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Double Instrumental Variable Estimation of Interaction Models with Big Data

Abstract

The static factor analysis of a (n,m) matrix of observations Y is usually based on the joint

spectral decomposition of the matrix squares Y Y ′ and Y ′Y . However, for very large dimensions

m and n, this approach has a high level of numerical complexity. Indeed, the number of required

computations grows cubically w.r.t. the matrix dimensions, that is, much faster than the number

of observations. The big data dimensions can be used to propose new estimation methods with a

reasonable numerical complexity. The double instrumental variable (IV) approach uses row instru-

ments and column instruments to estimate consistently the factors up to K 2 parameters, where K is

the number of factors. Then, the factor model can be concentrated and the K2 missing parameters

estimated consistently by ordinary least squares. We compare the double IV approach to Principal

Component Analysis (PCA). The double IV approach can be used for the analysis of recommender

systems and is a new collaborative filtering approach.

Keywords: Interaction, Connectedness, Factor Analysis, Principal Component Analysis, Big

Data, Panel Data, Instrumental Variable, Recommender System, Completion Matrix, Collaborative

Filtering, Preferences.
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1 Introduction

The big data challenge has two prominent features, that are the huge number of data items, but also

the possibility to study new economic questions, because of new types of available data. Among the

most interesting characteristics of big data sources developed in recent years, these datasets provide

detailed information on the interdependencies and interactions between the individual behaviour

of economic and social agents.

In this paper we consider the interactions in a homogenous population of individuals. These

interactions are usually represented by matrices, whose generic element of index (i, j) measures

the magnitude of the interaction from individual i to individual j. For instance, the element can

be the number of e-mails sent by i to j during a given period: in this case, i is the index of the

transmitter and j the index of the receiver. 1 Another example concerns the diffusion of systemic

risk in a financial sector. The interconnections are summarized by the exposure matrices available

for each class of assets [see e.g. Upper, Worms (2004), Gourieroux, Heam, Monfort (2012)]. The

element of the matrix can be the amount of debt (resp. stocks, options) of financial institution i

held by institution j: here, i is the index of the debt issuer, whereas j is the index of the debt

holder. Similar examples are the observations of the traded volumes between a set of buyers and

a set of sellers [Kranton, Minehart (2011)], the co-citations between researchers in Economics,

the table of import/export to major trading partners [see e.g. Leng, Tang (2012)], the degree of

assistance between individuals measured for instance by money transfers. The indices i and j

can have different interpretations, for instance the consumption of good j by household i during a

given period of time, or the scores attributed by a list of people to a set of items (movies, books, ...)

used to build recommender systems [see e.g. Su, Khashgoftaar (2009)]. Sometimes, the observed

matrices are symmetric, for instance when they measure the social distance between individuals

with social interactions such as friendship, acquaintance, collaboration [Wasserman, Faust (1994),

Nowicki, Snijders (2001), Jackson (2008), Iijima, Kamada (2010)].

The interactions are usually modeled by factor analysis and the factors estimated by standard

methods such as the Singular Value Decomposition (SVD), the Principal Component Analysis

(PCA), or other reduction techniques. 2 However, these estimation techniques require a number of

1Typically the financial supervisory authorities have such information for traders.
2See Traxillo (2003) and Suhr (2009) for a description and comparison of the softwares for PCA and Exploratory
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computations much larger than the number of data (see the discussion in Section 2.7). Their too

large numerical complexity makes them inadequate for huge dimensional matrices of interactions.

The aim of our paper is to explain why the large number of data can greatly facilitate the

estimation of such nonlinear models.

We consider in Section 2 the static interaction model and explain how it can be easily estimated

by applying linear instrumental variables methods based on asymptotic instruments for the row

and column factors, respectively. In this respect we extend to matrix-variates the methodology

introduced in Granger (1987), or Forni, Reichlin (1996). Such instruments can be constructed by

partial averaging of nonlinear transformations of the interaction data. We derive the asymptotic

properties of these linear approaches used to estimate the factor model. We show that the approach

can also be applied for models with incomplete data. In this respect it provides a new method of

collaborative filtering. Finally, we compare the asymptotic properties of the double IV approach

and of Principal Component Analysis. The approach is extended in Section 3 to time series of

interaction matrices, that is, to triply indexed observations. In Section 4 we illustrate the double

IV estimation technique by a simulation study. Section 5 concludes. The proofs are gathered in

Appendices.

