimators (proof of Proposition 2)

Since the CSA, GA and true ML estimators are consistent, the stochastic difference between these

estimators can be derived along the lines of Robinson (1988), Theorem 1. However, we have to carefully

take into account the double asymptotics in n and T . We provide the proof for n, T → ∞ such that

T ν/n = O(1) with ν > 1 (the proof for ν > 3/2 is similar).

Let us first prove the stochastic difference between (β̃CSAnT , θ̃CSAnT ) and (β̃nT , θ̃nT ) [equivalence (4.7) in

Proposition 2]. From the first-order conditions of the true and CSA ML estimators, Proposition 1 (i) and the

mean value Theorem, we have:

0 =
∂LnT

(
β̃nT , θ̃nT

)
∂ (β′ , θ′)

′ =
∂LCSAnT

(
β̃nT , θ̃nT

)
∂ (β′ , θ′)

′ +
∂ΨnT

(
β̃nT , θ̃nT

)
∂(β′, θ′)′

=
∂2LCSAnT

(
β̄nT , θ̄nT

)
∂ (β′ , θ′)

′
∂ (β′ , θ′)

 β̃nT − β̃CSAnT

θ̃nT − θ̃CSAnT

+
∂ΨnT

(
β̃nT , θ̃nT

)
∂(β′, θ′)′

, (a.35)

where β̄nT is between β̃nT and β̃CSAnT , and similarly for θ̄nT . 14 From section i) above, (β̄nT , θ̄nT )

converges to (β0, θ0) in probability. Let us now use Lemma 6 in the supplementary material, which

provides the uniform convergence of functions L∗nT , L1,nT , L2,nT , ΨnT , Ψ̃nT in the asymptotic expan-

sion of the log-likelihood function, and of their partial derivatives. From Lemmas 6 (1), (2iii-iv) we get
∂2LCSAnT

(
β̄nT , θ̄nT

)
∂β∂β′

= −I∗0 +op(1),
∂2LCSAnT

(
β̄nT , θ̄nT

)
∂θ∂θ′

= − 1
n
I1,θθ+op(1/n) and

∂2LCSAnT

(
β̄nT , θ̄nT

)
∂β∂θ′

=

Op(1/n), where matrices I∗0 and I1,θθ are defined in Assumptions A.7 and A.9. Moreover, from Lemma 6

(3), we have
∂ΨnT

(
β̃nT , θ̃nT

)
∂(β′, θ′)′

=
[
op(1/n), Op

(
[log(n)]C9

n3/2

)]′
, for a constant C9 > 0. From equation

(a.35) we deduce:

−I∗0
(
β̃nT − β̃CSAnT

)
+ op

(
β̃nT − β̃CSAnT

)
+Op

(
1
n

(
θ̃nT − θ̃CSAnT

))
= op(1/n), (a.36)

−I1,θθ

(
θ̃nT − θ̃CSAnT

)
+ op

(
θ̃nT − θ̃CSAnT

)
+Op

(
β̃nT − β̃CSAnT

)
= Op

(
[log(n)]C9

n1/2

)
. (a.37)

Since matrix I∗0 is positive definite, and θ̃nT − θ̃CSAnT = op(1) by consistency of the estimators, equation

(a.36) implies β̃nT − β̃CSAnT = op(1/n), that is the first equation in the equivalence (4.7) in Proposition 2.

14More precisely, the mean value Theorem is applied separately to each component of the vector
∂LCSAnT

(
β̃nT , θ̃nT

)
∂ (β′ , θ′)

′ , and the mean values can be different across components. For expository purpose, we do not

make this explicit in equation (a.35) and in the rest of the proofs.
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Then, since I1,θθ is a positive definite matrix, equation (a.37) implies the second equation in the equivalence

(4.7) in Proposition 2 (with δ1 = C9).

To derive the stochastic difference between the true and GA ML estimators [equivalence (4.8) in Propo-

sition 2], we use thatLnT (β, θ) = LGAnT (β, θ)+Ψ̃nT (β, θ), where Ψ̃nT (β, θ) = ΨnT (β, θ)− 1
n2
L2,nT (β, θ).

