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Abstract

We examine the relationship between MIDAS regressions and the estimation of state space

models applied to mixed frequency data. While in some cases the binding function is known,

in general it is not, and therefore indirect inference is called for. The approach is appealing

when we consider state space models which feature stochastic volatility, or other non-Gaussian

and nonlinear settings where maximum likelihood methods require computationally demanding

approximate filters. The stochastic volatility feature is particularly relevant when considering

high frequency financial series. In addition, we propose a filtering scheme which relies on a

combination of reprojection methods and nowcasting MIDAS regressions with ARCH models.

We assess the efficiency of our indirect inference estimator for the stochastic volatility model

by comparing it with the Maximum Likelihood (ML) estimator in Monte Carlo simulation

experiments. The ML estimate is computed with a simulation-based Expectation-Maximization

(EM) algorithm, in which the smoothing distribution required in the E step is obtained via a

particle forward-filtering/backward-smoothing algorithm. Our Monte Carlo simulations show

that the Indirect Inference procedure is very appealing, as its statistical accuracy is close to that

of MLE but the former procedure has clear advantages in terms of computational efficiency. An

application to forecasting quarterly GDP growth in the Euro area with monthly macroeconomic

indicators illustrates the usefulness of our procedure in empirical analysis.

Keywords: Indirect inference, MIDAS regressions, State space model, Stochastic volatility,
GDP forecasting.



1 Introduction

Econometric models that take into account the unbalanced nature of datasets have attracted

substantial attention recently. Policy makers and practitioners alike need to assess in real-

time the current state of the economy, with at best mixed frequency data at their disposal.

For example, one of the key indicators of macroeconomic activity, the Gross Domestic

Product (GDP), is released quarterly, while a range of leading and coincident indicators

is timely available at a monthly or even higher frequency. Hence, we may want to construct

a forecast of the current quarter GDP growth (a so called nowcast) based on the available

higher frequency information.

Econometric models with mixed frequency data can be classified into two broad classes:

(1) likelihood-based involving latent processes and (2) purely regression-based. The former

category consists primarily of state space models, studied by Harvey and Pierse (1984),

Harvey (1989), Zadrozny (1990), Bernanke, Gertler, and Watson (1997), Mariano and

Murasawa (2003), Mittnik and Zadrozny (2005), Aruoba, Diebold, and Scotti (2009),

Ghysels and Wright (2009), Kuzin, Marcellino, and Schumacher (2011), among others.

The regression-based methods involve Mixed Data Sampling (MIDAS) regressions; see

e.g. Ghysels, Santa-Clara, and Valkanov (2006), Andreou, Ghysels, and Kourtellos (2010). As

one considers high frequency data, the issue of time-varying volatility becomes increasingly

relevant. Dealing with stochastic volatility (SV) in state space models is doable but poses

challenges both statistical and computational in nature. One possibility is to consider

Bayesian approaches in this context, as done by Carriero, Clark, and Marcellino (2013)

and Marcellino, Porqueddu, and Venditti (2015). However, when it comes to classical

inference one typically relies on the Expectation-Maximization (EM) algorithm to compute

numerically the ML estimate in a model with unobservable variables (Dempster, Laird, and

Rubin (1977)). The likelihood function of the model involves a large-dimensional integral

with respect to the latent factor paths as the latent factors appear in the conditional mean

and volatility of the high frequency data series. This integral representation of the likelihood

is impractical for the computation of the ML estimate.

If the objective is to estimate state space models with mixed frequency data - of which

there are many examples - featuring stochastic volatility, using classical inference methods,

is there perhaps a simpler way to do so? This is the contribution of our paper. We introduce

indirect inference estimation procedures proposed by Gouriéroux, Monfort, and Renault
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(1993), Smith (1993) and Gallant and Tauchen (1996), to estimate the models of interest

using MIDAS regressions augmented with ARCH-type models as well as mixed frequency

Vector Autoregressive (VAR) models (see e.g. Ghysels (2014)) as auxiliary models. Same

frequency data settings are a special case of mixed frequency ones. The analysis in this paper

is therefore also applicable to standard state space models. Moreover, the idea of estimating

SV-type models using ARCH-type auxiliary models has a long history starting with Engle

and Lee (1999) and Pastorello, Renault, and Touzi (2000). Our paper combines insights

from the literature on SV models with those from the mixed frequency data literature.

It is worth noting that in some specific cases we know the binding function between the state

space model and the implied MIDAS regression, as discussed in Bai, Ghysels, and Wright

(2013). However, these cases are rather too simple to be practical, so that the use of indirect

inference is a natural way to tackle the unknown binding function. The methods we propose

are fairly easy to implement and involve auxiliary model-based estimators involving MIDAS

regressions combined with ARCH specifications for the errors. In addition, we filter latent

variables, given observables, using reprojection methods proposed by Gallant and Tauchen

(1998).

We compare the two estimation methods, namely (1) Maximum Likelihood (ML) and

(2) indirect inference, via Monte Carlo simulations. To implement the former method

in the mixed frequency SV model, we consider a simulation-based estimator relying on

the EM algorithm. The smoothing distribution required in the Expectation step is

computed via a particle forward-filtering/backward-smoothing algorithm. We compare the

two estimation methods on the basis of (a) statistical criteria - mean/bias/quantiles of

sampling distributions, (b) filtering accuracy - both conditional mean and volatility and

(c) computational time. Our results show that there are clear advantages in terms of

computational time to the new indirect inference procedure put forward in this paper, while

the losses in statistical efficiency compared to MLE are very limited. Even in the linear

Gaussian case, we find our indirect inference methods remarkably accurate, when compared

to the standard MLE based on the Kalman filter.

The paper is organized as follows. Section 2 introduces state space models with mixed

frequency data and stochastic volatility. Section 3 defines our indirect inference estimator.

This section covers the linear Gaussian state space model with mixed frequency data as a

special case of the general specification, and discusses its relation with MIDAS regressions.

This link yields useful insights to define the auxiliary model for indirect inference in the
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general SV case. Section 3 also describes the estimation of the SV model with ML via a

simulation-based EM algorithm. Section 4 discusses filtering via reprojection, followed by

Section 5 which reports the results of an extensive Monte Carlo study. Section 6 presents an

empirical application of our model to the problem of forecasting at short horizons Euro-area

quarterly GDP growth using monthly macroeconomic indicators. The dataset is the same

as the one considered in the empirical study of Marcellino, Porqueddu, and Venditti (2015).

Section 7 concludes the paper.

2 State Space Models with Mixed Frequency Data and

Stochastic Volatility

There is a burgeoning literature on nowcasting using either MIDAS regressions or state space

models, see e.g. Mariano and Murasawa (2003), Nunes (2005), Giannone, Reichlin, and Small

(2008), Aruoba, Diebold, and Scotti (2009), Marcellino and Schumacher (2010), Andreou,

Ghysels, and Kourtellos (2013) and Banbura and Modugno (2014), among others. Recent

surveys include Andreou, Ghysels, and Kourtellos (2011), Foroni and Marcellino (2013) and

Banbura, Giannone, Modugno, and Reichlin (2013), where the latter paper has a stronger

focus on more complex Kalman filter-based factor modeling techniques.

State space models have been widely used in econometrics as well as other scientific

disciplines, in particular engineering where the Gaussian state space model and its Kalman

filtering algorithm originated.1 A key starting point is that observations are driven by some

latent process. Moreover, it is also assumed that data are contaminated by measurement

errors. To accommodate the mixed frequency sampling scheme, we adopt a time scale

expressed in a form that easily represents such mixtures. We will focus on small values of

m, the number of high frequency subperiods, such as for example m = 3 for monthly data

sampled every quarter. We consider a dynamic model for the latent factors as follows:

Assumption 2.1 Let (F ) be a nf × 1 dimensional vector process satisfying

Ft+j/m =

p∑
l=1

ΦlFt+(j−l)/m + ηt+j/m ∀t = 1, . . . , T, j = 0, . . . ,m− 1, (2.1)

1The econometric literature on the topic is vast, see e.g. Harvey (1989), Hamilton (1994), among others.
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where Φl are nf × nf matrices, the eigenvalues of the autoregressive matrix in the stacked

AR(1) representation lie inside the unit circle, and (η) is an i.i.d. zero mean Gaussian error

process with diagonal covariance matrix Ση = diag(σ2
i,η, i = 1, . . . , nf). Finally, the number

of factors nf , is assumed to be known.

We have two types of data: (1) time series sampled at a low frequency (LF) - every integer

date t, and (2) time series sampled at high frequency (HF) - every t + j/m, with j =

0, . . . ,m − 1. Bai, Ghysels, and Wright (2013) make two convenient simplifications which

depart from generality. First, they assume that there is only one low-frequency process

and call it yt, and second, consider the combination of only two sampling frequencies. We

will proceed with the same simplifications and also assume - for the sake of simplicity -

that there is only one high-frequency series, denoted xt+j/m. It is fairly easy to extend the

methods proposed in this paper to cases involving multiple low and high frequency series -

which we will not cover explicitly.

If the low-frequency process were observed at high frequency, it would relate to the factors

as follows:

y∗t+j/m = γ′1Ft+j/m + u1,t+j/m ∀t, j = 0, . . . ,m− 1, (2.2)

where y∗ denotes the process which is not directly observed and γ1 is a nf × 1 vector of

factor loadings. The error process u1,t+j/m has an AR(k) representation:

d1(L1/m)u1,t+j/m = ε1,t+j/m, d1(L1/m) ≡ 1− d11L
1/m − . . .− dk1L

k/m, (2.3)

where the lag operator L1/m applies to high-frequency data, i.e. L1/mut ≡ ut−1/m. The

observed low-frequency process y relates to the process y∗ via a linear aggregation scheme:

yct+j/m = Ψjy
c
t+(j−1)/m + λjy

∗
t+j/m (2.4)

where yt is equal to the cumulator variable yct for integer t, and is not observed otherwise.

The above scheme, also used by Harvey (1989) and Nunes (2005), covers both stock and

flow aggregation. We get the case of a stock variable by setting Ψj = 1(j 6= 0,m, 2m...) and

λj = 1(j = 0,m, 2m, ...), where 1(.) denotes the indicator function. If we pick instead Ψj =

1(j 6= 1,m+ 1, 2m+ 1, ...) and λj = 1/m for all j, then we get a flow variable.
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The high frequency process xt+j/m relates to the factors as follows:

xt+j/m = γ′2Ft+j/m + u2,t+j/m ∀t, j = 0, . . . ,m− 1, (2.5)

where γ2 is a nf × 1 vector and:

d2(L1/m)u2,t+j/m = ε2,t+j/m, d2(L1/m) ≡ 1− d12L
1/m − . . .− dk2L

k/m. (2.6)

As usual in latent factor models, factor loadings γ1, γ2 and the parameters of the factor

dynamics are subject to identification restrictions.

The standard approach is to assume that the innovation processes (εk) are i.i.d. Gaussian

with mean zero and variance σ2
εk

, for k = 1, 2. Indeed, the literature typically ignores the

presence of time-varying volatility, yet the high frequency data often involve financial and

other series which feature conditional heteroskedasticity. This means that the state space

models are no longer Gaussian. There is a substantial literature on non-Gaussian state

space models tailored for the analysis of financial returns data (see e.g. Ghysels, Harvey, and

Renault (1996), Shephard (2005) and references therein). The type of models of interest

to us are rather state space models with stochastic volatility in measurement equations.

Hence, our analysis relates more directly to recent work by Clark (2011), Carriero, Clark,

and Marcellino (2012), Carriero, Clark, and Marcellino (2013), or Marcellino, Porqueddu,

and Venditti (2015).

We augment equations (2.5)-(2.6) for high frequency data with time-varying volatility:

ε2,t+j/m ∼ N (0, ht+j/m), (2.7)

where the log volatility follows a Gaussian autoregressive process:

lnht+j/m = c+ ρSV lnht+(j−1)/m + ξt+j/m, ξt+j/m ∼ i.i.N (0, ν2
2), (2.8)

and parameter ρSV is smaller than 1 in absolute value. We obtain a SV-type volatility

specification without common factor structure.

While our analysis relates to recent work by Marcellino, Porqueddu, and Venditti (2015),

among others, as noted before, there are also subtle but important differences. In their

model the factor process features stochastic volatility. Instead, in equation (2.7) we assume
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that the measurement error features stochastic volatility. When dealing with low frequency

macroeconomic series exposed to factors, we think it is more appropriate to assume that those

factors do not feature volatility clustering, while the high frequency series are conditionally

heteroskedastic. Ideally one could consider models where SV is featured in both the

observation and state equations. We leave this as a topic for future research.

Assumptions 2.1 and 2.2 (below) define the parametric models of interest in this paper. We

denote by θ the vector of unknown parameters in these models.

Assumption 2.2 The observable processes (y) and (x) are such that:

y∗t+j/m = γ′1Ft+j/m + u1,t+j/m,

d1(L1/m)u1,t+j/m = ε1,t+j/m, d1(L1/m) ≡ 1− d11L
1/m − . . .− dk1L

k/m,

yct+j/m = Ψjy
c
t+(j−1)/m + λjy

∗
t+j/m,

yt = yct ,

xt+j/m = γ′2Ft+j/m + u2,t+j/m,

d2(L1/m)u2,t+j/m = h
1/2
t+j/mε2,t+j/m, d2(L1/m) ≡ 1− d12L

1/m − . . .− dk2L
k/m,

lnht+j/m = c+ ρSV lnht+(j−1)/m + ξt+j/m, ∀t, j = 0, . . . ,m− 1

where |ρSV | < 1, and (ε1), (ε2), (ξ) are mutually independent i.i.d. Gaussian processes, with

distributions N (0, σ2
ε1

), N (0, 1), N (0, ν2
2) respectively, and independent of process (η).

3 Indirect Inference Estimation

Estimating via Maximum Likelihood (ML) the mixed frequency models with SV presented

in the previous section is rather involved. Indeed, the likelihood function involves a large-

dimensional integral with respect to the latent factors path. This integral representation

of the likelihood is impractical for computation of the ML estimate, and numerical filtering

techniques are necessary.

In this section we introduce indirect inference estimation methods - proposed by Gouriéroux,

Monfort, and Renault (1993), Smith (1993) and Gallant and Tauchen (1996) - to estimate

the mixed frequency SV models. Indirect inference can be used to estimate virtually any

model from which it is possible to simulate data. This obviously includes state space models.
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Indirect inference estimation in fact involves two types of models - a model of interest already

specified in the previous section - and an auxiliary model which is easy to estimate. Both

models are linked - in terms of parameter spaces - by a binding function.

3.1 Linear Setting with Known Binding Function

To explain our estimation approach it is worth starting with a setting where the binding

function is known. This setting is provided by a linear state space model with Gaussian

errors. This model is a special case of the general specification in Assumptions 2.1 and 2.2

when there is no SV.2 In this linear state space model, the Kalman filter can be applied for

prediction and filtering. Bai, Ghysels, and Wright (2013) show that for a model with a single

latent factor (nf = 1) having a AR(1) dynamics and persistence parameter ρ, and m = 3

as for instance for a monthly/quarterly mixture of data, one obtains (see Appendix A.2 for

details):

E
[
yt+h|IMt

]
= ρ3hκ3,1

∞∑
j=0

ϑjyt−j + ρ3h

∞∑
j=0

ϑjx(θx)t−j (3.1)

where IMt denotes the information in the available low and high frequency data up to time

t, ϑ = [(ρ− ρκ1)(ρ− ρκ2)(ρ− ρκ3)], and κi, κ3,i are steady state Kalman gain parameters.

Moreover, one has:

x(θx)t ≡ [κ3,2 + (ρ− ρκ3)κ2L
1/3 + (ρ− ρκ3)(ρ− ρκ2)κ1L

2/3]xt (3.2)

which is a parameter-driven low-frequency process composed of high-frequency data

aggregated at the quarterly level.

The above equation relates to the multiplicative MIDAS regression models considered by

Chen and Ghysels (2010) and Andreou, Ghysels, and Kourtellos (2013). In particular

consider the following ADL-MIDAS regression:

yt+h = βy

Ky∑
j=0

wj(θy)yt−j + βx

Kx∑
j=0

wj(θ
1
x)
jx(θ2

x)t−j + εt+h (3.3)

2It corresponds to the parameter constraints ν2 = 0 and ρSV = 1.
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where wj(θy), wj(θ
1
x) follow an exponential Almon scheme and

x(θ2
x)t−j ≡

m−1∑
k=0

wk(θ
2
x)L

k/mxt−k/m

also follows an exponential Almon scheme.3 Provided that ρ > 0, equation (3.1) is a special

case of this model with Ky = Kx = ∞, wj(θy) ∝ exp(log(ϑ)j), wj(θ
1
x) ∝ exp(log(ϑ)j) and

wk(θ
2
x) ∝ exp(θ2

x,1k + θ2
x,2k

2) where θ2
x,1 and θ2

x,2 are parameters that solve the equations:

log{(ρ− ρκ3)κ2/κ3,2} = θ2
x,1 + θ2

x,2,

log{(ρ− ρκ3)(ρ− ρκ2)κ1/κ3,2} = 2θ2
x,1 + 4θ2

x,2. (3.4)

Equations (3.3) and (3.4) implicitly define a binding function between the parameters

of the state space model and those of the MIDAS regression. Note, however, that the

mapping under-identifies the parameters of the state space model if we rely on a standard

multiplicative MIDAS regression scheme. Moreover, the mapping is only valid for a single

factor state space model with i.i.d. measurement errors. What do we do for multi-factor

models or single factor models with autoregressive errors? Bai, Ghysels, and Wright (2013)

show that MIDAS regressions still provide very accurate approximations, although there is

no exact (underidentified) mapping.