2 Static Factor Analysis

2.1 The static interaction model

We consider two populations of individuals indexed by i and j, with i = 1, . . . , n and j = 1, . . . , m,

respectively. We denote yi,j the magnitude of the interaction from i to j. 3

When these populations and interactions are homogenous, the static model can be written as:

yi,j = α′
iβj + εi,j, i = 1, . . . , n, j = 1, . . . , m, (2.1)

where αi and βj are K-dimensional factors and εi,j is a one-dimensional error term. The homo-

geneity assumption is:

Factor Analysis available in SAS.
3Alternatively, we have one population of individuals i, and a set of items j. Then, y i,j denotes either the con-

sumption of item j by individual i, or the opinion of individual i on item j.
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Assumption A.1: Homogeneity

All variables αi, βj , εi,j are independent. The α′
is (resp. the β ′

js, the ε′i,js) are identically dis-

tributed, with finite second-order moments.

Under Assumption A.1, the factor model treats in a symmetric way the stochastic factors associated

with individual i and individual j.

We will also use, when necessary, the zero-mean assumption.

Assumption A.2: Zero-mean

The variables αi, βj and εi,j have zero-mean.

Factor model (2.1) can be written in matrix notation as:

Y = αβ ′ + ε, (2.2)

where Y = (yi,j) is the (n,m) matrix of observations, α (resp. β) the (n,K) [resp. (m,K)] matrix

of factor observations, and ε the (n,m) matrix of error terms. For a given matrix such as Y , we

denote yi the (m, 1) vector yi = (yi,j, j = 1, . . . , m), that is the transposed of row i of matrix Y ,

and by yj its j-th n-dimensional column vector.

Under Assumption A.1 (resp. Assumptions A.1-A.2), the factors αi and βj are identifiable up

to an invertible linear transformation. In other words, we can identify the vector spaces spanned

by the latent factors, but not the factor values themselves.

Model (2.1) reduces the dimensionality of the distributional problem. Indeed, the nm-dimensional

distribution of matrix-variate Y is characterized by the two K-dimensional distributions of the α ′s

and β ′s plus the one-dimensional distribution of the ε ′s. Model (2.1) introduces pairwise depen-

dence between the elements of matrix Y through rows and columns. This dependence is not visible

when we only consider second-order moments (when they exist), since:

Cov(yi,j, yk,l) = Cov(α′
iβj, α

′
kβl)

= Cov{E(α′
iβj |β), E(α′

kβl|β)}+ E{Cov(α′
iβj, α

′
kβl|β)}

= 0, if i �= k,
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from Assumptions A.1-A.2. By symmetry we deduce that all pairs of elements of matrix Y are

marginally uncorrelated. However, the observations associated with two different dyads are not

necessarily independent as for instance they are in the model introduced in Holland, Leinhardt

(1981) for binary relations.

In fact, model (2.1) satisfies the transitivity condition, which is often mentioned as an important

feature of social networks. 4 Indeed, the magnitude of the link between dyads is larger if they have

an actor in common. This is a form of spatial Markov dependence [see e.g. Frank, Strauss (1986)].

More precisely, let us consider the case K = 1 for expository purpose. If i �= k and j �= l, the two

variables yi,j and yk,l are independent. Let us now consider two dyads with a common actor, that

are (i, j) and (k, j) with i �= k, say. We have:

P [yi,j ∈ A, yk,j ∈ B] = E{P [αiβj + εi,j ∈ A|βj ]P [αkβj + εk,j ∈ B|βj]}
(by the independence of yi,j and yk,j conditional on βj)

�= E{P [αiβj + εi,j ∈ A|βj ]}E{P [αkβj + εk,j ∈ B|βj]}
= P [yi,j ∈ A]P [yk,j ∈ B],

for Borel sets A and B. The two dyads are not independent, and the dependence can be either

positive, or negative. Therefore, model (2.1) is very different from the matrix-variate normal mod-

els with a constrained variance-covariance matrix for the elements of Y [see e.g. Dawid (1981),

Gupta, Nagar (2000), or Leng, Tang (2012)].