From Lemma 6 (2ii), (3), we get sup
β∈B,θ∈Θ

∥∥∥∥∥∂Ψ̃nT (β, θ)
∂β

∥∥∥∥∥ = op(1/n) and sup
β∈B,θ∈Θ

∥∥∥∥∥∂Ψ̃nT (β, θ)
∂θ

∥∥∥∥∥ = Op

(
[log(n)]C9

n3/2

)
when T ν/n = O(1), ν > 1. Then, by similar arguments as above, the equivalence (4.8) follows.

A.2.3 Proof of Proposition 3

The proof is in three steps. We first derive the asymptotic expansion of the standardized CSA ML estimator

in terms of the standardized score. Then, we prove the asymptotic normality of the standardized score.

Finally, this asymptotic normality and the asymptotic equivalences (Proposition 2) are used to deduce the

asymptotic normality of the different estimators.

i) Asymptotic expansion of the CSA ML estimator

The first-order conditions for (β̂nT , θ̂nT ) = (β̃CSAnT , θ̃CSAnT ) are:

0 =
∂LCSAnT

∂β

(
β̂nT , θ̂nT

)
=
∂L∗nT
∂β

(
β̂nT

)
+

1
n

∂L1,nT

∂β

(
β̂nT , θ̂nT

)
,

0 =
∂LCSAnT

∂θ

(
β̂nT , θ̂nT

)
⇔ 0 =

∂L1,nT

∂θ

(
β̂nT , θ̂nT

)
,

where the factor 1/n in the second equation cancels. Let us multiply the first equation by
√
nT , the second

equation by
√
T , and use the mean value Theorem to get:

0 =
√
nT

∂L∗nT (β0)
∂β

+
∂2L∗nT (β̄nT )
∂β∂β′

√
nT
(
β̂nT − β0

)
+

√
T

n

∂L1,nT (β0, θ0)
∂β

+
1
n

∂2L1,nT (β̄nT , θ̄nT )
∂β∂β′

√
nT
(
β̂nT − β0

)
+

1√
n

∂2L1,nT (β̄nT , θ̄nT )
∂β∂θ′

√
T
(
θ̂nT − θ0

)
,

and:

0 =
√
T
∂L1,nT (β0, θ0)

∂θ
+

1√
n

∂2L1,nT (β̄nT , θ̄nT )
∂θ∂β′

√
nT
(
β̂nT − β0

)
+
∂2L1,nT (β̄nT , θ̄nT )

∂θ∂θ′
√
T
(
θ̂nT − θ0

)
,

where β̄nT and θ̄nT are mean values. In matrix form we have:

−

 ∂2L∗nT (β̄nT )

∂β∂β′
+ 1

n
∂2L1,nT (β̄nT ,θ̄nT )

∂β∂β′
1√
n

∂2L1,nT (β̄nT ,θ̄nT )

∂β∂θ′

1√
n

∂2L1,nT (β̄nT ,θ̄nT )

∂θ∂β′
∂2L1,nT (β̄nT ,θ̄nT )

∂θ∂θ′

 √nT (β̂nT − β0

)
√
T
(
θ̂nT − θ0

)


=

 √
nT

∂L∗nT (β0)
∂β√

T
∂L1,nT (β0,θ0)

∂θ

+

 √T
n
∂L1,nT (β0,θ0)

∂β

0

+ op(1). (a.38)
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The second term in the RHS of (a.38) contributes to the asymptotic bias. From Lemma 6 (2i) in the supple-

mentary material, and since T/n→ 0, this term is op(1). From Lemma 6 (1), (2iii-iv) , we get: √nT (β̂nT − β0

)
√
T
(
θ̂nT − θ0

)
 =

 (I∗0 )−1 0

0 I−1
1,θθ

+ op(1)

 √
nT

∂L∗nT (β0)
∂β√

T
∂L1,nT (β0,θ0)