3.2 Auxiliary Models: U-MIDAS and ARCH

A departure from the setup in Bai, Ghysels, and Wright (2013) is that we replace equation

(3.3) with a U-MIDAS - meaning unrestricted MIDAS - specification suggested by Foroni,

Marcellino, and Schumacher (2013), namely:

yt+1 = β̄0 +

K̃y∑
k=0

βkyt−k +
mK̃x∑
j=0

γjxt−j/m + εt+1. (3.5)

Note that we estimate K̃y + mK̃x + 2 parameters (not including intercept and residual

variance). When m is small, as shown by Foroni, Marcellino, and Schumacher (2013), we

3The constructed low-frequency regressor is estimated jointly with the other (MIDAS) regression
parameters. Hence, one can view x(θ2

x)t−j as the best aggregator that yields the best prediction. This
ADL-MIDAS regression involves more parameters than the usual specification involving only one polynomial.
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are able to estimate these parameters with reasonable precision using sample sizes typically

encountered in economic applications. One attractive feature of U-MIDAS mispecification

is the fact that estimation is numerically straightforward, as it can be performed by OLS.

Suppose we collect all the parameters of the U-MIDAS regression into the vector φ ∈ Φ.

Assuming dim(θ) ≤ dim(φ) ≡ K̃y + mK̃x + 4 we may be able to identify and estimate the

parameters via indirect inference.4

Since the models of interest feature SV, we can consider as auxiliary models the following

U-MIDAS regressions augmented with ARCH errors:

yt+1 = β̄0 +

K̃y∑
k=0

βkyt−k +
mK̃x∑
j=0

γjxt−j/m + εt+1, εt+1 ∼ N (0, σ2
t+1)

σ2
t = ω +

p∑
k=1

αkε
2
t−k (3.6)

which has the advantage of being simple to implement as it only involves a linear

regression specification with ARCH(p) errors. The idea for this auxiliary model is that

heteroskedasticity in the high frequency data affects the residuals of the reduced form MIDAS

regressions. Obviously, the ARCH model in the above equation is only estimated at low

frequency, and therefore the ARCH effects may not be particularly strong.

3.3 Auxiliary Models: Mixed Frequency VAR and ARCH

The auxiliary U-MIDAS regressions considered in the previous subsection do not fully exploit

all features of the data since the link between latent factors and high frequency data is not

being taken into account. In this subsection we remedy to this shortcoming by considering

mixed frequency VAR models. It is worth noting from the start that there might be some

confusion about the characterization of mixed frequency VAR models. The analysis below

serves two purposes: (1) it generalizes the U-MIDAS setup discussed so far and (2) it enables

us to consider a suitable approach for state space models with stochastic volatility.

A number of authors, including Zadrozny (1988), Zadrozny (1990) and more recently Kuzin,

Marcellino, and Schumacher (2011), Schorfheide and Song (2013), among others, start from

4Note that we added a constant and residual variance in the MIDAS regressions parameter count.
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a latent high frequency VAR process, namely:(
y∗t+(j+1)/m

xt+(j+1)/m

)
= C0 +

kmax∑
k=1

Ck

(
y∗t+(j+1−k)/m

xt+(j+1−k)/m

)
+

(
εy∗t+(j+1)/m

εxt+(j+1)/m

)
(3.7)

where y∗t+j/m is defined in equation (2.2). The above latent VAR model is related to

observables via a measurement equation and therefore cast in state space framework with

missing observations.

State space models are, using the terminology of Cox (1981), parameter-driven models

whereas VAR models are, using again the same terminology, observation-driven models as

they are formulated exclusively in terms of observable data. Ghysels (2014) introduces

a class of observation-driven mixed frequency VAR models which provides an alternative

to commonly used state space models involving latent processes. In addition, the mixed

frequency VAR model is a multivariate extension of MIDAS regressions.

The mixed frequency VAR considered by Ghysels (2014), tailored towards the current

application, can be written as follows:
xt+1

...

xt+1+(m−1)/m

yt+1

 = C̃0 +
K̃max∑
k=1

C̃k


xt+1−k

...

xt+1−k+(m−1)/m

yt+1−k

+


ε1
t+1
...

εmt+1

εyt+1

 . (3.8)

Hence, it involves a VAR of dimension m + 1 (with single high and low frequency series)

where the high and low frequency data for low frequency period (quarter, say) t are stacked

into a vector whose dynamics is described by a linear multivariate autoregressive structure.

Note, that elements of the matrices C̃k now describe within-period (intra-quarterly) time

series dependencies.5 The stacking implies that, if we read across a particular row of the

mixed frequency VAR, we have high frequency processes predicted by past high and low

frequency series and vice versa.

The unrestricted VAR model in equation (3.8) includes (m+1)+K̃max(m+1)2 +m(m+1)/2

parameters which can be estimated by OLS. Ghysels (2014) proposes a parsimonious

parametrization which can be estimated by Maximum Likelihood, at the expense of a higher

5Most notably Granger causal patterns as discussed in Ghysels, Hill, and Motegi (2014), Ghysels, Hill,
and Motegi (2016), Götz and Hecq (2014a) and Götz and Hecq (2014b).
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computational cost, as the likelihood has to be maximized numerically either using classical

or Bayesian techniques. Therefore, this restricted VAR is not suitable as auxiliary model,

because of the heavy computational cost.

A parsimonious auxiliary model, which ensures computational speed for indirect inference

estimation, can be obtained by considering an AR model for the high frequency data, which

can be easily estimated by OLS. The following model will be used as the auxiliary model in

our Monte Carlo simulation exercise for DGPs without SV:
yt+1 = β̄0 +

K̃y∑
k=0

βkyt−k +

m(K̃x+1)−1∑
j=0

γjxt−j/m + ζyt+1

xt+(j+1)/m = c0 +

m(K̃x+1)∑
k=1

ckxt+(j+1−k)/m + ζxt+(j+1)/m

. (3.9)

The first equation of this auxiliary model corresponds to the U-MIDAS specification in

equation (3.5), while the second equation is an AR of order m(K̃x + 1) specified on the high

frequency (HF) data only. The second equation can be obtained from one of the equations

for the HF observables of a structural mixed frequency VAR model, where the high frequency

variables do not depend explicitly on the lagged low frequency ones (see Ghysels (2014)).

Model (3.9) can be estimated by OLS, and the correlation between the innovations ζyt+1 and

ζxt+(j+1)/m, which can only be computed at low frequency, could be included as an auxiliary

parameter to estimate, or can be set to zero.

In order to handle the DGP with SV, we can add ARCH-type augmentations to the auxiliary

models. In particular, the complete auxiliary model used in the Monte Carlo simulation for

DGPs with SV is:

yt+1 = β̄0 +

K̃y∑
k=0

βkyt−k +

m(K̃x+1)−1∑
j=0

γjxt−j/m + ζyt+1

xt+(j+1)/m = c0 +

m(K̃x+1)∑
k=1

ckxt+(j+1−k)/m + ζxt+(j+1)/m, ζxt+(j+1)/m ∼ N (0, σxt+(j+1)/m)

σxt+(j+1)/m = ω +

p∑
k=1

αk(ζ
x
t+(j+1−k)/m)2

(3.10)

where the errors ζx and ζy can be correlated.
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3.4 Estimation via Indirect Inference

The parameter vectors for the auxiliary model will be denoted respectively φMi for the U-

MIDAS specification appearing in equation (3.6), and φV for the mixed frequency VAR

model in equation (3.8) in general - and more specifically in equation (3.10). Given a sample

of size Tm we obtain OLS estimates φ̂Mi
Tm and φ̂VTm.

We simulate mixed frequency data with the state space model in Assumptions 2.1 and 2.2,

given a particular structural parameter value θ, by drawing S independent samples of size

T Sm from the model:

Fs,t+j/m(θ) =

p∑
l=1

Φl(θ)Fs,t+(j−l)/m(θ) + ηs,t+j/m(θ)

lnhs,t+j/m(θ) = c(θ) + ρSV (θ) lnhs,t+(j−1)/m(θ) + ξs,t+j/m(θ)

y∗s,t+j/m(θ) = γ1(θ)′Ft+j/m(θ) + us,1,t+j/m(θ)

d1(L1/m, θ)us,1,t+j/m(θ) = εs,1,t+j/m(θ)

ycs,t+j/m(θ) = Ψjy
c
s,t+(j−1)/m(θ) + λjy

∗
s,t+j/m(θ)

ys,t(θ) = ycs,t(θ)

xs,t+j/m(θ) = γ2(θ)′Fs,t+j/m(θ) + us,2,t+j/m(θ)

d2(L1/m, θ)us,2,t+j/m(θ) = hs,t+j/m(θ)1/2εs,2,t+j/m(θ)

∀t = 1, . . . , T S, j = 0, . . . ,m− 1, s = 1, . . . , S, (3.11)

where innovation processes ηs(θ), εs,1(θ), εs,2(θ) and ξs(θ) are independent i.i.d. processes

with Gaussian distributions N (0,Ση(θ)), N (0, σ2
ε1

(θ)), N (0, 1), N (0, ν2
2(θ)). Given the S

simulated samples, we compute the following estimators:

• The Indirect Inference (II) estimator of Gouriéroux, Monfort, and Renault (1993) and

Smith (1993), using the U-MIDAS auxiliary model, denoted by θ̂IIMi
TmS ;

• The II estimator of Gouriéroux, Monfort, and Renault (1993) and Smith (1993), using

the mixed frequency VAR auxiliary model, denoted by θ̂IIVTmS.

The II estimators for auxiliary models Mi and V are obtained via:

θ̂IIMi
TmS = arg min

θ

(
φ̂Mi
Tm −

1

S

∑
s

φ̂Mi
Tm,s(θ)

)′
ΩMi

(
φ̂Mi
Tm −

1

S

∑
s

φ̂Mi
Tm,s(θ)

)
(3.12)
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and:

θ̂IIVTmS = arg min
θ

(
φ̂VTm −

1

S

∑
s

φ̂VTm,s(θ)

)′
ΩV

(
φ̂VTm −

1

S

∑
s

φ̂VTm,s(θ)

)
(3.13)

respectively, with φ̂Mi
Tm,s(θ) and φ̂VTm,s(θ) being the U-MIDAS and VAR auxiliary model

parameter estimates for generated sample s and structural parameter value θ, and ΩMi

and ΩV being (optimal) weighting matrices.

Assumptions 2.1-2.2 and standard regularity conditions (see e.g. Gouriéroux and Monfort

(1997)) imply that the indirect inference estimators are consistent and asymptotically normal

as T and S →∞: √
Tm(θ̂ESTTmS − θ0)→d N (0, V EST ) (3.14)

for EST ≡ IIMi and IIV respectively, where θ0 denotes the true value of the structural

parameter.

3.5 EM algorithm for mixed frequency SV model

We assess the efficiency of our indirect inference estimators for the SV model with mixed

frequency data by comparing their performances with that of the Maximum Likelihood (ML)

estimator in a Monte Carlo experiment (see Section 5). Due to the latent factor processes

(F ) and (h) in the dynamics of the data, the likelihood function of the model involves a large-

dimensional integral with respect to the latent factors path. This integral representation of

the likelihood is impractical for computation of the ML estimate. We consider instead a

simulation-based estimator relying on the Expectation Maximization (EM) algorithm. The

smoothing distribution required in the Expectation step is computed via a particle forward-

filtering/backward-smoothing algorithm.6 In this section we describe the main steps of the

procedure, and refer to Appendix B for the detailed definition of the estimation algorithm.

The Expectation-Maximization (EM) algorithm is an iterative procedure to compute

numerically the ML estimate in a model with unobservable variables (Dempster, Laird, and

Rubin (1977)). Let Yt = (yt, xt−j/m, j = 0, 1, ...,m − 1)′ be the vector of stacked observable

6Other approaches have been proposed in the literature to implement the MLE in nonlinear state space
models with SV and could be adapted to our mixed frequency framework, for instance the Monte Carlo ML
approach in Sandmann and Koopman (1998).
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variables (measurements) and ft = (Ft−j/m, ht−j/m, j = 0, 1, ...,m− 1)′ the Markov vector of

stacked latent factors, for t = 1, ..., T . The EM algorithm relies on the complete-observation

log-likelihood function, that is the log of the joint density of observable and unobservable

variables in the structural model:

L∗(θ) = log `(YT , fT ; θ)

=
T∑
t=1

log h(Yt|Yt−1, ft; θ) +
T∑
t=1

log g(ft|ft−1; θ),

where YT denotes the history of Yt up to T , and similarly for fT and ft. Here, h is the

measurement density and g is the transition density in the state space representation (see

Appendix B.2 for the expression of L∗(θ) in the mixed-frequency SV model). Let θ̂
EM,(i)
Tm

be the estimate of parameter θ at iteration i of the EM algorithm. The update i → i + 1

consists of two steps:

1. Expectation (E) step. Compute function Q(θ|θ̃), with θ̃ = θ̂
EM,(i)
Tm , where:

Q
(
θ|θ̃
)

= Eθ̃
[
L∗(θ)|YT

]
and Eθ̃

[
·|YT

]
denotes the expectation w.r.t. the conditional distribution of fT given

YT for parameter value θ̃.

2. Maximization (M) step. Compute the estimate for iteration i+ 1 as:

θ̂
EM,(i+1)
Tm := arg max

θ
Q
(
θ|θ̂EM,(i)

Tm

)
.

The iteration is performed until a criterion for numerical convergence of the estimate is met,

and θ̂ML
Tm = θ̂

EM,(∞)
Tm . The details for the E-step and the M-step in the mixed frequency SV

model are provided in Appendix B.3.

The E-step in the EM algorithm requires the smoothing distribution of the unobservable

factor path for given parameter value θ̃ to compute the conditional expectation Eθ̃
[
·|YT

]
.

This smoothing distribution cannot be characterized analytically for a nonlinear state space

specification as the mixed frequency SV model. We approximate the smoothing distribution

via a large sample of draws from it, called particles. The smoothing algorithm we adopt uses

a sample of particles from the filtering distribution as an input. Specifically, for the E-step
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of the i-th iteration in the EM algorithm, we generate samples f
s,(i)
t+j/m = (F

s,(i)
t+j/m, h

s,(i)
t+j/m)′,

s = 1, ..., S, from the filtering distribution of the latent factors at each date t + j/m, for

parameter value θ̂
EM,(i)
Tm . For this task we use a sequential algorithm based on the auxiliary

particle filter method running from the first sample date to the last sample date. We refer

to Pitt and Shephard (1999) for the auxiliary particle filter; see also e.g. Douc, Moulines,

and Olsson (2009), Carvalho, Johannes, Lopes, and Polson (2010), Doucet (2010), Lopes

and Tsay (2011), Creal (2012), Kantas, Doucet, Singh, Maciejowski, and Chopin (2015) for

recent developments and applications. The algorithm is described in detail in Section B.4.2.

Then, we use a backward algorithm to generate sample paths (f̃
s,(i)
t+j/m,∀t, j), s = 1, ..., S,

from the smoothing distribution; see e.g. Kim and Stoffer (2008) and Godsill, Doucet, and

West (2004). Appendix B.4.3 provides the detailed simulation procedure. The sample paths

(f̃
s,(i)
t+j/m,∀t, j), s = 1, ..., S, are approximate draws from the distribution of (ft+j/m,∀t, j)

given YT for parameter value θ̂
EM,(i)
Tm when the number of particles S is large. We use

averages across these sample paths to approximate the conditional expectation Eθ̃
[
·|YT

]
for

θ̃ = θ̂
EM,(i)
Tm .

4 Filtering via reprojection and nowcasting

State space models do not only involve parameter estimation but also filtering of the latent

states, for which the Kalman filter is the standard scheme in the linear Gaussian case. In this

section we present alternative methods which easily extend to, say, the non-Gaussian case

involving stochastic volatility. Our approach relies on the reprojection method of Gallant

and Tauchen (1998) to produce filtering estimates of the latent factors.