2.2 The double instrumental variable approach

Let us now explain how to estimate consistently factors αi, βj and error terms εi,j (and also their

distributions), when both dimensions n and m tend to infinity. Our approach relies on the use of

instrumental variables [Theil (1953)]. We consider a model satisfying Assumptions A.1-A.2, and

start with the case of a minimal number of instruments (just-identified setting). 5 We denote by Rk

the rank of a matrix.
4The two other important features of a social network are homophily on unobserved attributes and clustering [see

the discussion in Handcock, Raftery and Tantrum (2007)]. The homophily on unobserved attributes is introduced in

Appendix 2, and clustering is discussed in Section 2.5.2.
5The overidentified case is discussed in Section 2.6.
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Definition 1: The variables xi, with i = 1, . . . , n (resp. zj , with j = 1, . . . , m) is a minimal set of

instrumental variables for factor βj (resp. factor αi) if and only if:

i) dim xi = K [resp. dim zj = K].

ii) plim
n→∞

1

n

n∑
i=1

xiα
′
i ≡ C(x, α), say, where Rk[C(x, α)] = K;

[resp. plim
m→∞

1

m

m∑
j=1

zjβ
′
j ≡ C∗(z, β), say, where Rk[C∗(z, β)] = K].

iii) plim
n→∞

1

n

n∑
i=1

xiεi,j = 0, ∀j; [resp. plim
m→∞

1

m

m∑
j=1

zjεi,j = 0, ∀i].

The stochastic convergence conditions in Definition 1 are in particular satisfied under the fol-

lowing assumption.

Assumption A.3: Conditions on the instruments

i) The instruments xi, i = 1, . . . , n [resp. zj, j = 1, . . . , m] are such that the pairs (xi, αi) [resp.

(zj , βj)] are i.i.d. with finite second-order moments.

ii) The pairs (xi, αi) and (zj , βj) are independent. They are also independent of the errors εi,j .

Under Assumption A.3, the limits in Definition 1 are:

C(x, α) = E(xiα
′
i), C∗(z, β) = E(zjβ

′
j).

Let us denote X (resp. Z) the (n,K) [resp. (m,K)] matrix of observations of the instrumental

variables for factor βj (resp. factor αi). Under Assumption A.3 the conditions in Definition 1

imply (see Appendix 1.1):

plim
n→∞

1

n
X ′Y = C(x, α)β ′ = E(xiα

′
i)β

′, (2.3)

plim
n→∞

1

m
Z ′Y ′ = C∗(z, β)α′ = E(zjβ

′
j)α

′. (2.4)

Moreover, by the identification condition, we can define factors α and β such that:

C∗(z, β) = E(zjβ
′
j) = IdK. (2.5)
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Such K2 identification restrictions are very appropriate in our instrumental variable framework.

They differ from the restrictions introduced in the standard softwares, or considered in the aca-

demic literature on factor models [see e.g. Bai, Ng (2013)]. Thus, we directly deduce from (2.3)-

(2.4) consistent approximations of α and β as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α̂ =
1

m
Y Z,

β̃ =
1

n
Y ′XC ′,

(2.6)

where C = C(x, α)−1 is an unknown (K,K) matrix.

Let us now substitute the expressions (2.6) in equation (2.2). We get:

Y � 1

m
Y ZC

1

n
X ′Y + ε. (2.7)

We get a model which is asymptotically linear w.r.t. the unknown matrix C. Since:

V ec (ABC) = (C ′ ⊗A) vecB, (2.8)

where ⊗ denotes the Kronecker product [see e.g. Magnus, Neudecker (1994)], we can vectorize

matrix system (2.7) to get:

vec Y � D̂ vec C + vec ε, (2.9)

where D̂ =

(
1

n
Y ′X

)
⊗
(

1

m
Y Z

)
.

We deduce consistent estimators of C, αi, βj, εi,j by performing the appropriate regressions.

Proposition 1: Under Assumptions A.1-A.3, and if X and Z are minimal sets of instrumental

variables for β and α, respectively, we have:

i) Ĉ defined by:

vec Ĉ = (D̂′D̂)−1D̂′ vec Y,

is a consistent estimator of C, when n,m → ∞.

ii) α̂i =
1

m
(Y Z)i is a consistent “estimator” of αi, for any i.

iii) β̂j =
1

n
(Y ′XĈ ′)j is a consistent ”estimator” of βj , for any j.
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iv) ε̂ij = yi,j − α̂′
iβ̂j is a consistent ”estimator” of εi,j, for any pair (i, j).

Proof: See Appendix 1.3 for the proof of the consistency of Ĉ. The other consistency properties

immediately follow.