∂θ

+ op(1). (a.39)

ii) Asymptotic normality of the standardized score vector

PROPOSITION A.5. Let Assumptions A.1-A.5 and H.1-H.15 be satisfied. If n, T →∞ such that T ν/n =

O(1), ν > 1, the standardized approximate score vector of the partial derivatives of functions L∗nT (β) and

L1,nT (β, θ) w.r.t. β and θ, respectively, is such that:
√
nT

∂L∗nT (β0)
∂β

√
T
∂L1,nT (β0, θ0)

∂θ

 d−→ N

((
0

0

)
,

(
I∗0 0

0 I1,θθ

))
,

where I∗0 = E0

[
Iββ(t)− Iβf (t)Iff (t)−1Ifβ(t)

]
and I1,θθ = E0

[
−∂

2 log g (ft|ft−1; θ0)
∂θ∂θ′

]
.

Proof of Proposition A.5: Let us first consider the approximate score w.r.t. β. By the envelope Theorem

[e.g., Dixit (1990)] we have
√
nT

∂L∗nT (β0)
∂β

=
1√
nT

T∑
t=1

n∑
i=1

∂ log h
∂β

(
yi,t|yi,t−1, f̂n,t (β0) ;β0

)
. By the

mean value Theorem we get:

√
nT

∂L∗nT (β0)
∂β

=
1√
nT

T∑
t=1

n∑
i=1

∂ log h
∂β

(yi,t|yi,t−1, ft;β0)

+
1√
nT

T∑
t=1

n∑
i=1

∂2 log h
∂β∂f

′
t

(
yi,t|yi,t−1, f̃t;β0

)(
f̂n,t (β0)− ft

)
,

where f̃t are mean values. By Assumption H.11, Limit Theorem 1 in the supplementary material and

condition T ν/n = O(1), ν > 1, we can show that
1
n

n∑
i=1

∂2 log h
∂β∂f ′t

(
yi,t|yi,t−1, f̃t;β0

)
= −Iβf (t) +

Op

(
(log n)C10

√
n

)
, uniformly in 1 ≤ t ≤ T , for some constant C10 > 0, where Iβf (t) is the (β, f) block

of the matrix I(t) defined in equation (4.6). Then, by Limit Theorem 1 and the condition T ν/n = O(1),

ν > 1, we have:

√
nT

∂L∗nT (β0)
∂β

=
1√
nT

T∑
t=1

n∑
i=1

∂ log h
∂β

(yi,t|yi,t−1, ft;β0)− 1√
T

T∑
t=1

Iβf (t)
√
n
(
f̂n,t (β0)− ft

)
+op(1).

(a.40)

Let us now derive an asymptotic expansion for
√
n
(
f̂n,t (β0)− ft

)
. Since ft is in the interior of set Fn

w.p.a. 1 from Assumptions H.6 and H.7 (i)-(ii), and f̂n,t(β0) converges in probability to ft by Limit Theorem
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1, the first-order condition
1√
n

n∑
i=1

∂ log h(yi,t|yi,t−1, f̂n,t(β0);β0)
∂ft

= 0 holds w.p.a. 1. Then, by the mean

value Theorem, we have:

0 =
1√
n

n∑
i=1

∂ log h
∂ft

(yi,t|yi,t−1, ft;β0) +

(
1
n

n∑
i=1

∂2 log h
∂ft∂f ′t

(yi,t|yi,t−1, f̄t;β0)

)
√
n
(
f̂n,t (β0)− ft

)
,

where f̄t is a mean value. Similarly to above, by Assumption H.11, Limit Theorem 1 and condition T ν/n =

O(1), ν > 1, we have
1
n

n∑
i=1

∂2 log h
∂ft∂f ′t

(
yi,t|yi,t−1, f̄t;β0

)
= −Iff (t) + Op

(
(log n)C11

√
n

)
, uniformly in

1 ≤ t ≤ T , for some constant C11 > 0, where Iff (t) is the (f, f) block of the matrix I(t) defined in

equation (4.6). Then, by Limit Theorem 1 and Assumption H.5 we get:

√
n
(
f̂n,t (β0)− ft

)
= Iff (t)−1 1√

n

n∑
i=1

∂ log h
∂ft

(yi,t|yi,t−1, ft;β0) +Op

(
(log n)C12

√
n

)
, (a.41)

uniformly in 1 ≤ t ≤ T , for some constant C12 > 0. By replacing expansion (a.41) into expansion (a.40),

and by using the condition T ν/n = O(1), ν > 1, and Assumption H.5, we get:

√
nT

∂L∗nT (β0)
∂β

=
1√
T

T∑
t=1

[
ψn,β(t)− Iβf (t)Iff (t)−1ψn,f (t)

]
+ op(1), (a.42)

where:

ψn,β(t) =
1√
n

n∑
i=1

∂ log h
∂β

(yi,t|yi,t−1, ft;β0) , ψn,f (t) =
1√
n

n∑
i=1

∂ log h
∂ft

(yi,t|yi,t−1, ft;β0) . (a.43)

Let us now consider the approximated score w.r.t. θ. By the mean value Theorem, we have:

√
T
∂L1,nT (β0, θ0)

∂θ
=

1√
T

T∑
t=1

∂ log g
∂θ

(
f̂n,t (β0) |f̂n,t−1 (β0) ; θ0

)
=

1√
T

T∑
t=1

∂ log g
∂θ

(ft|ft−1; θ0) +

√
T

n

(
1
T

T∑
t=1

∂2 log g
∂θ∂f

′
t

(
f̃t|f̃t−1; θ0

)√
n
(
f̂n,t (β0)− ft

)
+

1
T

T∑
t=1

∂2 log g
∂θ∂f

′
t−1

(
f̃t|f̃t−1; θ0

)√
n
(
f̂n,t−1 (β0)− ft−1

))
.

By using T ν/n = O(1), ν > 1, Assumption H.14 and Limit Theorem 1, it follows that:

√
T
∂L1,nT (β0, θ0)

∂θ
=

1√
T

T∑
t=1

∂ log g
∂θ

(ft|ft−1; θ0) + op(1). (a.44)

Thus, from equations (a.42) and (a.44) we deduce: √
nT

∂L∗nT (β0)
∂β√

T
∂L1,nT (β0,θ0)

∂θ

 =
1√
T

T∑
t=1

ζn,t + op(1), ζn,t ≡

 ψn,β(t)− Iβf (t)Iff (t)−1ψn,f (t)
∂ log g
∂θ

(ft|ft−1; θ0)

 , (a.45)

58



where ψn,β(t) and ψn,f (t) are defined in (a.43). Proposition A.5 follows if we prove that
1√
T

T∑
t=1

ζn,t
d→

N(0,Ω) as n, T → ∞, where Ω =

 I∗0 0

0 I1,θθ

. Since {ζn,t,Gn,t, 1 ≤ t ≤ T ; n ∈ N} is a martingale

difference array w.r.t. the filtration Gn,t =
(
yi,t, 1 ≤ i ≤ n, ft+1

)
, t varying, namely ζn,t is measurable

w.r.t. Gn,t and E[ζn,t|Gn,t−1] = 0 for any t ≤ T and n ∈ N, we can apply Theorem 3.2 in Hall and Heyde

(1980). 15 Thus, Proposition A.5 follows if we prove the next three conditions:

(a)
1√
T

max
1≤t≤T

‖ζn,t‖
p→ 0; (b)

1
T

T∑
t=1

ζn,tζ
′
n,t

p→ E[ζn,tζ ′n,t] = Ω; (c)
1
T
E

(
max

1≤t≤T
‖ζn,t‖2

)
= O(1).