The procedure is fairly simple to implement. Let θ̂ESTTmS be the parameter estimate obtained

by one of the Indirect Inference estimators introduced in Section 3.4. We start again with

simulating a long sample of size T reprojm, say, from the model of interest as in equation

(3.11), using parameter value θ = θ̂ESTTmS. Then, the simulated sample is used to estimate a

specification for the conditional expectation of the latent factors given the observable data.

Finally, the estimated specification for this conditional expectation is applied to the original

sample of observations y, x, and used as a filter.

To develop further insight in the methodology, we start with the Gaussian case (the model

in Assumptions 2.1 and 2.2 without SV, i.e. with ρSV = 1 and ν2 = 0). Next, we discuss the
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filtering algorithm for the non-Gaussian case with stochastic volatility.

In a Gaussian linear state space model, the conditional expectation of the latent factor given

the measurements is linear (see equation (A.15) in Appendix A). In our mixed frequency

setting, in analogy to equation (3.5), this remark suggests estimating a U-MIDAS regression

on the simulated sample:

Ft+j/m(θ̂ESTTmS) = b0(θ̂ESTTmS) +

K̃y∑
k=0

bk(θ̂
EST
TmS)yt−k(θ̂

EST
TmS)

+
mK̃x∑
k=0

ck(θ̂
EST
TmS)xt+(j−k)/m(θ̂ESTTmS) + εt+j/m(θ̂ESTTmS)

t = 1, 2, ..., T reproj, j = 0, 1, ...,m− 1, (4.1)

which amounts to regressing latent factors onto observables. Note that the observables have

a nowcasting feature, i.e. contemporaneous period t + j/m high frequency data is used. Once

we have the parameters of the above regression, we can apply the scheme to observed data

y and x and therefore use it as a filter. We denote by F̂t+j/m|t+j/m(θ̂ESTTmS) the reprojection

factor values.

Likewise, the mixed frequency VAR framework of Ghysels (2014) could be modified to

perform the task as filter, namely we run the system of regressions:

C̄(θ̂ESTTmS)


Ft+1(θ̂ESTTmS)

...

Ft+1+(m−1)/m(θ̂ESTTmS)

yt+1(θ̂ESTTmS)

 = C̃0(θ̂ESTTmS) +
K̃max∑
k=1

C̃k(θ̂
EST
TmS)


xt+1−k(θ̂

EST
TmS)

...

xt+1−k+(m−1)/m(θ̂ESTTmS)

yt+1−k(θ̂
EST
TmS)



+


ε1t+1(θ̂ESTTmS)

...

εmt+1(θ̂ESTTmS)

εyt+1(θ̂ESTTmS)

 (4.2)

where C̄(θ̂ESTTmS) is a lower triangular matrix to accommodate nowcasting - see Ghysels (2014)

for further details. Here again, once we estimate the system of equations over a long simulated

sample, we can treat the resulting estimates as weights for a filtering scheme.
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In the nonlinear state space model with stochastic volatility, the conditional expectation of

the latent factors given the current and past values of the observable variables is no more

linear in the conditioning variables. Therefore, in such framework the regressions in (4.1)

and (4.2) do not provide exact filters (up to a truncation of the number of lags). However, we

can interpret these regressions as numerically feasible linear approximations of the unknown

exact filter for the latent factor F in the conditional mean. A second-order approximation

is obtained by including quadratic terms in low and high frequency observations. Similar

approximate filters can be developed for the stochastic volatility factor h. In this case, the

filter can be based on squared measurement errors. For instance, in a model without AR

effects in the measurement errors at high frequency (to simplify), we can run the regression:

ht+j/m(θ̂ESTTmS) = d̄0 +
K̃u∑
k=0

d̄k(u2,t+(j−k)/m(θ̂ESTTmS))2 + εut+j/m(θ̂ESTTmS), (4.3)

possibly including also higher-order terms.

In the linear Gaussian case, we can make direct comparisons of the filters based

on reprojection with the Kalman filter in order to gauge the reliability of the

proposed method. In the non-Gaussian case with stochastic volatility, a benchmark

for comparison is obtained by first estimating the model by Monte Carlo EM as

described in Section 3.5, and then compute the filtered factor value f̂t+j/m|t+j/m(θ̂ML
Tm ) =

[F̂t+j/m|t+j/m(θ̂ML
Tm ), ĥt+j/m|t+j/m(θ̂ML

Tm )]′, say, by averaging the particles f st+j/m, with s =

1, ..., S, from the filtering distribution for parameter value θ̂ML
Tm . We perform these

comparisons in the Monte Carlo simulations presented in Section 5. There, we keep the

reprojections quite simple in fact, namely we implement the filter for F in equation (4.1) in

both the Gaussian and stochastic volatility settings, and we use a filter for volatility factor h

based on squared residuals such as (4.3) in the latter setting. These filters could be improved

upon by considering the setup in equation (4.2), and adding higher-order terms in the SV

case.

5 Monte Carlo Simulations

We conduct a Monte Carlo simulation to appraise the small and large sample properties

of the indirect inference procedures proposed in earlier sections. A first subsection covers
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the design of the simulations. A second subsection covers the Gaussian state space model

where the Kalman filter and maximum likelihood are the natural benchmarks. In a final

subsection we consider non-Gaussian cases with stochastic volatility, where we compare our

indirect inference procedure with a simulation-based EM algorithm.

5.1 Design

We consider three designs for the MC experiments. In all of them we have m = 3,

corresponding to - for instance - a mixture of monthly and quarterly data, and stock sampling

of the low frequency variable. In the first MC design, we consider a linear Gaussian state

space model. The DGP has a single Gaussian AR(1) latent factor process (nf = 1), and

Gaussian AR(1) measurement errors for both the high and low frequency data, with the

same persistence parameter.

DGP 1: Single factor linear Gaussian state space model

The data (y) and (x), and the single latent factor (F ), are such that:

Ft+j/3 = ρFt+(j−1)/3 + ηt+j/3,

y∗t+j/3 = γ1Ft+j/3 + uy,t+j/3,

uy,t+j/3 = d · uy,t+(j−1)/3 + σyεy,t+j/3,

xt+j/3 = γ2Ft+j/3 + ux,t+j/3,

ux,t+j/3 = d · ux,t+(j−1)/3 + σxεx,t+j/3, t = 1, ..., T, j = 0, 1, 2,

where the low frequency variable y is stock-sampled, and (η), (εy) and (εx) are mutually

independent i.i.d. standard Gaussian processes. The true values of the parameters are

γ1 = γ2 = 1, d = 0, σy = σx = 1. We consider two values for the persistence of the

latent factor, that are ρ = 0.5 and ρ = 0.9.

The number of structural parameters in DGP1 is 6. In each Monte Carlo simulation, we

draw from this DGP samples of sizes T = 100 (corresponding to 25 years of quarterly data),

T = 200 and T = 500. We perform 1000 Monte Carlo repetitions. On each simulated

sample we compute the Indirect Inference (II) estimator θ̂IIVTmS of Gouriéroux, Monfort, and

Renault (1993) and Smith (1993) as described in Section 3.4, and the associated reprojections
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F̂t+j/m|t+j/m(θ̂IIVTmS) as described in Section 4. The auxiliary model is a U-MIDAS regression

for the low frequency data with K̃x = K̃y = 3 and an AR(9) process for the high frequency

data (see equation (3.9)). This auxiliary model has 30 parameters and yields an overidentifed

II setting. Instead of running S simulations from the DGP of length T , we simulate a unique

long path, i.e. we set S = 1 and T S = 50000. Moreover, we use the identity weighting matrix.

The reprojection of the latent factor is computed by regression on a simulated sample of size

T reproj = 100000.

In this linear Gaussian state space model, the MLE estimator of the model parameters θ̂ML
Tm

and the Kalman filter of the latent factor values - which we denote F̂t+j/m|t+j/m(θ̂ML
Tm ) - serve

as the natural benchmark. We compute the Kalman filter and the ML estimates using the

algorithm presented in Appendix A.

In the second Monte-Carlo design, the DGP is a two-factor linear state space model (nf = 2).

The two latent factors follow independent AR(1) processes, with same autoregressive

parameter.

DGP 2: Two-factor linear Gaussian state space model

The data (y) and (x), and the bivariate latent factor (F ), are such that:

Ft+j/m =

[
ρ 0

0 ρ

]
Ft+(j−1)/3 + ηt+j/3,

y∗t+j/3 = γ′1Ft+j/3 + uy,t+j/3,

uy,t+j/3 = d · uy,t+(j−1)/3 + σyεy,t+j/3,

xt+j/3 = γ′2Ft+j/3 + ux,t+j/3,

ux,t+j/3 = d · ux,t+(j−1)/3 + σxεx,t+j/3, t = 1, ..., T, j = 0, 1, 2,

where the low frequency variable y is stock-sampled, and (η), (εy) and (εx) are mutually

independent i.i.d. Gaussian processes, with distribution N (0, I2) for (η), and distribution

N (0, 1) for (εy) and (εx). The true values of the parameters are ρ = 0.9, γ1 = (1, 0.2)′,

γ2 = (0.2, 1)′, d = 0, σy = σx = 1.

The number of structural parameters in DGP2 is 8. The sample sizes are T = 100, T = 200

and T = 500. We compute the II estimator θ̂IIVTmS of Gouriéroux, Monfort, and Renault

(1993) and Smith (1993) and the associated reprojections F̂t+j/m|t+j/m(θ̂IIVTmS) with the same
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auxiliary model and the same simulation length as for DGP1. We also compute the MLE

θ̂ML
Tm and the Kalman filter estimates F̂t+j/m|t+j/m(θ̂ML

Tm ) with the algorithm in Appendix A.

The third DGP is a mixed frequency state space model with stochastic volatility. This DGP

features a single Gaussian AR(1) factor in the mean of high frequency and low frequency

observables (nf = 1). The measurement error of the low frequency variable is a Gaussian

AR(1) process. The measurement error of the high frequency variable is a conditionally

heteroskedastic process.

The number of structural parameters in DGP3 is 8. The SV specification for the high

frequency innovations in equations (5.1) and (5.2) is a reparametrization of the one proposed

in equations (2.7) and (2.8). This specification is analogous to the one used by Monfardini

(1998), Marcellino, Porqueddu, and Venditti (2015) and Clark (2011), among others. In

particular, here h is the log volatility process, and is normalized to have mean zero. In this

parameterization, both latent factors have a linear autoregressive dynamics.

DGP 3: Stochastic volatility model

The data (y) and (x), and the scalar latent factors (F ) and (h), are such that:

Ft+j/3 = ρFt+(j−1)/3 + ηt+j/3,

y∗t+j/3 = γ1Ft+j/3 + uy,t+j/3,

uy,t+j/3 = d · uy,t+(j−1)/3 + σyεy,t+j/3,

xt+j/3 = γ2Ft+j/3 + σx exp

{
1

2
ht+j/3

}
εx,t+j/3, (5.1)

ht+j/3 = ρSV ht+(j−1)/3 + ν · ξt+j/3, t = 1, ..., T, j = 0, 1, 2, (5.2)

where the low frequency variable y is stock-sampled, and (η), (εy), (εx) and (ξ) are mutually

independent i.i.d. standard Gaussian processes. The true values of the parameters are

γ1 = γ2 = 1, d = 0, σy = σx = 1, ρSV = 0.95, ν = 0.3. We consider two values for

the persistence of the latent factor in the conditional mean, that are ρ = 0.5 and ρ = 0.9.

Again, the sizes of the simulated samples are T = 100, T = 200 and T = 500. We have tried

different auxiliary models for the indirect inference procedure, including GARCH(1,1) for

the squared high frequency residuals, an AR(10) model on the logarithm of the squared high

frequency residuals and an AR(10) model on the logarithm of the squared high frequency

20



observables (similarly as in Monfardini (1998)). Barigozzi, Halbleib-Chiriac, and Veredas

(2014) show that the GARCH(1,1) model is the best auxiliary model for estimating a

stochastic volatility model with Indirect Inference, in the sense that it provides the best

trade-off between efficiency and estimation noise. The GARCH(1,1) auxiliary model reduces,

however, the computational speed of the indirect inference estimator, as it requires estimation

via maximum likelihood. We therefore prefer an AR-ARCH specification in the auxiliary

model, since this allows for estimation via a simple two-step approach based on OLS

regressions. Specifically, we compute the indirect inference estimator θ̂IIVTmS of Gouriéroux,

Monfort, and Renault (1993) and Smith (1993) as described in Section 3.4, using the auxiliary

model in equation (3.10), with K̃x = K̃y = 4 in the U-MIDAS regression for the low frequency

data, and an AR(9)-ARCH(10) specification for the high frequency data.7 We compare the

distribution of our indirect inference estimator with the distribution of the MLE in the Monte

Carlo simulations. In the nonlinear state space model of DGP 3, we implement the MLE

via a simulation-based EM algorithm as described in Section 3.5 (see Appendix B for the

detailed algorithm).

5.2 Monte Carlo results in the linear Gaussian state space model

Tables 1 through 3 report the results for the linear Gaussian state space models in DGP1 and

DGP2. For each combination of DGP parameters and sample size, we provide the results

of the Indirect Inference (II) procedure for parameter estimation and filtering of the latent

factor path. As a benchmark, we also provide the estimation and filtering results using the

Maximum Likelihood (ML) procedure based on the Kalman filter.8

In Table 1, we consider DGP1 where the single latent factor process is mildly persistent with

autocorrelation ρ = 0.5. The finite sample performance of the II estimator is remarkably

good. First, it has only a small bias for most configurations. Second - as expected - the

ML estimator based on the Kalman filter is more efficient, but the efficiency loss of the

II estimator is rather limited. The bias of both the II and MLE is more pronounced

7 In this paper we do not consider the moment matching procedure of Gallant and Tauchen (1996).
However, adopting their procedure, which is computationally even more attractive, could make the use of
GARCH-type auxiliary models more attractive. As the Gallant-Tauchen procedure is based on the score, it
would not require iterated ML estimates (see for instance, Sentana, Calzolari, and Fiorentini (2008)).

8All Monte Carlo simulations in Section 5 have been performed using Matlab 7.10.0 (R2010a) on a laptop
with a 1.60 GHz processor and 4 GB RAM. Optimization problems involved in parameter estimation have
been solved using the Matlab procedure ‘fminunc’.
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for parameter σy, that is the volatility of the low frequency measurement error. For this

parameter, the efficiency loss of the II estimator compared to MLE is a bit larger. As

expected, the dispersions of the estimators decrease with the sample size T . Moreover, the

reprojection procedure provides rather accurate estimates of the latent factor values. Indeed,

the average correlation between true and filtered factor values is about 0.80 for all sample

sizes, which is close to the performance of the Kalman filter.

In unreported MC results we compared the performance of the above II estimator - which

uses the U-MIDAS/AR auxiliary model for high/low frequency data - with the performance

of the II estimator using only the low-frequency U-MIDAS specification as auxiliary model.

The II estimator of the standard deviation parameter for the high-frequency data σx based

on the low-frequency U-MIDAS auxiliary model has a large bias. As shown in Table 1, this

problem does not arise when we include high-frequency data in the auxiliary model via the

mixed frequency VAR specification. These findings confirm the intuition that using data at

both frequencies provides a more informative auxiliary model.

In Table 2, the autocorrelation of the latent factor in DGP1 is set equal to ρ = 0.9. Both

the ML and II estimators have smaller dispersions in this MC design compared to Table

1. This effect is due to the more favorable signal-to-noise setting when ρ is changed from

0.5 to 0.9 in our parameterization of the DGP. Indeed, with ρ = 0.9 the factor has a larger

unconditional variance relative to the noise variance, which is fixed across the two cases.

Hence, the signal-to-noise ratio is larger for the DGP in Table 2 compared to Table 1.

In Table 3 we report the simulation results for DGP2, which features two latent factors,

with loadings equal to γ1 = (1.0, 0.2)′ and γ2 = (0.2, 1.0)′. Compared to the one-factor case

in Tables 1 and 2, the loadings are estimated rather precisely, with the dispersion of the

loadings equal to 0.2 being larger than that of the loadings equal to 1.0. Also in this case we

find that the II estimator has a very good performance, with the exception of the estimator

of the low frequency volatility σy, which has a bias of around 20% for small sample sizes

(T = 200, 100), and a large dispersion. Nevertheless, the reprojection procedure produces

accurate estimates of both factors. As expected, the factor which loads mainly on the high

frequency observables (that is F2) is estimated more precisely (average correlation with the

true factor equal to 0.88 for T = 100) than the factor which loads mainly on the low frequency

observables (average correlation with the true factor equal to 0.74 for T = 100).

Overall, the results in Tables 1 through 3 are remarkably impressive, since they show that
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the performance of the II procedure is rather close to the efficient benchmark in the linear

Gaussian state space model.