QED

The expression of the double IV estimator Ĉ can be written under a matrix form as (see Ap-

pendix 1.2):

Ĉ = (
1

m2
Z ′Y ′Y Z)−1(

1

m
Z ′Y ′)Y (

1

n
Y ′X)(

1

n2
X ′Y Y ′X)−1. (2.10)

Thus, we get consistent estimators of the αi, βj, εi,j with simple closed form expressions which

require only the inversion of matrices with the reasonable dimension (K,K). The computational

complexity of the double IV estimator, that is the number of operations necessary to compute the

estimates, is O(nm), i.e., the order of the sample size. Indeed, computing matrices Y Z and Y ′X

requires O(nm) operations, and the same holds for matrices Ĉ, α̂, β̂ from equation (2.10) and

Proposition 1.

Note that the identification restriction (2.5) involves the instruments. More precisely, if the

instruments Z are replaced by equivalent instruments ZA, say, where A is an invertible (K,K)

matrix, the factor α is changed into αA. Thus the interpretation of the factors is modified, but the

vector spaces spanned by these factors stay the same as well as the estimated vector spaces. This

is summarized in the following Corollary:

Corollary 1: The double IV estimator of the vector space spanned by the αi (resp. βj) is invariant

by a one-to-one linear change of instruments Z (resp. X).

The estimated α′s and β ′s can be used to construct measures of similarity between individuals

i (resp. items j). These measures have to be independent of the selected representer of α, that is,

invariant with respect to a linear one-to-one transformation α → αQ, say. Such a measure between

individuals i1 and i2 is:

d(i1, i2) = (α̂i1 − α̂i2)
′(
1

n

n∑
i=1

α̂iα̂
′
i)
−1(α̂i1 − α̂i2). (2.11)

9



These similarity measures could be used to construct a segmentation of the population of individ-

uals.

2.3 Extensions

In this section we show that the double IV approach is easily extended to factor models where

the factors do not have zero-mean, or to models including observable covariates. The double IV

approach can also be used for estimation of more structural versions of model (2.1), which describe

social distances between individuals (see Appendix 2). More important, we explain below how

(asymptotic) instruments can be constructed by considering row or column averages of nonlinear

transformations of the endogenous observations yi,j.

i) General Case

Let us consider the factor model without the zero-mean assumption A.2. We have:

yi,j = α′
iβj + εi,j.

We get a special two-way analysis of variance (ANOVA) model:

yi,j = [E(αi)
′E(βj) + E(εi,j)] + E(αi)

′[βj − E(βj)]

+[αi −E(αi)]
′E(βj) + [αi − E(αi)]

′[βj − E(βj)] + [εi,j −E(εi,j)],

with constrained interaction term and links between the marginal and cross-effects. This speci-

fication avoids the overparametrization encountered in unconstrained ANOVA [see e.g. Davies

(2012)].

Let us now apply the standard ANOVA to matrix Y , that is, replace Y by Ỹ = (ỹi,j), where:

ỹi,j = yi,j − yi,. − y.,j + y.,., (2.12)

where yi,. =
1

m

m∑
j=1

yi,j , y.,j =
1

n

n∑
i=1

yi,j , and y.,. =
1

nm

n∑
i=1

m∑
j=1

yi,j . For n and m large, we get:

yi,. � α′
iE(βj) + E(εi,j),

y.,j � E(α′
i)βj + E(εi,j), y.,. � E(α′

i)E(βj) + E(εi,j). (2.13)
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We deduce:

ỹi,j � α′
iβj − [α′

iE(βj) + E(εi,j)]− [E(α′
i)βj + E(εi,j)] + E(α′

i)E(βj) + E(εij) + εij

= (αi − Eαi)
′(βj − Eβj) + εi,j − E(εi,j). (2.14)

We get the following Corollary:

Corollary 2: Under Assumptions A.1 and A.3 and if X and Z are minimal sets of instrumental

variables for β and α, respectively, simple consistent estimators of C, α∗
i = αi − Eαi, β∗

j =

βj − Eβj and ε∗i,j = εi,j − E(εi,j) are obtained by applying the formulas of Proposition 1 after

replacing Y by Ỹ .

Then, the drifts E(αi), E(βj), E(εi,j) are deduced from the system of equations (2.13). Indeed,

we have:

yi,. � α̂∗′
i E(βj) + E(αi)

′E(βj) + E(εi,j)

� α̂∗′
i E(βj) + y.,..

Thus, E(βj) can be estimated consistently by regressing the averages yi,. on the estimated α̂∗
i across

i. The expectation E(αi) is deduced symmetrically. Finally, a consistent estimator of E(εi,j) is

y.,. − Ê(αi)
′Ê(βj).

ii) Factor augmented regression

The factors can also be introduced in a regression model with observable covariates [see e.g.