These conditions are checked in Lemma 7 in the supplementary material when n, T →∞ such that T ν/n =

O(1) with ν > 0. In particular, the variance-covariance matrix Ω of the random vector ζn,t in (a.45) is

block-diagonal, since the micro-component ψn,β(t) − Iβf (t)Iff (t)−1ψn,f (t) is zero-mean conditional on

the factor path, while the macro-component ∂ log g (ft|ft−1; θ0) /∂θ depends on the factor path only. �

iii) Asymptotic normality of the estimators (proof of Proposition 3)

The joint asymptotic normality of the CSA ML estimator (β̂nT , θ̂nT ) follows from the asymptotic ex-

pansion (a.39) and Proposition A.5. The asymptotic normality of the GA and true ML estimators is implied

by the asymptotic normality of the CSA ML estimator and the asymptotic equivalences (4.7)-(4.8) in Propo-

sition 2 when T ν/n = O(1), ν > 1.

A.2.4 Proof of Proposition 5

i) Proof of Proposition 5 i)

By the mean value Theorem we have:

√
n
(
f̂nT,t − ft

)
=
√
n
(
f̂n,t(β0)− ft

)
+
∂f̂n,t

(
β̇nT

)
∂β′

√
n
(
β̂nT − β0

)
, (a.46)

where β̇nT is a mean value. Let us consider the first term in the RHS. By the proof of Limit Theorem 1 in the

supplementary material, we get that f̂n,t(β0) converges in probability to ft, conditional on ft, for P-almost

every (a.e.) ft. Thus, f̂n,t(β0) coincides with the maximizer of the cross-sectional log-likelihood function

15To apply Theorem 3.2 in Hall and Heyde (1980), replace t for i, ζn,t/
√
T for Xi,n, and Tn for kn, where Tn de-

notes the time dimension of the panel written as a function of the cross-sectional dimension n in the double asymptotic

scheme. Theorem 3.2 in Hall and Heyde (1980) holds as long as Tn ↑ ∞ when n→∞. Condition (3.21) in Hall and

Heyde (1980) is satisfied in our setting, but is not needed, since the variance in the limit distribution is non-stochastic,

see the remark on page 58 in Hall and Heyde (1980). Finally, while Theorem 3.2 in Hall and Heyde (1980) is stated

for univariate processes, the multivariate extension is immediate by using the Cramer-Wold device.
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n∑
i=1

log h(yi,t|yi,t−1, f ;β0) w.r.t. f in set {f ∈ Rm : ‖f − ft‖ ≤ r}, w.p.a. 1, conditional on ft, for any

r > 0. From Assumptions A.1 and H.2, we get
√
n
(
f̂n,t(β0)− ft

)
d→ N(0, Iff (t)−1), conditionally on ft,

by applying Theorem 4.2.4 of Amemiya (1985) on the asymptotic normality of ML estimators. In checking

the conditions of Theorem 4.2.4 of Amemiya (1985), we use that observations (yi,t, yi,t−1), for i = 1, ..., n,

are i.i.d. conditional on the factor path ft from Assumption A.1, and that Assumption H.2 implies the global

and local identification conditions of ft. Moreover, the score
1√
n

n∑
i=1

∂ log h(yi,t|yi,t−1, ft;β0)
∂ft

is asymp-

totically N(0, Iff (t)) distributed, conditional on ft, by applying a standard CLT and using Assumption

H.2.

Let us now consider the second term in the RHS of equation (a.46). We use Lemma 8 in the supple-

mentary material, which provides a probability bound for ∂f̂n,t(β)/∂β′, uniformly in β ∈ B, conditionally

on ft. Then, from Lemma 8 and Proposition 3, the second term in the RHS of equation (a.46) is op(1),

conditionally on ft. The asymptotic normality in Proposition 5 (i) follows.

ii) Proof of Proposition 5 ii)

We have ‖f̂nT,t − ft‖ ≤ ‖f̂n,t(β̂nT )− ft(β̂nT )‖+ ‖ft(β̂nT )− ft(β0)‖ and thus:

sup
1≤t≤T

∥∥∥f̂nT,t − ft∥∥∥ ≤ sup
1≤t≤T

sup
β∈B

∥∥∥f̂n,t(β)− ft(β)
∥∥∥+ sup

1≤t≤T
sup
β∈B

∥∥∥∥∂ft(β)
∂β′

∥∥∥∥∥∥∥β̂nT − β0

∥∥∥ . (a.47)