5.3 Monte Carlo results for the state space stochastic volatility

model

We now consider the more challenging state space model with stochastic volatility in DGP3.

Tables 4 and 5 report the results of Monte Carlo simulations comparing the II estimator

with the MLE (implemented via a simulation-based EM algorithm) for sample sizes T = 500

and T = 200 respectively. These tables compare the two estimation methods on the basis of

(a) statistical criteria - mean/bias/quantiles of sampling distributions, (b) filtering accuracy

- both for conditional mean and volatility factors, and (c) computational time. Compared to

the linear Gaussian state space model in DGP1, the structural model now has two additional

parameters, which are the autoregressive coefficient ρSV and the volatility parameter ν of

the log stochastic volatility process. A first encouraging finding is that the estimation results

for parameters γ1, γ2, ρ, d, σy, σx are comparable to those of the Gaussian state space model

displayed in Tables 1 and 2, with slightly larger dispersions in Tables 4 and 5, as expected.

The latter effect is more pronounced for parameter d, the autoregressive coefficient of the

low frequency measurement error, for both the II estimator and the MLE. The stochastic

volatility parameters ρSV and ν are estimated with rather small biases. Note that sample

size T = 200 corresponds to 600 high frequency observations, and for such sample sizes

the estimation of ARCH and SV specifications can be inaccurate, even in absence of latent

factors in the mean. Yet, comparing the distributions of II and ML estimates, we observe

that also in the stochastic volatility case the efficiency loss of the former estimator is limited.

It is worth noting that the reprojection method provides rather accurate estimates of the

latent factor values also in the stochastic volatility model. Results are less good for the log

volatility factor (average correlation between estimated and true factor values equal to 0.55

for sample size T = 500 in the design with ρ = 0.5). This result is not surprizing, because

there is no obvious choice for the transformations of the observable variables, whose linear

combination provides the best approximation of the conditional expectation of the volatility

factor in this nonlinear state space model. In Tables 4 and 5 we use current and past values

of log squared high frequency residuals, but other choices could yield better results.

The II procedure provides a substantial reduction in computational time compared to
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the simulation-based EM procedure used to obtain the ML estimates. For instance, the

computation of the II estimates for one Monte Carlo repetition in the stochastic volatility

design with ρ = 0.5 and sample size T = 200 takes on average about 18 minutes, against the

24 minutes required on average for the ML estimates. The difference is larger with sample

size T = 500, for which the average computational times are 16 minutes for II and 61 minutes

for ML. Here, the computational time for the II procedure is less than 21 minutes in 75% of

the MC replications, while the computational time for ML is more than one hour in more

than 25% of the MC replications. Sample sizes such as T = 500 or even larger are often

encontered in financial datasets, if the lower frequency is weekly or monthly.

To summarize the findings of the MC simulations with the stochastic volatility design, the

II procedure offers a substantial gain in computational time compared to the ML procedure

implemented via Monte Carlo EM, while the cost in terms of efficiency loss is limited.

6 Empirical study

We present an empirical application of our model to the problem of forecasting at short

horizons the Euro-area quarterly GDP growth using monthly macroeconomic indicators.

6.1 Data and model specification

The dataset is the same as the one considered in the empirical study of Marcellino,

Porqueddu, and Venditti (2015).9 The data consists of the quarterly GDP growth rates

for the Euro-area (GDP) observed from 1991-Q1 to 2011-Q1, and the monthly observations

for the same period, i.e. from 1991-M1 to 2011-M3, for the following 8 macroeconomic

indicators: (1) the aggregate European Industrial Production index for all sectors of the

European economy: IP, (2) the European Industrial Production index for “Pulp and Paper

sector”: IP-Pulp/Paper, (3) the Germany IFO Business Climate Index: IFO, (4) the Euro-

area Economic Sentiment Index: ESI, (5) the Euro-area Composite Purchasing Manager

Index: PMI, (6) the bilateral dollar-euro exchange rate, measured as year-on-year percentage

growth: EXC, (7) the difference between 3-month and 10-year US Treasury bond yield: SPR,

and (8) the University of Michigan consumer sentiment index for the US: MICH. In line with

9We thank M. Marcellino, M. Poqueddu and F. Venditti for sharing their dataset with us.
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the empirical study of Bai, Ghysels, and Wright (2013), we consider the first difference of

the series (3) to (8) to induce stationarity, and we normalize all series by their full sample

mean and standard deviation.10

We estimate the mixed-frequency stochastic volatility model defined as DGP 3 in Section

5 and the linear Gaussian factor model defined as DGP 1 on eight different pairs of mixed

frequency observables.11 In each model we include GDP as the low frequency observable, and

one of the eight monthly indicators listed above as the high frequency variable. We assume

the presence of one high frequency latent factor (nf = 1), and that the observed quarterly

GDP is the sum of three unobservable monthly growth rates: yt = y∗t + y∗t−1/3 + y∗t−2/3.

Thus, we have m = 3 and the low frequency variable is flow sampled. We estimate the SV

model by the Indirect Inference (II) procedure, using the same auxiliary model as in the MC

simulations of Section 5, and deploy the II estimates in the reprojection procedure to filter

the latent factors. We estimate the Gaussian state space model without SV by adapting the

Kalman filter for periodic state space models proposed in Bai, Ghysels, and Wright (2013)

to accommodate flow sampling (see Appendix C).

6.2 Estimation and in-sample explanatory power

Before performing the forecasting exercise, we discuss the estimation results of the models

for the entire data sample ending in 2011-Q1. In Table 6 we report the values of the R2

of the regression of both GDP and the five monthly indicators (1)-(5) on the filtered values

of the latent factor F in each model.12 For all five considered models, the factor explains

a substantial fraction of the variability of both the GDP and the respective HF monthly

indicator. For the factor model with stochastic volatility estimated with the IP indicator,

10Augmented Dickey-Fuller tests failed to reject the null hypothesis of a unit root for series (3) to (8).
11Differently from the specification of DGP 1 in Section 5, we allow the autoregressive parameters dx and

dy of the idiosyncratic error terms ux and uy to be different.
12The regression of GDP on the factor is a special type of MIDAS regression, in which we regress the value

of GDP growth at the end of quarter t on the sum of the filtered values of the factor in the months of the
same quarter:

yt = y∗t + y∗t−1/3 + y∗t−2/3

= γ1(Ft + Ft−1/3 + Ft−2/3) + uy,t + uy,t−1/3 + uy,t−2/3.

On the other hand, each high frequency indicator is regressed only on the contemporaneous value of the
factor. In Table 6 we report R2 instead of the values of the loadings of the factor on observables, as they
are more easily interpretable.
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the common factor explains 74% of the variability of GDP and 48% of Industrial Production.

When the factor model without SV is estimated on the same data, the explanatory power

of the common factor for GDP is slightly higher, as the R2 increases to 82%. On the other

hand, the explanatory power for GDP (resp. the HF indicator) of the factor extracted using

the IFO and ESI survey indices, are higher (resp. lower) for the SV model than for the linear

Gaussian one.13 The factor extracted using the IP-Pulp/Paper index explains only 11% of

the variability of this HF index for both models, but this is not surprising as the Pulp and

Paper sector represents a small fraction of the total Industrial Production. Moving to the

estimation of our model using the EXC, SPR and MICH indicators, both in the full sample

and in the shorter subsamples considered in the forecasting exercise below, the regressions

produce loadings of the HF observables on the factor close to zero, and a filtered factor

uncorrelated with the corresponding HF variable, with no forecasting power for GDP. For

this reason we report only results for the five monthly indicators (1)-(5). It should be noted

that our mixed frequency model admits only the contemporaneus impact of the common

latent factor on the HF variable, and the impact of the factor values within a quarter on

the flow-sampled LF variable. It could be that more general specifications, such as a factor

model in which the observables load on more lags of the latent factor - on the last 12 months,

for instance - might be more appropriate to assess the forecasting power for the European

GDP of the 2 US macroeconomic indicators SPR and MICH, and the Euro-dollar exchange

rate EXC.14

Figures 1 to 5 display the time series of the observable variables used to estimate the factor

models, and the filtered mean and stochastic volatility factor paths obtained via reprojection,

corresponding to HF indicators (1) to (5). Visual inspection of the estimated factor paths

F̂ in Panels (c) of the five figures reveal commonalities across models, like the major drop

and the successive rebound following the financial crisis of 2008. Nevertheless, the relative

size of this drop appears to be more pronounced for the two IP series than for IFO, ESI and

PMI.15 The trajectories of the filtered stochastic volatility factor are represented in Panels

13These results are robust to the choice of the starting point of the estimation algorithms, which did not
show convergence problems for the series reported in the tables.

14See Marcellino, Porqueddu, and Venditti (2015), in particular Section B of their online Appendix, for an
example of a richer dependence structure between the observables and the factor. Nevertheless, this result
is not surprising as the loadings of EXC, SPR and MICH on their common latent factor summarizing the
current state of the business cycle, are much smaller - in absolute value - than the loadings of the other five
macroeconomic indicators.

15As the estimated loadings of the latent factor F on the observables have positive signs, a drop in the
factor is associated with a drop in both GDP and the monthly indicator in the same quarter.
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(d) of Figures 1 to 5. For all but one of the monthly indicators, the estimated idiosyncratic

volatility factor oscillates around zero before 2008 and then increases to values larger than

1.5, indicating that the idiosyncratic volatility of the monthly macroeconomic series more

than doubled during the recent financial crisis.16 Only the IP-Pulp/Paper idiosyncratic

volatility shows a different behavior, being much larger in the first half of the sample, than

in the second one. We stress that we do not impose any dependence structure between the

mean factor F and the stochastic volatility factor h specific to each HF series, and this fact

might be relevant for the situations like the one of the IP-Pulp/Paper monthly indicator in

which the large drop of the mean factor in 2009, corresponding to the drop in DGP, is not

associated with a spike in the volatility of the high frequency index.

6.3 Forecasting

As the in-sample estimates of our five factor models are different, we expect the models

to have different forecasting power for the GDP. Similarly to Marcellino, Porqueddu, and

Venditti (2015), we perform an out-of-sample forecasting exercise where at the end of each

quarter we estimate the models with and without stochastic volatility, and use them to

forecast GDP up to an horizon of H = 4 quarters ahead of the estimation sample final date.

The first estimation window is from 1991-Q1 to 2005-Q4, and is recursively expanded up

to 2010-Q4. In Table 7 we report the Root Mean Squared Forecasting Errors (RMSFE)

as ratios to the RMSFE of a forecasting model assuming constant growth of the GDP. An

entry below one in Table 7 indicates that the factor model outperforms the naive constant

growth benchmark. This choice allows us to have comparable results across different models,

forecasting horizons, but also with the results of Marcellino, Porqueddu, and Venditti (2015,

Figures 8 and 9).

We immediately note that the forecasting ability of all models, relative to the naive

benchmark, is limited to short horizons up to 2 quarters ahead. Indeed, all the RMSFE

ratios reported in Table 7 are very close to, or even larger than, 1 for forecasting horizons

H = 3, 4 quarters. Note that Marcellino, Porqueddu, and Venditti (2015) report the RMSFE

ratios for a maximum of 7 months ahead, and that the RMSFE for 6 months (i.e. H = 2

quarters) is always very close to 1 for all their models. For the factor models estimated using

16Indeed, the value of volatility exp(0.5 · ht) increases from 1 to more than 2.1, when factor ht goes from
0 to 1.5.
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the aggregate Industrial Production index, in Table 7 the linear Gaussian model seems to

outperform the model incorporating SV when used to forecast GDP at 1 quarter horizon, as

the RMSFE ratio for the latter model is 0.7, which is smaller than the value slightly below

0.8 reported by both our SV model, and by Marcellino, Porqueddu, and Venditti (2015)

for all their specifications. On the other hand, the results are completely different when

considering the 1 quarter ahead forecasting accuracy of our SV models estimated on the IFO

and ESI indexes (RMSFE around 0.7 for H = 1, and 0.9 for H = 2, in both models), which

clearly outperform our models without SV (only the IFO model has a RMSFE lower than

1, equal to 0.9 for H = 1) and the model of Marcellino, Porqueddu, and Venditti (2015)

(RMSFE around 0.8 for H = 1, and around 1.0 for H = 1) at both 1 and 2 quarters ahead

horizons. Finally, the models estimated on IP-Pulp/paper and PMI show some forecasting

power at 1 quarter horizon, yet with larger RMSFE compared to all models discussed above.

Overall, the results of this empirical exercise demostrate the importance of considering

stochastic volatility when estimating mixed frequency factor models both for the in-sample

explanatory power of the extracted factors, which might be important when constructing

coincident indexes of the economy as in Marcellino, Porqueddu, and Venditti (2015), and

for the out-of sample predictive ability of the estimated model. Moreover, the estimation

of our SV models on GDP (LF series) and only one monthly macroeconomic indicator (HF

series) showed, that the forecasting accuracy of the different macroeconomic variables can

be different across different variables, horizons and model specifications.

There is scope for even further improvements - despite the fact that some of our models

already outperform the approach suggested by Marcellino, Porqueddu, and Venditti (2015)

- using the same data and sample configurations. In our approach, we followed Bai, Ghysels,

and Wright (2013) who focused exclusively on bivariate specifications, whereas Marcellino,

Porqueddu, and Venditti (2015) build one joint model for the eight series considered.

We have in principle 8 forecasts obtained from the paired bivariate models - with some

outperforming and some mostly at par with the single large model they consider. In light

with Andreou, Ghysels, and Kourtellos (2013) we could further improve the forecasting

output by constructing forecast combinations of our 8 predictions - ultimately producing

a single combination forecast. Since the scope of our paper is not to produce the best

forecasting model, but rather show the possibilities of estimating and implementing state

space models with SV using a new indirect inference approach, we refrain from adding these

further improvements.
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Finally, the procedures we implemented lend themselves easily to nowcasting simply by

adopting a MIDAS with leads regression approach - see Andreou, Ghysels, and Kourtellos

(2013) for further details. As noted in Section 4, this is only done at the reprojection

stage. Hence, the model parameter estimates suffice to run another simulation to obtain the

nowcasting models.

7 Conclusions

We proposed a fairly simple and remarkably accurate indirect inference estimation procedure

for state space models with either Gaussian errors or stochastic volatility. We consider a

mixed frequency data setting as it is a typical situation where stochastic volatility is relevant

due to the use of high frequency data. We confined our attention to settings involving only a

single high and low frequency data series. Yet, the methods can easily be extended to more

series of either type as the mixed frequency VAR auxiliary model can straightforwardly

accommodate such settings. A more challenging extension involves larger values of m - the

differences in low and high frequencies. The use of U-MIDAS regressions makes our approach

extremely computationally attractive due to the use of OLS. With larger values of m we know

that U-MIDAS becomes over-parameterized. While regular MIDAS regressions are a feasible

alternative - they require non-linear estimation and are therefore less appealing. It should

also be noted that we only covered indirect estimation procedures. It would also be fairly

straightforward to apply the moment matching procedure of Gallant and Tauchen (1996)

instead. As is well known, this would make our procedures potentially computationally even

more attractive, while maintaining the same asymptotic properties. This would also broaden

the potential set of auxiliary models, including GARCH and EGARCH, as the Gallant and

Tauchen (1996) procedure is based on the empirical score and does not require repeated ML

estimates. An interesting extension in this regard would be to use the criteria introduced by

Barigozzi, Halbleib-Chiriac, and Veredas (2014) for choosing the best auxiliary model.

Last but not least, it should be noted that we assumed that the number of factors is known.

In practice, one should of course also consider testing for the number of factors. There

is a considerable literature on testing for the number of factors. In terms of testing, it is

worth noting that the indirect inference procedures should not pose any additional issues in

terms of testing the number of factors. See in particular Guay and Scaillet (2003) who study

a hypothesis testing problem quite similar to determining the number of factors - namely
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involving unidentified parameters under the null - in the context of indirect inference.
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Table 1: MC simulations for the single-factor linear Gaussian state space model (persistence
parameter of the latent factor ρ = 0.5)

MLE Indirect Inference
T = 500 (Kalman filter) (Auxiliary model: U-MIDAS / AR)

Coeff. mean bias 25% q. median 75% q. mean bias 25% q. median 75% q.