Bai, Ng (2008)]. The model becomes:

yi,j = w′
i,ja + α′

iβj + εi,j, (2.15)

where wi,j is a vector of L observed explanatory variables, which may be correlated with the factors

αi and βj , but are independent of the error term. The double IV method is easily adjusted to account

for such observed variables. By using the instruments X and Z, the analogues of equations (2.3)
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are: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

plim
n→∞

1

n
X ′Y = plim

n→∞

1

n
X ′(

L∑
l=1

Wlal) + C(x, α)β ′,

plim
m→∞

1

m
Z ′Y ′ = plim

m→∞

1

m
Z ′(

L∑
l=1

W ′
l al) + C∗(z, β)α′,

(2.16)

where Wl is the matrix of observations of the lth explanatory variable. Under the identification

restriction (2.4), we deduce :⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α̂ =
1

m
Y Z − 1

m
(

L∑
l=1

Wlal)Z,

β̃ =
1

n
Y ′XC ′ − 1

n
(

L∑
l=1

Wlal)
′XC ′.

The expressions above can be introduced in system (2.15) to get a regression model which is linear

in parameter C and quadratic in parameter a. Then, this regression model is easily estimated by

nonlinear least squares (NLLS), which is applied to a number of unknown parameters K 2 + L

independent of n and m.

An even simpler estimation approach can be introduced under the following additional assump-

tion:

Assumption A.4 : The wij’s, (αi, xi)’s, (βj , zj)’s and εij’s are mutually independent.

Under Assumption A.4, we get a consistent estimator of parameter a by regressing the endogenous

variables yi,j on the explanatory variables wi,j . Let us denote by â this OLS estimator and by

v̂i,j = yi,j − w′
i,jâ the residuals in this regression. We have the following Corollary:

Corollary 3: Under Assumptions A.1, A.2 and A.4:

i) the coefficient a of the explanatory variables is consistently estimated by regressing the y i,j’s on

the wi,j’s.

ii) Then, the factors and the error terms are consistently estimated by replacing the matrix Y by

the matrix of residuals V̂ = (v̂i,j) in the formulas of Proposition 1.
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Corollary 3 corresponds to the Frisch-Waugh theorem in our setting with observable explanatory

variables and latent factors.

iii) Asymptotic instrumental variables

The consistency results are also valid for asymptotic instruments x̂i, say, which may depend on

n and m, and tend to the true instruments xi, when n,m tend to infinity. We get the next corollary:

Corollary 4: Under Assumptions A.1-A.3 and if X̂ , Ẑ are minimal sets of asymptotic instrumental

variables for β and α, respectively, that is, if plim x̂i = xi, ∀i, plim ẑj = zj , ∀j, we get simple

consistent estimators of C, αi, βj , εi,j by applying the formulas of Proposition 1 after replacing

X , Z by X̂ , Ẑ.

Let us now show how to easily derive asymptotic instrumental variables for either α, or β by

appropriate averaging of transformations of the interaction data.

Proposition 2: Let us consider a (possibly) nonlinear K-dimensional mapping c and define:

1

m

m∑
j=1

c(yi,j) ≡ ci,.,
1

n

n∑
i=1

c(yi,j) ≡ c.,j.

In general, ci,. (resp. c.,j) can be used as an approximate instrumental variable x̂i for βj (resp. ẑj

for αi).

Proof: Under Assumptions A.1-A.2, we have:

ci,. =
1

m

m∑
j=1

c(yi,j) =
1

m

m∑
j=1

c(α′
iβj + εi,j)

�
∫ ∫

c(α′
iβj + εi,j)dGβ(βj)dGε(εi,j),

as m → ∞, where Gβ and Gε denote the (true) distributions of βj and εi,j , respectively. Therefore

x̂i ≡ ci,. tends to a deterministic (unknown) function of αi, that is xi = a(αi), say. Similarly, c.,j

tends to a deterministic function of βj , that is zj = b(βj), say. Thus, the conditions in Assumption

A.3 are satisfied asymptotically with E(xiα
′
i) = E[a(αi)α

′
i] and E(zjβ

′
j) = E[b(βj)β

′
j ]. In this

framework the identification restriction becomes :

E[b(βj)β
′
j] = IdK .
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The asymptotic instruments are valid whenever Rk E[a(αi)α
′
i] = K.