From Limit Theorem 1, the first term in the RHS of inequality (a.47) is Op
(
n−1/2[log(n)]δ2

)
. Let us con-

sider the second term. By differentiating the first-order condition E0

[
∂ log h(yi,t|yi,t−1, ft(β);β)

∂ft
|ft
]

= 0

w.r.t. β, we deduce
∂ft(β)
∂β′

= −It,ff (β)−1It,fβ(β), where It,ff (β) and It,fβ(β) are the blocks of the Hes-

sian matrix It(β) defined in Assumption H.4 (iii). From Assumptions H.5, we get sup
1≤t≤T

sup
β∈B

∥∥∥∥∂ft(β)
∂β′

∥∥∥∥ =

Op
(
[log(n)]C13

)
, for some C13 > 0. Then, from Proposition 3, the second term in RHS of inequality (a.47)

is Op
(

(nT )−1/2[log(n)]C13

)
. The uniform convergence rate in Proposition 5 (ii) follows.

A.2.5 Proof of Proposition 6

i) Consistency

Let us first show that the estimator (β̂∗nT , θ̂
∗
nT ) is consistent. The consistency of β̂∗nT follows by similar

arguments as in Section A.2.2 i), by setting functionsL1,nT (β, θ) and ΨnT (β, θ) equal to zero. To prove the

consistency of θ̂∗nT , we use that θ̂∗nT is the maximizer of criterionQT (θ) =
1
T

T∑
t=1

log g[f̂n,t(β̂∗nT )|f̂n,t−1(β̂∗nT ); θ]

over the set Θ. We have QT (θ) = L1,nT (β̂∗nT , θ), up to a constant independent of θ. By a slight modifi-

cation of Lemma 1 (ii) and the consistency of β̂∗nT , criterion QT (θ) converges in probability to Q∞(θ) =
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E0 [log g(ft|ft−1; θ)] uniformly in θ ∈ Θ. Since function QT is continuous, set Θ is compact, and θ0 is the

unique maximizer of function Q∞ by the global identification Assumption A.8, we can apply the standard

consistency theorem for extremum estimators [e.g., Amemiya (1985), Theorem 4.1.1]; it follows that θ̂∗nT

converges to θ0 in probability.

ii) Stochastic difference between estimators [proof of Proposition 6 (i)]

The first-order conditions of estimators (β̃CSAnT , θ̃CSAnT ) and (β̂∗nT , θ̂
∗
nT ) are given by:

∂L∗nT (β̃CSAnT )
∂β

+
1
n

∂L1,nT (β̃CSAnT , θ̃CSAnT )
∂β

= 0,

L1,nT (β̃CSAnT , θ̃CSAnT )
∂θ

= 0,


∂L∗nT (β̂∗nT )

∂β
= 0,

∂L1,nT (β̂∗nT , θ̂
∗
nT )

∂θ
= 0,

respectively. Let us expand the first-order conditions of (β̃CSAnT , θ̃CSAnT ) around (β̂∗nT , θ̂
∗
nT ). By the mean

value Theorem, and the first-order conditions of (β̂∗nT , θ̂
∗
nT ), we get:

0 =
∂2L∗nT (β̄nT )
∂β∂β′

(
β̃CSAnT − β̂∗nT

)
+

1
n

∂L1,nT (β̃CSAnT , θ̃CSAnT )
∂β

, (a.48)

and:

0 =
∂2L1,nT (β̄nT , θ̄nT )

∂θ∂β′

(
β̃CSAnT − β̂∗nT

)
+
∂2L1,nT (β̄nT , θ̄nT )

∂θ∂θ′

(
θ̃CSAnT − θ̂∗nT

)
, (a.49)

where (β̄nT , θ̄nT ) are mean values. Since the CSA and two-step estimators are consistent by Proposition

3 and section i) above, the mean values (β̄nT , θ̄nT ) are consistent as well. From Lemmas 6 (1), (2i) and