γ2 0.99 -0.01 0.94 0.98 1.06 0.98 -0.02 0.86 0.97 1.10
γ1 1.01 0.01 0.94 1.00 1.06 1.00 0.00 0.90 0.97 1.05
ρ 0.50 0.00 0.48 0.50 0.52 0.50 0.00 0.47 0.50 0.54
d -0.01 -0.01 -0.07 0.01 0.05 -0.02 -0.02 -0.10 0.01 0.07
σx 1.00 -0.00 0.92 1.01 1.07 0.99 -0.01 0.87 1.04 1.15
σy 0.95 -0.05 0.90 0.99 1.06 0.91 -0.09 0.87 1.02 1.11

corr(F̂ , F ) 0.80 - 0.79 0.80 0.81 0.78 - 0.78 0.79 0.80

T = 200

γ2 0.99 -0.01 0.86 1.01 1.12 0.94 -0.06 0.75 0.93 1.09
γ1 1.03 0.03 0.91 1.02 1.13 1.01 0.01 0.85 0.94 1.16
ρ 0.50 -0.00 0.45 0.50 0.54 0.51 0.01 0.45 0.51 0.58
d -0.03 -0.03 -0.13 -0.00 0.09 0.00 0.00 -0.13 0.05 0.14
σx 0.97 -0.03 0.84 1.00 1.12 1.00 0.00 0.85 1.07 1.23
σy 0.86 -0.14 0.79 0.97 1.05 0.79 -0.21 0.50 1.00 1.12

corr(F̂ , F ) 0.79 - 0.78 0.80 0.81 0.77 - 0.75 0.78 0.79

T = 100

γ2 0.97 -0.03 0.82 0.96 1.12 0.89 -0.11 0.69 0.85 1.11
γ1 1.01 0.01 0.88 0.99 1.11 0.92 -0.08 0.69 0.89 1.11
ρ 0.50 -0.00 0.43 0.50 0.59 0.51 0.01 0.40 0.54 0.67
d -0.04 -0.04 -0.20 0.01 0.11 -0.01 -0.01 -0.21 0.07 0.18
σx 0.95 -0.05 0.77 1.00 1.16 0.98 -0.02 0.76 1.11 1.26
σy 0.81 -0.19 0.67 0.94 1.08 0.84 -0.16 0.54 1.05 1.17

corr(F̂ , F ) 0.78 - 0.75 0.78 0.81 0.75 - 0.73 0.76 0.78

This table reports mean, bias, and 25%, 50%, 75% quantiles of the distribution of the ML (left) and Indirect

Inference (II, right) estimators in 1000 MC replications. The data generating process is DGP1 in Section 5.1,

corresponding to a mixed frequency linear state space model with a single AR(1) latent factor, m = 3, and

stock sampling of the low frequency variable. The true values of the parameters are γ1 = γ2 = 1, ρ = 0.5,

d = 0, σy = σx = 1. The simulated samples have size T = 500 (top), T = 200 (middle), T = 100 (bottom).

The auxiliary model for the indirect inference estimator is a U-MIDAS regression for low frequency data

with K̃x = K̃y = 3 and an AR(9) model for the high frequency data (see equation (3.9)), with the correlation

between the errors of the two equations as a free auxiliary parameter. The Indirect Inference estimator uses

a single long simulated sample of the structural model (S = 1 and TS = 50000) and an identity weighting

matrix. We also compute the mean and 25%, 50%, 75% quantiles of the sample correlation between the

estimated and true factor paths. The estimated factor paths are obtained by Kalman filter with the ML

estimate (left) and the reprojection method with the II estimate (right), using T reproj = 100000.
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Table 2: MC simulations for the single-factor linear Gaussian state space model (persistence
parameter of the latent factor ρ = 0.9)

MLE Indirect Inference
T = 500 (Kalman filter) (Auxiliary model: U-MIDAS / AR)

Coeff. mean bias 25% q. median 75% q. mean bias 25% q. median 75% q.

γ2 1.00 -0.00 0.98 1.00 1.02 0.98 -0.02 0.94 0.97 1.02
γ1 1.00 -0.00 0.96 1.00 1.03 0.98 -0.02 0.91 0.98 1.04
ρ 0.90 0.00 0.89 0.90 0.91 0.90 0.00 0.87 0.91 0.93
d -0.00 -0.00 -0.03 -0.00 0.03 0.02 0.02 -0.02 0.02 0.07
σx 1.00 -0.00 0.96 1.00 1.03 1.02 0.02 0.98 1.04 1.08
σy 0.99 -0.01 0.96 1.00 1.03 1.03 0.03 0.97 1.04 1.10

corr(F̂ , F ) 0.95 - 0.94 0.95 0.95 0.94 - 0.94 0.94 0.95

T = 200

γ2 1.01 0.01 0.96 1.00 1.05 0.95 -0.05 0.87 0.95 1.02
γ1 1.00 -0.00 0.96 1.00 1.05 0.95 -0.05 0.85 0.96 1.02
ρ 0.90 -0.00 0.88 0.90 0.91 0.90 0.00 0.85 0.91 0.95
d -0.01 -0.01 -0.08 -0.00 0.06 0.03 0.03 -0.04 0.04 0.12
σx 0.99 -0.01 0.94 0.98 1.04 1.03 0.03 0.97 1.05 1.11
σy 0.99 -0.01 0.93 0.99 1.05 1.05 0.05 0.95 1.09 1.18

corr(F̂ , F ) 0.95 - 0.94 0.95 0.95 0.94 - 0.94 0.94 0.95

T = 100

γ2 0.99 -0.01 0.94 0.99 1.06 0.92 -0.08 0.79 0.90 1.02
γ1 0.99 -0.01 0.94 0.98 1.05 0.89 -0.11 0.77 0.86 1.00
ρ 0.89 -0.01 0.87 0.90 0.91 0.89 -0.01 0.81 0.92 0.99
d -0.02 -0.02 -0.11 -0.01 0.09 0.05 0.05 -0.16 0.09 0.23
σx 0.98 -0.02 0.91 0.99 1.05 1.03 0.03 0.89 1.09 1.20
σy 0.98 -0.02 0.90 0.97 1.08 1.13 0.13 0.99 1.19 1.29

corr(F̂ , F ) 0.94 - 0.93 0.94 0.95 0.93 - 0.92 0.93 0.94

This table reports mean, bias, and 25%, 50%, 75% quantiles of the distribution of the ML (left) and Indirect

Inference (II, right) estimators in 1000 MC replications. The data generating process is DGP1 in Section 5.1,

corresponding to a mixed frequency linear state space model with a single AR(1) latent factor, m = 3, and

stock sampling of the low frequency variable. The true values of the parameters are γ1 = γ2 = 1, ρ = 0.9,

d = 0, σy = σx = 1. The simulated samples have size T = 500 (top), T = 200 (middle), T = 100 (bottom).

The auxiliary model for the indirect inference estimator is a U-MIDAS regression for low frequency data

with K̃x = K̃y = 3 and an AR(9) model for the high frequency data (see equation (3.9)), with the correlation

between the errors of the two equations as a free auxiliary parameter. The Indirect Inference estimator uses

a single long simulated sample of the structural model (S = 1 and TS = 50000) and an identity weighting

matrix. We also compute the mean and 25%, 50%, 75% quantiles of the sample correlation between the

estimated and true factor paths. The estimated factor paths are obtained by Kalman filter with the ML

estimate (left) and the reprojection method with the II estimate (right), using T reproj = 100000.
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Table 4: MC simulations for the stochastic volatility model (sample size T = 500)

Indirect Inference MLE
ρ = 0.5 (Auxiliary model: U-MIDAS/AR-ARCH) (Monte Carlo EM)

Coeff. mean bias 25% q. median 75% q. mean bias 25% q. median 75% q.

γ2 0.97 -0.03 0.88 0.97 1.05 0.89 -0.11 0.86 0.89 0.92
γ1 0.95 -0.05 0.87 0.94 1.01 1.07 0.07 1.02 1.06 1.12
ρ 0.51 0.01 0.47 0.51 0.55 0.52 0.02 0.51 0.53 0.54
d -0.01 -0.01 -0.27 -0.02 0.29 -0.04 -0.04 -0.28 0.00 0.21
σy 0.95 -0.05 0.89 1.00 1.09 0.83 -0.17 0.75 0.84 0.91
σx 1.05 0.05 0.94 1.07 1.18 0.93 -0.07 0.91 0.94 0.96
ρSV 0.95 0.00 0.93 0.96 0.97 0.94 -0.01 0.93 0.94 0.95
ν 0.25 -0.05 0.19 0.25 0.31 0.29 -0.01 0.28 0.29 0.29

corr(F̂ , F ) 0.74 - 0.72 0.74 0.75 0.79 - 0.78 0.79 0.80

corr(ĥ, h) 0.55 - 0.51 0.55 0.59 0.74 - 0.71 0.74 0.77
Comp. time (min) 15.89 - 9.01 14.69 20.94 61.05 - 38.49 54.11 78.05

ρ = 0.9

γ2 0.96 -0.04 0.91 0.96 1.00 0.97 -0.03 0.96 0.97 0.98
γ1 0.95 -0.05 0.90 0.96 1.01 1.00 -0.00 0.98 1.00 1.02
ρ 0.91 0.01 0.89 0.91 0.93 0.90 0.00 0.89 0.90 0.91
d 0.00 0.00 -0.26 -0.05 0.38 -0.05 -0.05 -0.34 0.00 0.22
σy 0.97 -0.03 0.90 0.99 1.07 0.88 -0.12 0.81 0.88 0.95
σx 1.08 0.08 1.02 1.08 1.16 0.86 -0.14 0.82 0.87 0.91
ρSV 0.94 -0.01 0.93 0.95 0.97 0.95 -0.00 0.94 0.95 0.96
ν 0.26 -0.04 0.19 0.25 0.32 0.29 -0.01 0.28 0.29 0.29

corr(F̂ , F ) 0.93 - 0.92 0.93 0.93 0.95 - 0.95 0.95 0.96

corr(ĥ, h) 0.51 - 0.47 0.51 0.56 0.75 - 0.72 0.76 0.79
Comp. time (min) 13.87 - 9.05 12.32 16.86 60.27 - 35.67 54.86 81.67

This table reports mean, bias, and 25%, 50%, 75% quantiles of the distribution of the Indirect Inference (II,

left) and ML (right) estimators in 200 MC replications. The data generating process is DGP3 in Section

5.1, corresponding to a mixed frequency stochastic volatility model with a single AR(1) latent factor in

the mean, an AR(1) log SV process, m = 3, and stock sampling of the low frequency variable. The true

values of the parameters are γ1 = γ2 = 1, d = 0, σy = σx = 1, ρSV = 0.95, ν = 0.3. The autoregressive

coefficient of the factor in the mean is ρ = 0.5 in the upper panel and ρ = 0.9 in the lower panel. The

simulated samples have size T = 500. The auxiliary model for the II estimator is a U-MIDAS regression for

low frequency data with K̃x = K̃y = 4 and an AR(9)− ARCH(10) model for the high frequency data (see

equation (3.10)), with the correlation between the errors of the two equations as a free auxiliary parameter.

The II estimator uses a single long simulated sample of the structural model (S = 1 and TS = 50000) and

an identity weighting matrix. The MLE is computed by Monte Carlo EM, using a particle forward-filtering

backward-smoothing algoritm in the E step (see Appendix B for the detailed algorithm). We also compute

the mean and 25%, 50%, 75% quantiles of the sample correlation between the estimated and true paths of

the mean and volatility factors. The estimated factor paths are obtained by the reprojection method with

the Indirect Inference estimate (left), using T reproj = 100000, and by the average across the particles of the

filtering algorithm with the ML estimate (right). Finally, we report the mean and 25%, 50%, 75% quantiles

of the computational time (in minutes) for obtaining the parameter estimates and the filtered factor paths

in a single simulation. 40



Table 5: MC simulations for the stochastic volatility model (sample size T = 200)

Indirect Inference MLE
ρ = 0.5 (Auxiliary model: U-MIDAS/AR-ARCH) (Monte Carlo EM)

Coeff. mean bias 25% q. median 75% q. mean bias 25% q. median 75% q.

γ2 0.99 -0.01 0.81 0.96 1.14 0.90 -0.10 0.86 0.91 0.94
γ1 0.88 -0.12 0.75 0.86 0.96 1.07 0.07 1.01 1.07 1.13
ρ 0.50 0.00 0.44 0.51 0.60 0.52 0.02 0.49 0.52 0.56
d -0.05 -0.05 -0.35 -0.06 0.19 -0.03 -0.03 -0.31 0.00 0.27
σy 0.96 -0.04 0.90 1.06 1.17 0.81 -0.19 0.71 0.82 0.92
σx 1.03 0.03 0.90 1.09 1.24 0.94 -0.06 0.92 0.95 0.98
ρSV 0.94 -0.01 0.93 0.96 0.99 0.94 -0.01 0.92 0.94 0.96
ν 0.23 -0.07 0.08 0.22 0.34 0.29 -0.01 0.28 0.29 0.29

corr(F̂ , F ) 0.72 - 0.69 0.73 0.76 0.79 - 0.77 0.79 0.81

corr(ĥ, h) 0.54 - 0.48 0.55 0.61 0.73 - 0.67 0.74 0.79
Comp. time (min) 18.23 - 12.17 15.41 22.88 24.76 - 13.11 21.84 33.52

ρ = 0.9

γ2 0.92 -0.08 0.84 0.93 1.00 0.97 -0.03 0.96 0.98 0.99
γ1 0.89 -0.11 0.79 0.89 0.98 1.00 0.00 0.98 1.00 1.03
ρ 0.91 0.01 0.87 0.92 0.95 0.90 -0.00 0.89 0.90 0.91
d 0.04 0.04 -0.25 -0.04 0.48 -0.01 -0.01 -0.28 0.00 0.28
σy 1.03 0.03 0.88 1.06 1.18 0.87 -0.13 0.78 0.88 0.98
σx 1.13 0.13 0.99 1.14 1.25 0.89 -0.11 0.85 0.91 0.95
ρSV 0.93 -0.02 0.92 0.96 0.99 0.94 -0.01 0.92 0.94 0.96
ν 0.22 -0.08 0.10 0.21 0.30 0.29 -0.01 0.28 0.29 0.29

corr(F̂ , F ) 0.92 - 0.91 0.92 0.93 0.95 - 0.95 0.95 0.96

corr(ĥ, h) 0.51 - 0.46 0.52 0.58 0.74 - 0.70 0.74 0.80
Comp. time (min) 16.45 - 12.11 14.19 19.94 22.50 - 11.50 18.33 32.10

This table reports mean, bias, and 25%, 50%, 75% quantiles of the distribution of the Indirect Inference (II,

left) and ML (right) estimators in 200 MC replications. The data generating process is DGP3 in Section

5.1, corresponding to a mixed frequency stochastic volatility model with a single AR(1) latent factor in

the mean, an AR(1) log SV process, m = 3, and stock sampling of the low frequency variable. The true

values of the parameters are γ1 = γ2 = 1, d = 0, σy = σx = 1, ρSV = 0.95, ν = 0.3. The autoregressive

coefficient of the factor in the mean is ρ = 0.5 in the upper panel and ρ = 0.9 in the lower panel. The

simulated samples have size T = 200. The auxiliary model for the II estimator is a U-MIDAS regression for

low frequency data with K̃x = K̃y = 4 and an AR(9)− ARCH(10) model for the high frequency data (see

equation (3.10)), with the correlation between the errors of the two equations as a free auxiliary parameter.

The II estimator uses a single long simulated sample of the structural model (S = 1 and TS = 50000) and

an identity weighting matrix. The MLE is computed by Monte Carlo EM, using a particle forward-filtering

backward-smoothing algoritm in the E step (see Appendix B for the detailed algorithm). We also compute

the mean and 25%, 50%, 75% quantiles of the sample correlation between the estimated and true paths

of the mean and volatility factors. The estimated factor paths are obtained by the reprojection method

with the II estimate (left), using T reproj = 100000, and by the average across the particles of the filtering

algorithm with the ML estimate (right). Finally, we report the mean and 25%, 50%, 75% quantiles of the

computational time (in minutes) for obtaining the parameter estimates and the filtered factor paths in a

single simulation. 41



Table 6: In-sample R2 of GDP and HF indicator on latent factor

Stochastic volatility Gaussian state space
(Indirect Inference) (Kalman filter)

HF Indicator R2(GDP ) R2(HF indicator) R2(GDP ) R2(HF indicator)

(1) Industrial Production 0.74 0.48 0.82 0.50
(2) Industrial Production - Pulp/paper 0.69 0.11 0.80 0.11
(3) Business Climate - IFO 0.56 0.43 0.42 0.65
(4) Economic Sentiment Index 0.48 0.71 0.36 0.86
(5) PMI Composite 0.49 0.46 0.80 0.04

This table reports the R2 for the regressions of both GDP and the monthly indicators on the filtered values

of the latent factor F for different mixed frequency models. We estimate the mixed-frequency stochastic

volatility model defined as DGP 3 in Section 5 and the linear Gaussian state space model defined as DGP

1 with different pairs of mixed frequency observables. In each model, GDP is the low frequency (quarterly)

observable, and is treated as a flow sampled variable. The table reports results for 10 different models, which

differ for the high frequency (monthly) observable and the presence/absence of stochastic volatility. Columns

2 and 3 (resp. 4 and 5) display the R2 for the regression of the GDP and the HF observable on the filtered

values of F obtained from the models with (resp. without) stochastic volatility. We estimate the SV models

via Indirect Inference using the same auxiliary models as in the MC simulations of Section 5. The mean and

volatility factors are filtered by reprojection. We estimate the Gaussian state space model by adapting the

Kalman filter for periodic state space models proposed in Bai, Ghysels, and Wright (2013), see Section C.