QED

iv) Missing data and collaborative filtering

The recommender systems 6 collect the ratings posted by n users on m different items: books,

movies, cosmetics, etc. However, these observations are sparse, since a given user has experi-

mented a limited number of items. Two questions arise in such an incomplete data framework: a)

How to estimate the underlying parameters αi, βj , ... ? b) How to complete for missing data, a

question known as matrix completion or collaborative filtering 7 ?

We explain below why the double IV approach answers these questions by applying the com-

putation on observed data (ratings) only. More precisely, let us consider the following extension of

model (2.1) :

yi,j = (α′
iβj + εi,j)ξi,j, (2.17)

where the variables ξi,j are indicator variables assumed i.i.d. and independent of the α′
is, β ′

js and

ε′i,js. The indicator value is ξi,j = 1, if the rating is posted, and ξi,j = 0, otherwise.

The modelling in equation (2.17) assumes implicitly that the users have similar behavior and

rate the items similarly. Moreover, the assumptions on indicator variables ξ imply that there is no

endogenous selectivity in the decision of posting a rating. These assumptions are standard in the

literature [see e.g. Klopp (2012), eq. 1]. Of course, the no selectivity assumption is not satisfied,

if some users decide to rate only the items that they like (resp. they don’t like). The model also

assumes continuous scores (ratings).

To understand why the double IV approach still works in this framework with missing data, let

6developed especially for large online companies like eBay, Amazon, Expedia, Pandora. See also the famous

Netflix problem [ACM, SIGKDD and Netflix (2007)].
7The term ”collaborative filtering” has been first introduced in Goldberg et al. (1992).
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us consider the appropriate averages computed on observed data only. We have:

n∑
i=1

[xi(α
′
iβj + εi,j)ξi,j]

n∑
i=1

ξi,j

� E(xiα
′
iξi,j)βj + E(xiεi,jξi,j)

E(ξi,j)
,where the expectation is w.r.t. the user uncertainty,

=
E(xiα

′
i)βjE(ξi,j) + E(xiεij)E(ξi,j)

E(ξi,j)
, due to the assumption of independence on ξ,

= C(x, α)βj,

which is the analogue of (2.3). Moreover, when the zero-mean condition in Assumption A.2 is not

satisfied, the averaging is applied after the ANOVA transformation:

ỹi,j = yi,j − (yi,·/ξi,·)ξi,j − (y·,j/ξ·,j)ξi,j + (y·,·/ξ·,·)ξi,j

� ξi,j {[αi −E(αi)]
′[βj −E(βj)] + εi,j − E(εi,j)} . (2.18)

Similarly let us consider the implementation of the asymptotic instrumental variable as in the

previous subsection. We get:

m∑
j=1

c(yi,j)ξi,j

m∑
j=1

ξi,j

=

m∑
j=1

c(α′
iβj + εi,j)ξi,j

m∑
j=1

ξi,j

∼
∫ ∫

c(α′
iβj + εi,j)dGβ(βj)dGε(εi,j),

which is the analogue of the result in Proposition 2. Therefore, the double IV approach can be

applied whenever P (ξi,j = 1) > 0. In practice, the method has to be applied only to users and

items with a sufficient number of complete data (more than 30, say).

Once the αi, βj are estimated, model (2.17) is easily used for prediction (filtering) purpose. An

incomplete data (i, j), such that ξi,j = 0, will be predicted by α̂′
iβ̂j . These filtered values can be
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used to recommend to a user a list of new preferred items by computing the N top-ranked items,

after having ranked the predicted ratings α̂′
iβ̂j by decreasing order.

Thus, the double IV approach is a new model-based collaborative filtering methodology useful

to analyze the individual preferences of individuals. This is a competitor of alternative methodolo-

gies based on latent semantic models [see e.g. Hofmann (2001), (2004)] or on multinomial mixture

models [see e.g. Miyahara, Pazzani (2002)].

In the special case where there is no data noise, i.e. εi,j = 0, ∀i, j, the problem consists

in reconstructing a matrix of rank K from random sampling of its elements. In this case, the

double IV approach is an alternative to the approaches based on either convex optimization, or

minimization of the nuclear norm [see e.g. Candes, Recht (2009), Recht (2009)]. This literature

looks for the number of randomly selected entries required to reconstruct an unknown low rank

matrix. This technique has been extended to noisy entries by considering for instance nuclear norm

penalized estimators [see e.g. Klopp (2012)]. Our approach avoids these techniques by using the

weak distributional assumptions introduced on the low rank matrix.