(2iii) we get
∂2L∗nT (β̄nT )
∂β∂β′

= −I∗0 + op(1),
∂L1,nT (β̃CSAnT , θ̃CSAnT )

∂β
= Op(1),

∂2L1,nT (β̄nT , θ̄nT )
∂θ∂β′

= Op(1)

and
∂2L1,nT (β̄nT , θ̄nT )

∂θ∂θ′
= −I1,θθ + op(1). Then, equation (a.48) implies β̃CSAnT − β̂∗nT = Op(1/n), and

equation (a.49) implies θ̃CSAnT − θ̂∗nT = Op

(
β̃CSAnT − β̂∗nT

)
= Op(1/n). Then, from equivalence (4.7) in

Proposition 2, we get β̂∗nT − β̃nT = Op(1/n) and θ̂∗nT − θ̃nT = Op

(
[log(n)]δ1√

n

)
.

iii) Asymptotic normality [proof of Proposition 6 (ii)]

From the condition T ν/n = O(1), ν > 1, and Proposition 6 (i), we get
(√

nT (β̂∗nT − β0)′,
√
T (θ̂∗nT − θ0)′

)′
=(√

nT (β̃nT − β0)′,
√
T (θ̃nT − θ0)′

)′
+ op(1). Then, Proposition 6 (ii) follows from Proposition 3.

A.3 Identification in the stochastic migration model

The stochastic migration model is a set of ordered qualitative models, with an unobservable stochastic factor

and a common vector of threshold parameters ck, k = 1, ..,K − 1. This explains why the identification

conditions have to be derived carefully.
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i) Let us first consider the two-state case, K = 2. The transition matrix πt = [πlk,t] is:

πt =

 G
(
c1−γ1ft−α1

σ1

)
1−G

(
c1−γ1ft−α1

σ1

)
G
(
c1−γ2ft−α2

σ2

)
1−G

(
c1−γ2ft−α2

σ2

)
 .

By reparametrizing coefficients α1 and α2, we can assume c1 = 0. The transition matrix becomes:

πt =

 G
(
−γ1ft+α1

σ1

)
1−G

(
−γ1ft+α1

σ1

)
G
(
−γ2ft+α2

σ2

)
1−G

(
−γ2ft+α2

σ2

)
 .

We can also scale the parameters to get σ1 = σ2 = 1:

πt =

 G (−γ1ft − α1) 1−G (−γ1ft − α1)

G (−γ2ft − α2) 1−G (−γ2ft − α2)

 .
Finally, by standardizing the factor, we can set γ1 = 1 and α1 = 0:

πt =

 G (−ft) 1−G (−ft)

G (−γ2ft − α2) 1−G (−γ2ft − α2)

 .
Then, the values of the factor ft are identified by the first row of the transition matrix, t = 1, ..., T . The

values of γ2, α2 are identified by the second row, when T ≥ 2.

ii) Let us now consider the case K > 2. The l-th row of the transition matrix is:[
G

(
c1 − γlft − αl

σl

)
, G

(
c2 − γlft − αl

σl

)
−G

(
c1 − γlft − αl

σl

)
, ..., 1−G

(
cK−1 − γlft − αl

σl

)]
,

for l = 1, ...,K. As above, we can first set c1 = 0:[
G

(
−γlft + αl

σl

)
, G

(
c2 − γlft − αl

σl

)
−G

(
−γlft + αl

σl

)
, ..., 1−G

(
cK−1 − γlft − αl

σl

)]
.

(a.50)

Second, by normalizing the factor values and the thresholds, we can set γ1 = σ1 = 1 and α1 = 0 in the first

row. Then, the transition matrix has a first row given by:

[G (−ft) , G (c2 − ft)−G (−ft) , ..., 1−G (cK−1 − ft)] ,

and row l is given by equation (a.50) for l ≥ 2. From the first row, we identify the factor value ft and the

K − 2 thresholds c2, ..., cK . Then, the values of γl, αl, σl are identified by the row l, for l = 2, ...,K, when

(K − 1)T ≥ 3.
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