All models are estimated on the full data sample from 1991-Q1 to 2011-Q1.
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Table 7: Root Mean Squared Forecasting Error (RMSFE) for GDP

Stochastic volatility Gaussian state space
(Indirect Inference) (Kalman filter)

Forecast horizon H Forecast horizon H
(Quarters ahead) (Quarters ahead)

HF Indicator 1 2 3 4 1 2 3 4

(1) Industrial Production 0.79 1.00 1.12 1.16 0.70 1.02 1.06 1.06
(2) Industrial Production - Pulp/paper 0.83 1.30 1.00 1.05 0.80 1.02 1.03 1.02
(3) Business Climate - IFO 0.68 0.89 0.98 1.02 0.91 1.12 1.14 1.08
(4) Economic Sentiment Index 0.70 0.92 1.01 1.04 1.00 0.98 0.97 0.97
(5) PMI Composite 0.92 0.99 0.99 0.99 0.78 1.00 1.01 1.02

This table reports the Root Mean Squared Forecasting Error (RMSFE) for GDP in different mixed frequency

models. The RMSFE is reported as the ratio to the RMSFE of the naive forecasting model assuming constant

GDP growth rate. We consider the mixed-frequency stochastic volatility model defined as DGP 3 in Section

5 and the linear Gaussian state space model defined as DGP 1 with different pairs of mixed frequency

observables. In each model, GDP is the low frequency (quarterly) observable, and is treated as a flow

sampled variable. The table reports the forecasting results for 10 different models, which differ for the high

frequency (monthly) observable and the presence/absence of stochastic volatility. To produce the forecasts,

the models are estimated on the estimation window, and then used for prediction up to 4 quarters ahead

of the estimation final date. The first estimation window is from 1991-Q1 to 2005-Q4, and is recursively

expanded up to 2010-Q4. Columns 2 to 5 (resp. 6 and 9) display the RMSFE ratios at horizons H = 1, 2, 3, 4

quarters ahead for the models with (resp. without) stochastic volatility. We estimate the SV models via

Indirect Inference using the same auxiliary models as in the MC simulations of Section 5. We estimate the

Gaussian state space model by adapting the Kalman filter for periodic state space models proposed in Bai,

Ghysels, and Wright (2013), see Section C.
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FIGURES

Figure 1: Time series of observables and estimated factors: stochastic volatility model
estimated on GDP and IP.
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(b) Monthly IP index.
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(c) Estimated common factor F̂ .

1991 1994 1997 2000 2003 2006 2009
-1.5

-1

-0.5

0

0.5

1

1.5

2

(d) Estimated SV factor ĥ.

Panels (a) and (b) display the time series of the (standardized) quarterly growth rate of European GDP, and

the (standardized) monthly growth rate of aggregate European Industrial Production index. These series

are used to estimate the mixed frequency state space model with stochastic volatility specified as DGP 3 in

Section 5, with flow sampling of the low frequency variable. The sample is from 1991-Q1 to 2011-Q1. Panels

(c) and (d) display the estimated mean and idiosyncratic volatility factors F̂ and ĥ. The parameters of the

SV model are estimated via Indirect Inference, using the same auxiliary model as in the MC simulations of

Section 5. The factors are filtered by reprojection.
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Figure 2: Time series of observables and estimated factors: stochastic volatility model
estimated on GDP and IP - Pulp/Paper.
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(b) Monthly IP - Pulp/Paper index.
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(c) Estimated common factor F̂t+j/3.
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(d) Estimated SV factor ĥt+j/3.

Panels (a) and (b) display the time series of the (standardized) quarterly growth rate of European GDP, and

the (standardized) monthly growth rate European Industrial Production index for “Pulp and Paper sector”.

These series are used to estimate the mixed frequency state space model with stochastic volatility specified

as DGP 3 in Section 5, with flow sampling of the low frequency variable. The sample is from 1991-Q1 to

2011-Q1. Panels (c) and (d) display the estimated mean and idiosyncratic volatility factors F̂ and ĥ. The

parameters of the SV model are estimated via Indirect Inference, using the same auxiliary model as in the

MC simulations of Section 5. The factors are filtered by reprojection.
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Figure 3: Time series of observables and estimated factors: stochastic volatility model
estimated on GDP and IFO.
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(b) Monthly IFO index.
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(c) Estimated common factor F̂t+j/3.
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(d) Estimated SV factor ĥt+j/3.

Panels (a) and (b) display the time series of the (standardized) quarterly growth rate of European GDP, and

the monthly (standardized first difference of) Germany IFO Business Climate index. These series are used

to estimate the mixed frequency state space model with stochastic volatility specified as DGP 3 in Section

5, with flow sampling of the low frequency variable. The sample is from 1991-Q1 to 2011-Q1. Panels (c)

and (d) display the estimated mean and idiosyncratic volatility factors F̂ and ĥ. The parameters of the

SV model are estimated via Indirect Inference, using the same auxiliary model as in the MC simulations of

Section 5. The factors are filtered by reprojection.
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Figure 4: Time series of observables and estimated factors: stochastic volatility model
estimated on GDP and ESI.
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(b) Monthly ESI index.
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(c) Estimated common factor F̂t+j/3.
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(d) Estimated SV factor ĥt+j/3.

Panels (a) and (b) display the time series of the (standardized) quarterly growth rate of European GDP, and

the (standardized first difference of) monthly Euro-area Economic Sentiment Index. These series are used

to estimate the mixed frequency state space model with stochastic volatility specified as DGP 3 in Section

5, with flow sampling of the low frequency variable. The sample is from 1991-Q1 to 2011-Q1. Panels (c)

and (d) display the estimated mean and idiosyncratic volatility factors F̂ and ĥ. The parameters of the

SV model are estimated via Indirect Inference, using the same auxiliary model as in the MC simulations of

Section 5. The factors are filtered by reprojection.
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Figure 5: Time series of observables and estimated factors: stochastic volatility model
estimated on GDP and PMI.
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(b) Monthly PMI index.
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(c) Estimated common factor F̂t+j/3.
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(d) Estimated SV factor ĥt+j/3.

Panels (a) and (b) display the time series of the (standardized) quarterly growth rate of European GDP, and

the (standardized first difference of) monthly Euro-area Composite Purchasing Manager Index. These series

are used to estimate the mixed frequency state space model with stochastic volatility specified as DGP 3 in

Section 5, with flow sampling of the low frequency variable. The sample is from 1991-Q1 to 2011-Q1. Panels

(c) and (d) display the estimated mean and idiosyncratic volatility factors F̂ and ĥ. The parameters of the

SV model are estimated via Indirect Inference, using the same auxiliary model as in the MC simulations of

Section 5. The factors are filtered by reprojection.
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Appendix A: Mixed Frequency Linear State Space

Models

In this Appendix we summarize some results from Bai, Ghysels, and Wright (2013) concerning linear state
space models with mixed frequency data. These results are useful to obtain the binding function linking our
structural state space model and the auxiliary MIDAS regressions when the structural model does not feature
SV (see Section 3.1). They also provide the Kalman filter algorithm for ML estimation of the structural
model without SV used in the MC simulations (see Section 5).

A.1 Model setup

The linear state space model presented in Section 3.1 can be summarized as follows. The latent factor F
follows a V AR(p) process:

Ft+j/m =

p∑
l=1

ΦlFt+(j−l)/m + ηt+j/m ∀t = 1, . . . , T, j = 0, . . . ,m− 1. (A.1)

The low frequency data is related to factors as follows:

y∗t+j/m = γ′1Ft+j/m + u1,t+j/m ∀t, j = 0, . . . ,m− 1, (A.2)

with u1,t+j/m having an AR(k) representation:

d1(L1/m)u1,t+j/m = ε1,t+j/m, d1(L1/m) ≡ 1− d11L
1/m − . . .− dk1L

k/m, (A.3)

and the lag operator L1/m applying to high-frequency data, i.e. L1/mut ≡ ut−1/m. The observed low-
frequency process y relates to the latent process y∗ via a linear aggregation scheme:

yct+j/m = Ψjy
c
t+(j−1)/m + λjy

∗
t+j/m (A.4)

where yt is equal to yct for integer t, and is not observed otherwise. The high frequency process xt+j/m
relates to the factors as follows:

xt+j/m = γ′2Ft+j/m + u2,t+j/m ∀t, j = 0, . . . ,m− 1, (A.5)

where:
d2(L1/m)u2,t+j/m = ε2,t+j/m, d2(L1/m) ≡ 1− d12L

1/m − . . .− dk2L
k/m. (A.6)

This model corresponds to a restricted version of the specification in Assumptions 2.1 and 2.2 with ρSV = 1
and ν2 = 0.
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A.2 State space representation and Kalman filter

The above equations yield a periodic state space model with measurement equation:

Y jt = Zjαt+j/m

{
Y jt = (yt, xt)

′ j = 0

Y jt = xt+j/m 0 < j ≤ m− 1

, (A.7)

where

Z0 =

[
γ′1
γ′2

O2×nf (p−1) I2 O2×2(k−1)

]
Zj =

[
γ′2 O1×nf (p−1) 1 O1×2(k−1)

]
for 0 < j ≤ m− 1 and state vector

αt+j/m =
(
F ′t+j/m, . . . , F

′
t+(j−p+1)/m, u

′
t+j/m, . . . , u

′
t+(j−k+1)/m

)′
where ut+j/m = (u1,t+j/m, u2,t+j/m)′.

The transition equation is:
αt+j/m = Rαt+(j−1)/m +Qζt+j/m (A.8)

where

R =


Φ1 . . .Φp−1 Φp Onf×2(k−1) Onf×2

I(p−1)nf
O(p−1)nf×nf

O(p−1)nf×2(k−1) O(p−1)nf×n
O2×(p−1)nf

O2×nf
D1 . . . Dk−1 Dk

O2(k−1)×(p−1)nf
O2(k−1)×nf

I2(k−1) O2(k−1)×2



Q =


Inf

Onf×2

O(p−1)nf×nf
O(p−1)nf×2

O2×nf
I2

O2(k−1)×nf
O2(k−1)×2


Di = diag(dli, l = 1, 2) and ζt+j/m = (η′t+j/m, ε1,t+j/m, ε2,t+j/m)′. Let Σζ denote the variance-covariance
matrix of ζt+j/m.

The above state space model is periodic as it cycles to the data release pattern that repeats itself every m
periods. Such systems have a (periodic) steady state (see e.g. Assimakis and Adam (2009)). If we let Pj|j−1

denote the steady state covariance matrix of αt+j/m|t+(j−1)/m, then the equations:

Pj+1|j = QΣζQ
′ +RPj|j−1R

′ −RPj|j−1Z
′
j [ZjPj|j−1Z

′
j ]
−1ZjPj|j−1R

′ j = 0, . . . ,m− 2

P0|−1 = QΣζQ
′ +RP2|1R

′ −RP2|1Z
′
j [ZjP2|1Z

′
j ]
−1ZjP2|1R

′ j = m− 1 (A.9)

must be satisfied and Pj|j−1 = Pj+m|j+m−1, ∀ j. The periodic steady state Kalman gain is therefore:

Kj|j−1 = Pj|j−1Z
′
j [ZjPj|j−1Z

′
j ]
−1 (A.10)

with Kj|j−1 ≡ Kj+m|j−1+m, ∀ j. Let us define the information set IMt+j/m as the linear space generated by

{Y jt+(j−k)/m|k ≥ 0}. When we define the extraction of the state vector as:

α̂(t+j/m)|(t+j/m) = E[αt+j/m|IMt+j/m] (A.11)
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the filtered states are:

α̂(t+j/m)|(t+j/m) = Aj|j−1α̂t+(j−1)/m|t+(j−1)/m +Kj|j−1Y
j
t (A.12)

where Aj|j−1 = R−Kj|j−1ZjR and Y mt = Y 0
t+1.

Suppose we are interested in predicting at low-frequency intervals only, namely α̂(t+k)|t, for k integer valued,
using all available low and high-frequency data. First we note that:

α̂(t+k)|(t+k) = [Ãm1 ]kα̂t|t +

m∑
i=1

k∑
j=1

[Ãm1 ]k−jÃmi+1Ki|i−1Y
i
t+j−1 (A.13)

where

Ãij =

{
Ai|i−1Ai−1|i−2 . . . Aj|j−1 i ≥ j

I i < j

Expression (A.13) can be obtained via straightforward algebra - see Assimakis and Adam (2009). Given
Assumption 2.1, all the eigenvalues of Aj|j−1, j = 1, . . . , m − 1, are inside the unit circle, as are the

eigenvalues of the product matrices {Ãij} (see again Assimakis and Adam (2009)). This implies that we can
rewrite (A.13) as:

α̂t|t =

∞∑
j=0

m∑
i=1

[Ãm1 ]jÃmi+1Ki|i−1Y
i
t−j (A.14)

=

∞∑
j=0

[Ãm1 ]jKm|m−1

(
yt−j
xt−j

)
+

∞∑
j=0

m−1∑
i=1

[Ãm1 ]jÃmi+1Ki|i−1xt−1−j+i/m

from which forecasts can easily be constructed as Et[yt+h] = Z0,1R
mhα̂t|t, where Z0,1 denotes the first row

of the matrix Z0. When factor F is scalar with autoregressive coefficient ρ, and m = 3, the latter equation
yields equation (3.1) in Section 3.1.

A.3 ML estimation

To proceed to maximum likelihood estimation, let θ ∈ Θ be the parameter vector governing the parameters
of the state space model, i.e. θ = ((γi)

2
i=1, (Ψi)

p
i=1, (Di)

k
i=1,Σζ) (accounting for identification constraints).

Consider the vector Y jt defined for j = 0, . . . , m − 1, in equation (A.7) and the information set IMt+j/m in

equation (A.11). Then:

Y jt+(j+1)/m|I
M
t+j/m; θ ∼ N (µt+(j+1)/m(θ),Σt+(j+1)/m(θ)) (A.15)

with µt+(j+1)/m(θ) ≡ Zj+1(θ)α̂t+(j+1)/m|t+j/m(θ) and

Σt+(j+1)/m(θ) ≡ Zj+1(θ)′Pt+(j+1)/m|t+j/m(θ)Zj+1(θ) +Q(θ).
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The value of the log likelihood for a sample of size Tm is then:

T∑
t=1

m−1∑
j=0

log `(Y jt+(j+1)/m|I
M
t+j/m; θ) = −Tm

2
log (2π)− 1

2

T∑
t=1

log |Σt+(j+1)/m(θ)|

−1

2

T∑
t=1

m−1∑
j=0

(Y jt+(j+1)/m − µt+(j+1)/m)′(Σt+(j+1)/m(θ))−1(Y jt+(j+1)/m − µt+(j+1)/m(θ)) (A.16)

We denote the estimator that maximizes this log likelihood function by θ̂ML
Tm . Standard regularity conditions

imply that as T → ∞ : √
Tm(θ̂ML

Tm − θ0)→d N (0, VML), (A.17)

where θ0 denotes the true parameter value.
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Appendix B: Estimation of the mixed-frequency SV

model by Monte Carlo EM algorithm

In this Appendix we describe a Monte Carlo Expectation Maximization (EM) algorithm for estimation of the
state space model with mixed frequency data and stochastic volatility (see Section 3.5). In this algorithm,
the smoothing distribution of the latent factors necessary in the Expectation step is obtained using a Forward
Filtering-Backward Smoothing simulation-based procedure.

B.1 Model Setup

In this appendix we only consider models with unidimensional observables yt and xt+j/m, and unidimensional
latent factors Ft+j/m and ht+j/m. The generalization to multivariate observables and latent factors
is relatively straightforward, at the expense of a more involved notation. We consider a model with
autocorrelated innovations uy,t+j/m and stock sampled LF variables y∗t+j/m :

y∗t+j/m = γ1Ft+j/m + uy,t+j/m, (B.1)

xt+j/m = γ2Ft+j/m + ux,t+j/m, (B.2)

Ft+j/m = ρFt+(j−1)/m + ηt+j/m, (B.3)

ht+j/m = ρSV ht+(j−1)/m + νξt+j/m, (B.4)

uy,t+j/m = d uy,t+(j−1)/m + σyεy,t+j/m, (B.5)

ux,t+j/m = σx exp{1

2
ht+j/m}εx,t+j/m, (B.6)

(ηt+j/m, ξt+j/m, εy,t+j/m, εx,t+j/m)′ ∼ i.i.N (0, I4), (B.7)

y∗t+j/m is stock-sampled at j = 0. (B.8)

We focus on the setting with m = 3 as in the Monte-Carlo analysis of Section 5.