2.4 Asymptotic behaviour of the double IV estimator

Since the estimators have simple closed form expressions, it is easy to derive their asymptotic

distributions. This derivation is performed in Appendix 1.4. We have the following properties:

Proposition 3: Let us assume that dimensions n and m tend to infinity at equivalent rates m =

μn+ o(n), μ ≥ 1.

i) The first-order expansion for estimator Ĉ is:

√
n(Ĉ − C) = − 1√

μ
{ 1√

m

m∑
j=1

[βjz
′
j − E(βjz

′
j)]}C

−C{ 1√
n

n∑
i=1

[xiα
′
i − E(xiα

′
i)]}C + op(1),

where C = [E(xiα
′
i)]

−1, and op(1) denotes a negligible term in probability.

ii) The estimator Ĉ is asymptotically normal, with the asymptotic variance-covariance matrix :

Vas[vec(
√
n(Ĉ − C))] =

1

μ
(C ′ ⊗ Id)V [zj ⊗ βj ](C ⊗ Id) + (C ′ ⊗ C)V [αi ⊗ xi](C ⊗ C ′).
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We observe the effect of errors-in-variables on factors α and β. This implies the rate of conver-

gence 1/
√
n for estimator Ĉ, instead of the rate 1/n that would apply if the factors were observable.

We have noted that matrix C is not invariant when the basic instruments are replaced by equiv-

alent ones in a one-to-one linear relationship. An invariant of the problem is the product αβ ′.

Therefore, it is interesting to consider also the expansion of the matrix of fitted values 8 : Ŷ = α̂β̂ ′.

Proposition 4: Let us assume that dimensions n and m tend to infinity at equivalent rates m =

μn+ o(n), μ ≥ 1.

i) The first-order expansion for Ŷ = α̂β̂ ′ is:

√
n(Ŷ − αβ ′) =

1√
μ
(

1√
m
εZ)[E(βjz

′
j)]

−1β ′ + α[E(xiα
′
i)]

−1(
1√
n
X ′ε) + op(1).

ii) The double IV estimator of αβ ′ is asymptotically normal. Its asymptotic variance is given by:

Vas[vec(
√
n(Ŷ − αβ ′))] =

σ2

μ
{β[E(zjβ

′
j)]

−1[E(zjz
′
j)][E(βjz

′
j)]

−1β ′} ⊗ Idn

+σ2Idm ⊗ {α[E(xiα
′
i)]

−1E(xix
′
i)[E(αix

′
i)]

−1α′}.

The asymptotic variance of Ŷ has a simple form, in which we recognize standard asymptotic

variances of IV estimators:

σ2{E(βjz
′
j)E(zjz

′
j)

−1E(zjβ
′
j)}−1 and σ2{E(αix

′
i)E(xix

′
i)

−1E(xiα
′
i)}−1.

Indeed, these matrices are the asymptotic variance matrices of exactly identified IV estimators with

explanatory variables βj and instruments zj (resp. explanatory variables αi and instruments xi),

and conditionally homoscedastic errors.

The finite sample properties of estimator Ŷ can be easily derived by bootstrapping the empirical

distributions of α̂i, β̂j , ε̂ij , respectively. The numerical complexity of this bootstrap procedure is

of order nm× S, where S is the number of replications in the bootstrap.

8When dimensions n,m increase, the dimensions of matrix Ŷ increase too. For expository purpose, we do not

discuss this point. The results in Proposition 4 are valid for any given submatrix of Ŷ including the (N,M) first pairs,

with N ≤ n, M ≤ m, and N , M fixed in the asymptotics.
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2.5 Estimation of the unknown distributions

Once the core matrix of parameters C has been estimated, we deduce consistent approximations

of the components of row and column factors α̂i and β̂j , and of the errors ε̂i,j (see Proposition

1). They converge at rate 1/
√
n due to the error-in-variables effect. They can be used to derive

consistent parametric or nonparametric estimators of the distributions of αi, βj , εi,j .

Let us first focus on nonparametric inference.

2.5.1 Nonparametric inference

Two cases have to be distinguished.

i) Continuous distributions

If αi (resp. βj , εi,j) has a continuous distribution, and if the number K of factors is not too large,

the corresponding density can be estimated by using a kernel estimator based on the estimates α̂ i

(resp. β̂j , ε̂i,j). Since the error on αi is at a parametric rate, these kernel estimators have standard

asymptotic properties. When the data are incomplete, we have mentioned that the estimation of the

α′
js and β ′

js applies only for the users and items for which enough rating observations are available.