In Section B.2 we derive the state space representation of the SV model in low frequency. In Section B.3 we
describe the E-step and the M-step of the EM algorithm. In Section B.4 we provide the simulation-based
procedure to obtain the smoothing distribution of the latent factor process required in the E-step of the
EM algorithm. Throughout this Appendix, `(·) denotes the (conditional) density of the indicated random
variables.

B.2 State space representation

We derive a state space representation of model (B.1)-(B.8) in low frequency. For this purpose, we define
the vector of stacked measurements Yt and the vector of stacked latent factors ft as follows:

Yt := (yt, xt, xt−1/3, xt−2/3)′,

ft :=

[
F̃t
h̃t

]
, F̃t :=

 Ft
Ft−1/3

Ft−2/3

 , h̃t :=

 ht
ht−1/3

ht−2/3

 .
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B.2.1 Measurement density

Let us first derive the distribution of Yt given Yt−1 and ft. From equations (B.1)-(B.8) we get:

Yt = ΓF̃t + ut, (B.9)

where

ut := (uy,t, ux,t, ux,t−1/3, ux,t−2/3)′, Γ :=


γ1 0 0
γ2 0 0
0 γ2 0
0 0 γ2

 .
To derive the dynamics of innovation ut, we use that equation (B.5) and backward iteration imply
uy,t = d3uy,t−1 + σy(εy,t + dεy,t−1/3 + d2εy,t−2/3). This equation can be written as:

uy,t = d3uy,t−1 + σy
√

1 + d2 + d4 ε∗y,t, ε∗y,t ∼ i.i.N (0, 1), t = 1, 2, ..., T,

where (ε∗y,t) is independent from (εx,t−j/3), (ηt−j/3) and (ξt−j/3). Thus, innovation process (ut) is such that:

ut = Aut−1 +Btε̃
∗
t , (B.10)

where

ε̃∗t =


ε∗y,t
εx,t
εx,t−1/3

εx,t−2/3

 , A =


d3 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

Bt =


σy
√

1 + d2 + d4 0 0 0
0 σx exp{ 1

2ht} 0 0
0 0 σx exp{ 1

2ht−1/3} 0
0 0 0 σx exp{ 1

2ht−2/3}

 .
Equations (B.9) and (B.10) imply:

Yt −AYt−1 = ΓF̃t −AΓF̃t−1 +Btε̃
∗
t ,

and thus:

Yt =


yt
xt
xt−1/3

xt−2/3

 =


d3yt−1 + γ1(Ft − d3Ft−1)
γ2Ft
γ2Ft−1/3

γ2Ft−2/3

+Btε̃
∗
t .

From the last equation we get the measurement distribution:

Yt | Yt−1, ft ∼ N



d3yt−1 + γ1(Ft − d3Ft−1)
γ2Ft
γ2Ft−1/3

γ2Ft−2/3

 , B2
t

 , (B.11)
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and the measurement density:

`(Yt|Yt−1, ft; θ) =
1√

(2π)4 σ2
y (1 + d2 + d4) (σ2

x)3 exp{ht + ht−1/3 + ht−2/3}

× exp

{
− [yt − d3yt−1 − γ1(Ft − d3Ft−1)]2

2(1 + d2 + d4)σ2
y

− (xt − γ2Ft)
2

2σ2
x exp {ht}

−
(xt−1/3 − γ2Ft−1/3)2

2σ2
x exp

{
ht−1/3

} −
(xt−2/3 − γ2Ft−2/3)2

2σ2
x exp

{
ht−2/3

} }
=: h(Yt|Yt−1, ft; θ). (B.12)

The measurement density depends on the past measurement Yt−1, and on the current and past factor values
ft, ft−1.

B.2.2 Transition density

Let us now derive the distribution of ft given Yt−1 and ft−1. From equations (B.3)-(B.4) and being (ηt+j/3),
(ξt+j/3) independent Gaussian White Noise processes, we have:

`(ft|Yt−1, ft−1; θ) = `(ft|ft−1; θ) = `(F̃t|F̃t−1; θ)`(h̃t|h̃t−1; θ).

Thus, process (ft) is exogenous and first-order Markov, with transition density:

g(ft|ft−1; θ) = g(F̃t|F̃t−1; θ) g(h̃t|h̃t−1; θ)

= g(Ft|Ft−1/3; θ) g(Ft−1/3|Ft−2/3; θ) g(Ft−2/3|Ft−1; θ)

×g(ht|ht−1/3; θ) g(ht−1/3|ht−2/3; θ) g(ht−2/3|ht−1; θ),

where:

g(Ft−j/3|Ft−(j+1)/3; θ) =
1√
2π

exp

{
−

(Ft−j/3 − ρFt−(j+1)/3)2

2

}
, (B.13)

g(ht−j/3|ht−(j+1)/3; θ) =
1√

2πν2
exp

{
−

(ht−j/3 − ρSV ht−(j+1)/3)2

2ν2

}
, (B.14)

for j = 0, 1, 2.

B.2.3 The likelihood function

The density of (YT , fT ), conditioning on Y0 and f0, is:

`(YT , fT ; θ) =

T∏
t=1

`(Yt|Yt−1, ft; θ)`(ft|Yt−1, ft−1; θ) =

T∏
t=1

h(Yt|Yt−1, ft; θ) g(ft|ft−1; θ).
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The likelihood function `(YT ; θ), conditioning on y0 and f0, is obtained by integrating out the path of the
unobservable factor:

`(YT ; θ) =

∫
`(YT , fT ; θ)dfT

=

∫
...

∫ T∏
t=1

{h(Yt|Yt−1, ft; θ) g(ft|ft−1; θ)}
T∏
t=1

dft.

The large-dimensional integral with respect to the factor path makes this expression of the likelihood function
intractable for the computation of the Maximum Likelihood (ML) estimate. The EM algorithm defined in the
next section relies instead on the so-called complete-observation log-likelihood function, i.e., the log-density
function of both the observable and unobservable variables:

L∗(θ) := log `(YT , fT ; θ)

=

T∑
t=1

log h(Yt|Yt−1, ft; θ) +

T∑
t=1

log g(ft|ft−1; θ)

=

T∑
t=1

log h(Yt|Yt−1, ft; θ)

+

T∑
t=1

2∑
j=0

[
log g(Ft−j/3|Ft−(j+1)/3; θ) + log g(ht−j/3|ht−(j+1)/3; θ)

]
. (B.15)

Substituting equations (B.12), (B.13) and (B.14) into equation (B.15) we get:

L∗(θ) = −1

2

(
T log(1 + d2 + d4) + T log σ2

y + 3T log σ2
x + 3T log ν2

+

T∑
t=1

[yt − d3yt−1 − γ1(Ft − d3Ft−1)]2

(1 + d2 + d4)σ2
y

+

T∑
t=1

2∑
j=0

{
ht−j/3 +

(xt−j/3 − γ2Ft−j/3)2

σ2
x exp

{
ht−j/3

} + (Ft−j/3 − ρFt−(j+1)/3)2

+
1

ν2
(ht−j − ρSV ht−(j+1)/3)2

})
, (B.16)

up to an additive constant.
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B.3 The EM algorithm

The Expectation-Maximization (EM) algorithm is an iterative procedure to compute numerically the ML

estimate in a model with unobservable variables (Dempster, Laird, and Rubin (1977)). Let θ̂(i) ≡ θ̂EM,(i)
Tm be

the estimate of parameter θ at iteration i of the EM algorithm. The update i→ i+ 1 consists of two steps:

1. Expectation (E) step. Compute function Q(θ|θ̃), with θ̃ = θ̂(i), where:

Q
(
θ|θ̃
)

:= Eθ̃
[
L∗(θ)|YT

]
=

T∑
t=1

Eθ̃
[
h(Yt|Yt−1, ft; θ)|YT

]
+

T∑
t=1

2∑
j=0

Eθ̃
[
log g(Ft−j/3|Ft−(j+1)/3; θ) + log g(ht−j/3|ht−(j+1)/3; θ)|YT

]
,

and Eθ̃
[
·|YT

]
denotes the expectation w.r.t. the conditional distribution of fT given YT for parameter

value θ̃.

2. Maximization (M) step. Compute the estimate for iteration i+ 1 as:

θ̂(i+1) := arg max
θ∈Θ

Q
(
θ|θ̂(i)

)
.

The iteration is performed until numerical convergence of the estimate is achieved.

We detail below the E-step and the M-step of the EM algorithm for the SV model with mixed frequency.

B.3.1 The E-step

Let us compute explicitly Q
(
θ|θ̃
)

, with θ̃ = θ̂(i), for model (B.1)-(B.8). From (B.16), we have:

Q
(
θ|θ̃
)

:= Eθ̃
[
L∗(θ)|YT

]
= −1

2

(
T log(1 + d2 + d4) + T log σ2

y + 3T log σ2
x + 3T log ν2 +

T∑
t=1

2∑
j=0

Eθ̃
[
ht−j/3|YT

]
+

1

(1 + d2 + d4)σ2
y

T∑
t=1

Eθ̃
[
(yt − d3yt−1 − γ1(Ft − d3Ft−1))2

∣∣YT ]
+

1

σ2
x

T∑
t=1

2∑
j=0

{
Eθ̃

[
(xt−j/3 − γ2Ft−j/3)2e−ht−j/3

∣∣∣YT ]
+Eθ̃

[
(Ft−j/3 − ρFt−(j+1)/3)2

∣∣YT ]
+

1

ν2
Eθ̃
[
(ht−j/3 − ρSV ht−(j+1)/3)2

∣∣YT ]}),
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up to an additive constant. The last equation can be expressed as:

Q
(
θ|θ̃
)

= −1

2

(
T log(1 + d2 + d4) + T log σ2

y + 3T log σ2
x + 3T log ν2

+
T∑
t=1

2∑
j=0

Eθ̃
[
ht−j/3|YT

]
+

1

(1 + d2 + d4)σ2
y

T∑
t=1

{
(yt − d3yt−1)2

−2γ1

(
Eθ̃
[
Ft|YT

]
yt − d3

(
Eθ̃
[
Ft−1|YT

]
yt + Eθ̃

[
Ft|YT

]
yt−1

)
+ d6Eθ̃

[
Ft−1|YT

]
yt−1

)
+γ2

1

(
Eθ̃
[
F 2
t

∣∣YT ]− 2d3Eθ̃
[
FtFt−1|YT

]
+ d6Eθ̃

[
F 2
t−1

∣∣YT ])}
+

1

σ2
x

T∑
t=1

2∑
j=0

{
x2
t−j/3Eθ̃

[
e−ht−j/3

∣∣∣YT ]− 2γ2xt−j/3Eθ̃

[
Ft−j/3e

−ht−j/3
∣∣∣YT ]

+γ2
2Eθ̃

[
F 2
t−j/3e

−ht−j/3
∣∣∣YT ]

+Eθ̃

[
F 2
t−j/3

∣∣∣YT ]− 2ρEθ̃
[
Ft−j/3Ft−(j+1)/3

∣∣YT ]+ ρ2Eθ̃

[
F 2
t−(j+1)/3

∣∣∣YT ]
+

1

ν2
Eθ̃

[
h2
t−j/3

∣∣∣YT ]− 2ρSVEθ̃
[
ht−j/3ht−(j+1)/3

∣∣YT ]+ ρ2
SVEθ̃

[
h2
t−(j+1)/3

∣∣∣YT ]}).
(B.17)

From equation (B.17) we note that the estimation step requires the smoothing distribution of the factor
path, in order to compute the conditional expectations Eθ̃

[
·|YT

]
. As an exact smoother is not available, in

Section B.4 we propose a recursive particle smoother to compute Eθ̃
[
·|YT

]
.
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B.3.2 The M-step

By maximizing function θ → Q
(
θ|θ̃
)

, for θ̃ = θ̂(i) in equation (B.17), we get the following estimates of the

model parameters collected in vector θ̂(i+1):

γ̂2 =

∑T
t=1

∑2
j=0Eθ̃

[
Ft−j/3e

−ht−j/3
∣∣YT ]xt−j/3∑T

t=1

∑2
j=0Eθ̃

[
F 2
t−j/3e

−ht−j/3

∣∣∣YT ] ,

σ̂2
x =

1

3T

T∑
t=1

2∑
j=0

(
Eθ̃
[
e−ht−j/3

∣∣YT ]x2
t−j/3 − 2γ̂2Eθ̃

[
Ft−j/3e

−ht−j/3
∣∣YT ]xt−j/3

+ γ̂2
2Eθ̃

[
F 2
t−j/3e

−ht−j/3

∣∣∣YT ]),
ρ̂ =

∑T
t=1

∑2
j=0Eθ̃

[
Ft−j/3Ft−(j+1)/3

∣∣YT ]∑T
t=1

∑2
j=0Eθ̃

[
F 2
t−(j+1)/3

∣∣∣YT ] ,

ρ̂SV =

∑T
t=1

∑2
j=0Eθ̃

[
ht−j/3ht−(j+1)/3

∣∣YT ]∑T
t=1

∑2
j=0Eθ̃

[
h2
t−(j+1)/3

∣∣∣YT ] ,

ν̂2 =
1

3T

T∑
t=1

2∑
j=0

(
Eθ̃

[
h2
t−j/3

∣∣∣YT ]− 2ρ̂SV Eθ̃
[
ht−j/3ht−(j+1)/3

∣∣YT ]
+ ρ̂2

SV Eθ̃

[
h2
t−(j+1)/3

∣∣∣YT ]),
and:

(γ̂1, d̂, σ̂y) = arg min
γ1,d,σy

[
T log(1 + d2 + d4) + T log σ2

y +
1

(1 + d2 + d4)σ2
y

T∑
t=1

{
(yt − d3yt−1)2

−2γ1

(
Eθ̃
[
Ft|YT

]
yt − d3

(
Eθ̃
[
Ft−1|YT

]
yt + Eθ̃

[
Ft|YT

]
yt−1

)
+ d6Eθ̃

[
Ft−1|YT

]
yt−1

)
+γ2

1

(
Eθ̃
[
F 2
t

∣∣YT ]− 2d3Eθ̃
[
FtFt−1|YT

]
+ d6Eθ̃

[
F 2
t−1

∣∣YT ])}]. (B.18)

The estimates γ̂2, σ̂2
x, ρ̂, ρ̂SV , ν̂2 of the parameters in the M-step are available in closed form, therefore they

do not contribute any substantial computational cost. The parameters γ̂1, d̂ and σ̂y, are estimated solving
numerically the minimization problem in equation (B.18), with a negligible computational cost compared
that of the filtering and smoothing algorithms proposed in the next Section B.4.
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B.4 Sequential particle filtering and smoothing

algorithms

The E-step in the EM algorithm involves the smoothing distribution of the latent factors paths to compute
the conditional expectation Eθ̃

[
·|YT

]
. As an exact smoother is not available for our nonlinear SV model,

we propose a sequential backward smoothing algorithm to approximate these conditional expectations. The
smoothing algorithm requires, at each date t− j/3, for t = 1, ..., T and j = 0, 1, 2, samples from the filtering
distribution of the latent factors. For this reason we start with the description of the sequential filtering
algorithm based on simulation, before describing the smoothing algorithm. The filtering algorithm proposed
in the next section is based on Appendix A.1 in Kim and Stoffer (2008), in particular see their pages 816,
817, 828 and 829, and the references therein, mainly Kitagawa (1996) and Kitagawa and Sato (2001). The
idea is to approximate the filtering distribution by a sample of S draws (particles) from it, with S large.
This requires an algorithm to draw from the specific distributions of our model. At the E-step of the i-
th iteration of the EM algorithm, the estimate of the model parameter θ̂(i) is available from the previous
iteration (i− 1)-th.

In this Section, it is convenient to write the model in state space at high frequency. Let τ = t − j/3, for

t = 1, ..., T and j = 0, 1, 2. The measurement is Yτ = (yτ , xτ )′ if τ = t, and Yτ = xτ if τ = t− j/3, j = 1, 2.

The latent factor is fτ = (Fτ , hτ )′. The transition equation can be written as:

fτ =

[
Fτ
hτ

]
=

[
ρ 0
0 ρSV

] [
Fτ−1/3

hτ−1/3

]
+

[
ητ
ξτ

]
,

[
ητ
ξτ

]
∼ i.i.N

([
0
0

]
,

[
1 0
0 ν2

])
.

(B.19)

B.4.1 Sequential filtering based on importance sampling

We propose an algorithm to obtain the samples f
s,(i)
τ =

[
F
s,(i)
τ , h

s,(i)
τ

]′
, with s = 1, ..., S, from the filtering

distribution of the latent factors for parameter value θ̂(i), denoted as `
(
fτ |Yτ ; θ̂(i)

)
, for any τ . The following

steps constitute the filtering algorithm based on importance sampling with resampling:

1. Start at the first date τ = t− j/3 = 0 by drawing a sample f
s,(i)
0 , for s = 1, ..., S, from the stationary

distribution of fτ for parameter value θ̂(i), denoted `
(
fτ ; θ̂(i)

)
:

`
(
fτ ; θ̂(i)

)
∼ N

(
0,

[ 1
1−ρ̂(i),2 0

0 ν̂(i),2

1−ρ̂(i),2SV

])
. (B.20)

2. At date τ = t − j/3 ≥ 1/3, let the input be an approximation of the filtering distribution

`
(
fτ−1/3

∣∣Yτ−1/3; θ̂(i)
)

via particles f
s,(i)
τ−1/3, for s = 1, ..., S.

(a) Generate a sample f
0,s,(i)
τ , s = 1, ..., S, from `(fτ |Yτ−1/3; θ̂(i)). We use fτ | fτ−1/3, Yτ−1/3 ∼

g
(
·| fτ−1/3

)
where g is the transition density (see Section B.2.2).

Hence, we draw f
0,s,(i)
τ from g

(
·| fs,(i)τ−1/3

)
. This is achieved by the following steps:

60



(a.1)
Generate independent random numbers:

ηs,(i)τ ∼ N (0, 1), ξs,(i)τ ∼ N (0, ν̂(i),2),

for s = 1, ..., S.
(a.2)
Compute

f0,s,(i)
τ =

[
F

0,s,(i)
τ

h
0,s,(i)
τ

]
=

[
ρ̂(i) 0

0 ρ̂
(i)
SV

] [
F
s,(i)
τ−1/3

h
s,(i)
τ−1/3

]
+

[
η
s,(i)
τ

ξ
s,(i)
τ

]
,

for s = 1, ..., S.

(b) Generate a sample from the filtering distribution `(fτ |Yτ ; θ̂(i)). We use `(fτ |Yτ ; θ̂(i))

∝ `
(
Yτ |Yτ−1/3, fτ ; θ̂(i)

)
`(fτ |Yτ−1/3; θ̂(i)) and the importance sampling principle. Compute

the weights:

ws,(i)τ ∝ l
(
Yτ |Yτ−1/3, f

0,s,(i)
τ ; θ̂(i)

)

=



1√
(2π)2σ̂

(i),2
y σ̂

(i),2
x exp{h0,s,(i)t }

× exp

{
− [yt−d3yt−1−γ̂(i)1 (F

0,s,(i)
t −d3F 0,s,(i)

t−1 )]2

2σ̂
(i),2
y

− (xt−γ̂(i)2 F
0,s,(i)
t )2

2σ̂
(i),2
2 exp

{
h
0,s,(i)
t

}
}

τ = t,

1√
2πσ̂

(i),2
x exp{h0,s,(i)τ }

exp

{
− (xt−j/3−γ̂

(i)
2 F

0,s,(i)
τ )2

2σ̂
(i),2
2 exp

{
h
0,s,(i)
τ

}
}

τ = t− j/3, j = 1, 2,

for s = 1, ..., S.

Then, generate f
s,(i)
τ = [F

s,(i)
τ , h

s,(i)
τ ]′ by resampling from f

0,s,(i)
τ = [F

0,s,(i)
τ , h

0,s,(i)
τ ]′ with

weights w
s,(i)
τ , for s = 1, ..., S.

This filtering algorithm is straightforward to implement for our model because it only requires (i) to simulate
from the state transition density and (ii) evaluate the measurement density. In unreported Monte Carlo
experiments, we find that the direct application of this filtering algorithm produces, in a non negligible
fraction of the MC replications, degenerate filtered distribution of the latent factors. This degeneracy
problem has been solved by modifying the algorithm presented in this section as an auxiliary particle filter
algorithm, similarly as Pitt and Shephard (1999). See, among others, Douc, Moulines, and Olsson (2009),
Carvalho, Johannes, Lopes, and Polson (2010), Doucet (2010), Lopes and Tsay (2011), Creal (2012), Kantas,
Doucet, Singh, Maciejowski, and Chopin (2015), and the reference therein, for a more extensive description
of auxiliary particle filter. In Section B.4.2 we describe the auxiliary particle filter used to produce the MC
results in the main body of this paper.

B.4.2 Sequential filtering based on auxiliary particle filter

The following steps constitute our auxiliary particle filter:

1. Start at the first date τ = t− j/3 = 0 by drawing a sample f
s,(i)
0 , for s = 1, ..., S, from the stationary
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distribution of fτ for parameter value θ̂(i), denoted `
(
fτ ; θ̂(i)

)
and given in (B.20).

2. At date τ = t − j/3 ≥ 1/3, let the input be an approximation of the filtering distribution

`
(
fτ−1/3

∣∣Yτ−1/3; θ̂(i)
)

via particles f
s,(i)
τ−1/3, for s = 1, ..., S.

(a) Generate auxiliary particles f̄
s,(i)
τ =

[
F̄
s,(i)
τ , h̄

s,(i)
τ

]′
, where F̄

s,(i)
τ = ρ̂(i)F

s,(i)
τ−1/3

and h̄
(i)
τ = ρ̂

(i)
SV h

s,(i)
τ−1/3, i.e. F̄

s,(i)
τ = E

[
Fτ |Fτ−1/3 = F

s,(i)
τ−1/3; θ̂(i)

]
and h̄

s,(i)
τ =

E
[
hτ |hτ−1/3 = h

s,(i)
τ−1/3; θ̂(i)

]
.

(b) The auxiliary particles are used to define weights and resample from the old particles f
s,(i)
τ−1/3.

Specifically, compute the weights:

w̌s,(i)τ ∝ `
(
Yτ |Yτ−1/3, f̄

s,(i)
τ ; θ̂(i)

)

=



1√
(2π)2σ̂

(i),2
y σ̂

(i),2
x exp{h̄s,(i)t }

× exp

{
− [yt−d3yt−1−γ̂(i)1 (F̄

s,(i)
t −d3F̄ (i)

t−1)]2

2σ̂
(i),2
y

− (xt−γ̂(i)2 F̄
s,(i)
t )2

2σ̂
(i),2
2 exp

{
h̄
s,(i)
t

}
}

τ = t,

1√
2πσ̂

(i),2
x exp{h̄s,(i)τ }

exp

{
− (xτ−γ̂(i)2 F̄

s,(i)
τ )2

2σ̂
(i),2
2 exp

{
h̄
s,(i)
τ

}
}

τ = t− j/3, j = 1, 2

,

for s = 1, ..., S. Generate particles f̌
s,(i)
τ−1/3 = [F̌

s,(i)
τ−1/3, ȟ

s,(i)
τ−1/3]′ by resampling f

s,(i)
τ−1/3 =

[F
s,(i)
τ−1/3, h

s,(i)
τ−1/3]′ with weights w̌

s,(i)
τ , s = 1, ..., S.

(c) Generate a sample from `(fτ |Yτ−1/3; θ̂(i)). We use fτ | fτ−1/3, Yτ−1/3 ∼ g
(
·| fτ−1/3

)
. We draw

f
0,s,(i)
τ from g

(
·| f̌s,(i)τ−1/3

)
. This is achieved by:

(c.1)
Generate independent random numbers:

ηs,(i)τ ∼ N (0, 1), ξs,(i)τ ∼ N (0, ν̂(i),2),

for s = 1, ..., S.
(c.2)
Compute

f0,s,(i)
τ =

[
F

0,s,(i)
τ

h
0,s,(i)
τ

]
=

[
ρ̂(i) 0

0 ρ̂
(i)
SV

] [
F̌
s,(i)
τ−1/3

ȟ
s,(i)
τ−1/3

]
+

[
η
s,(i)
τ

ξ
s,(i)
τ

]
,

for s = 1, ..., S.
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(d) Compute the weights:

ws,(i)τ ∝
`
(
Yτ |Yτ−1/3f

0,s,(i)
τ ; θ̂(i)

)
`
(
Yτ |Yτ−1/3, f̄

s,(i)
τ ; θ̂(i)

)

=



√
exp{h̄s,(i)τ }√

exp{h0,s,(i)τ }
exp

{
− [yt−d3yt−1−γ̂(i)1 (F

0,s,(i)
t −d3F 0,s,(i)

t−1 )]2

2σ̂
(i),2
y

− (xt−γ̂(i)2 F
0,s,(i)
t )2

2σ̂
(i),2
2 exp

{
h
0,s,(i)
t

}
}

× exp

{
+

[yt−d3yt−1−γ̂(i)1 (F̄
s,(i)
t −d3F̄ s,(i)t−1 )]2

2σ̂
(i),2
y

+
(xt−γ̂(i)2 F̄

s,(i)
t )2

2σ̂
(i),2
2 exp

{
h̄
s,(i)
t

}
}

τ = t,√
exp{h̄s,(i)

τ−1/3
}√

exp{h0,s,(i)τ }

× exp

{
− (xτ−γ̂(i)2 F

0,s,(i)
τ )2

2σ̂
(i),2
2 exp

{
h
0,s,(i)
τ

} +
(xτ−γ̂(i)2 F̄

s,(i)
τ )2

2σ̂
(i),2
2 exp

{
h̄
s,(i)
τ

}
}

τ = t− j/3, j = 1, 2,

Generate f
s,(i)
τ = [F

s,(i)
τ , h

s,(i)
τ ]′ by resampling from f

0,s,(i)
τ = [F

0,s,(i)
τ , h

0,s,(i)
τ ]′ with weights

w
s,(i)
τ , for s = 1, ..., S.

B.4.3 Sequential smoothing with importance sampling

Any EM algorithm requires the computation of the smoothing distribution of the latent factor path only
once at each iteration i. In our specific case, we need to compute only some moments of the smoothing
distribution of the latent factor path. Specifically we need to sample from the smoothing distribution of the

factors at each high frequency date τ = t− j/3, with t = 1, ..., T , and j = 0, 1, 2. Let f̃
s,(i)
τ =

(
F̃
s,(i)
τ , h̃

s,(i)
τ

)′
,

with s = 1, ..., S, be a sample from the smoothing distribution of the latent factors at time τ , obtained
using the estimated model parameters θ̂(i), i.e. during the i-th iteration of the EM algorithm. Then, the
conditional expectations Eθ̃

[
·|YT

]
of the E-step for θ̃ = θ̂(i) can be approximated by sample averages of the

S particles.

The smoothing algorithm is based on Appendix A.2 in Kim and Stoffer (2008) and the reference therein,
mainly Godsill, Doucet, and West (2004), and is free from degeneracy. It uses the particles of the filtering

distribution as input. Specifically, let f
s,(i)
τ =

(
F
s,(i)
τ , h

s,(i)
τ

)′
, with s = 1, ..., S, be draws from the filtering

distribution `
(
fτ |Yτ ; θ̂(i)

)
for date τ = t−j/3, j = 0, 1, 2 (see Section B.4.2). The following steps constitute

the backward sequential smoothing algorithm. For any s = 1, ..., S:

1. Start at the last date τ = T , and draw f̃
s,(i)
T from set {fr,(i)T , r = 1, ..., S} with equal weights 1/S.

In other words, we obtain one draw from the filtering distribution `
(
fT |YT ; θ̂(i)

)
at the last sample

date.

2. For any date τ , from τ = T − 1/3 to τ = 0:

(a) Compute the weights:

w
r,(i)
τ,τ+1/3 ∝ g(f̃

s,(i)
τ+1/3|f

r,(i)
τ ; θ̂(i)),
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for r = 1, ..., S.

(b) Draw f̃
s,(i)
τ from {fr,(i)τ , r = 1, ..., S} with probability weights {wr,(i)τ,τ+1/3, r = 1, ..., S}.

At the end of the smoothing algorithm we have S simulated paths {(f̃s,(i)0 , f̃
s,(i)
1/3 , ..., f̃

s,(i)
T ), s = 1, ..., S} from

the smoothing distribution `
(
f0, f1/3, ..., fT

∣∣YT ; θ̂(i)
)

. Note that the second step of our backward sequential

smoothing algorithm requires only (i) a sample from the filtering distribution which is already available from
the filtering algorithm, and (ii) to be able to evaluate the transition density.

B.4.4 Stopping rule

For the Monte Carlo EM algorithm to converge to the MLE estimate, the number of particles S needs to
increase with the number of EM iterations, see for instance Olsson, Cappé, Douc, and Moulines (2008),
Neath (2013) and the references therein. Moreover, a rule needs to be set in order to stop the algorithm
and assess its convergence. We follow the same procedure of Kim and Stoffer (2008). On the basis of the
work of Chan and Ledolter (1995), Kim and Stoffer (2008) start the EM algorithm with a small value of S
to save computing time, at the end of each EM iteration compute ε - the estimated change in log-likelihood
with respect to the previous EM iteration - and increase S when ε is below a certain small lower bound. The
EM algorithm in our paper is implemented starting with a number of particles S = 500, then the value of S
is increased to 1000 as soon as ε < 0.10 for a certain iteration, then S is increased to 1500 when ε < 0.05,
and finally the algorithm is stopped at the first iteration in which ε < 0.01. The values of ε and S, together
with the stopping rule, were calibrated in preliminary unreported MC experiments. See Kim and Stoffer
(2008) and Chan and Ledolter (1995) for an in-depth analysis of this procedure and the concept of “Relative
Likelihood”.
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Appendix C: Mixed frequency linear state space model

with one flow sampled low frequency variable

In this Appendix we show one way to adapt the measurement and transition equations of the linear state
space model with mixed frequency data in Bai, Ghysels, and Wright (2013), for the case of one low frequency
variable which is flow sampled. This adaptation is necessary to implement the Kalman filter algorithm for
ML estimation of the structural model without SV used in the empirical application of Section 6.

C.1 Model setup

The linear state space model without SV considered in the empirical application in Section 6 has one flow
sampled low frequency variable yt, with t = 1, ..., T , m = 3 high frequency subperiods and a single latent
factor (i.e. nf = 1). The latent factor follows an AR(1) process:

Ft+j/3 = Φ1Ft+(j−1)/3 + ηt+j/3 t = 1, . . . , T, j = 0, 1, 2, (C.1)

where Φ1 is a scalar parameter to be estimated. Latent process y∗ is related to the factor as follows:

y∗t+j/3 = γ1Ft+j/3 + u1,t+j/3 t = 1, . . . , T, j = 0, 1, 2, (C.2)

with u1,t+j/3 having an AR(1) representation:

u1,t+j/3 = d1u1,t+(j−1)/3 + ε1,t+j/3. (C.3)

The observed low-frequency process y is flow sampled, i.e. it relates to the latent process y∗ in the following
way:

yt = y∗t + y∗t−1/3 + y∗t−2/3, t = 1, .., T, j = 0, 1, 2. (C.4)

The high frequency process xt+j/3 relates to the factor as follows:

xt+j/3 = γ2Ft+j/3 + u2,t+j/3 t = 1, . . . , T, j = 0, 1, 2, (C.5)

where:
u2,t+j/3 = d2u2,t+(j−1)/3 + ε2,t+j/3. (C.6)

The innovations (η), (ε1), (ε2) are mutually independent i.i.d. Gaussian processes, with distributionsN (0, 1),
N (0, σ2

ε1) and N (0, σ2
ε2).

C.2 State space representation and Kalman filter

The above equations yield a periodic state space model with measurement equation:

Y jt = Zjαt+j/m

{ Y jt = (yt, xt)
′ j = 0

Y jt = xt+j/m j = 1, 2

, (C.7)
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for t = 1, ..., T , where

Z0 =

[
γ1 γ1 γ1 1 1 1 0
γ2 0 0 0 0 0 1

]
,

Zj =
[
γ2 0 0 0 0 0 1

]
, j = 1, 2,

and state vector:

αt+j/3 =
(
Ft+j/3, Ft+(j−1)/3, Ft+(j−2)/3, u1,t+j/3, u1,t+(j−1)/3, u1,t+(j−2)/3, u2,t+j/3

)′
.

The transition equation is:

αt+j/m = Rαt+(j−1)/3 +Qζt+j/3, t = 1, .., T, j = 0, 1, 2, (C.8)

where

R =



Φ1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 d1 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 d2


, Q =



1 0 0
0 0 0
0 0 0
0 1 0
0 0 0
0 0 0
0 0 1


,

ζt+j/m = (ηt+j/m, ε1,t+j/m, ε2,t+j/m)′, and Σζ = diag(1, σ2
ε1 , σ

2
ε2) denotes the variance-covariance matrix

of ζt+j/m. Then, the Kalman filter algorithm presented in Appendix A can be performed after replacing
matrices Z0, Zj , R, Q and Σζ by the new definitions.
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