The estimated distributions of the α′s and β ′s can then be used to predict the unobserved ratings

for a user (resp. an item) with few observed responses. We have just to apply a Bayesian updating

based on the few observed ratings and the estimated distributions as prior distributions.

ii) Mixed distributions

The situation is different if the distribution is a mixture of continuous distributions and point

masses at zero. Indeed, even if some underlying components of αi are equal to zero, their approx-

imations based on α̂i are almost surely nonzero. Thus, we have first to define an interval around

zero used to assign to zero all the components of α̂i of interest in this interval, and to the con-

tinuous component of the distribution all the values of the components of α̂ i outside this interval.

The length of this interval has to account for the accuracy of estimator α̂i. We have the following

Proposition :

Proposition 5: Let A be a subset of {1, . . . , K} and P (α,A) = P [αi,k = 0, k ∈ A]. A consistent
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estimator of probability P (α,A) is:

P̂n(α,A) =
1

n

n∑
i=1

(
∏
k∈A

1l|α̂i,k|<hn),

where hn tends to zero, when n → ∞, and is such that

√
log log n√

n
= o(hn).

Proof: This is a direct consequence of the Law of Iterated Logarithm.

QED

To understand how this result will be used in practice, let us consider the case K = 2, and

denote :

In(α,A) = {i : |α̂ik| < hn, ∀k ∈ A}.

Proposition 5 will be used to estimate the three probabilitiesP (α,A) by P̂ (α, 1), P̂ (α, 2), P̂ (α, (1, 2))

and to determine the associated sets In(α, 1), In(α, 2), In(α, {1; 2}).
Then the joint distribution of (αi1, αi2) has different continuous components:

• a bivariate continuous density, which is estimated by applying a bivariate kernel to the set of

observations {i : |α̂i,1| > hn, |α̂i,2| > hn};

• a one-dimensional continuous density for α2, when α1 = 0, estimated by applying a one-

dimensional kernel to α2, to the set of observations {i : |α̂i,1| < hn, |α̂i,2| > hn};

• a one dimensional continuous density for α1, when α2 = 0, estimated by applying a one-

dimensional kernel to α1, to the set of observations {i : |α̂i,1| > hn, |α̂i,2| < hn}.

2.5.2 Parametric inference and clustering

Parametric inference is especially appealing to assign the individuals to different clusters. This

is easily done as follows. First assume that the distribution of α is a mixture of Kα parametric

distributions:

Gα(.) =

Kα∑
k=1

πα,kGα,k(.; θαk),
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where θαk and πα,k, k = 1, . . . , K are unknown parameters, and the same for the distribution of β:

Gβ(.) =

Kβ∑
k=1

πβ,kGβ,k(.; θβk).

Then, a standard method to estimate these mixtures and assign the individuals can be applied to

the consistent approximations α̂i of αi (resp. β̂j of βj). Thus, the methodology can be used to

construct bidimensional clusters, which are obtained by crossing the clusters of the αi and the

clusters of the βj .

In this respect this model is an alternative to other model-based analyses such as the stochastic

block structure models, in which the blocks (clusters) are also latent and estimated from the data

[see e.g. Wasserman, Anderson (1987), Nowicki, Snijders (2001), Handcock, Raftery, Tantrum

(2007), Latouche, Birmele, Ambroise (2011)], or the probabilistic latent semantic analysis [Hof-

mann (2003)].

2.6 The generalized double IV estimator

From Proposition 1 and equations (2.6) and (2.10), we see that the matrix of fitted values is given

by:

Ŷ = α̂β̂ ′

= (
1

m
Y Z)(

1

m2
Z ′Y ′Y Z)−1(

1

m
Z ′Y ′)

Y (
1

n
Y ′X)(

1

n2
X ′Y ′Y X)−1(

1

n
X ′Y ). (2.19)

In practice we can easily find more instruments than the number K of factors, e.g. by the averaging

method discussed in Section 2.3 iii). Let us denote by X ∗ and Z∗ extended sets of instruments in

number K∗, say, with K∗ ≥ K, such that matrices E(z∗j z
∗′
j ) and E(x∗

ix
∗′
i ) are invertible. The

model is now overidentified. As usual, formula (2.19) can be applied by selecting K linear combi-

nations of the basic instruments, that is, by considering:

X(A) = X∗A, Z(B) = Z∗B, (2.20)
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where A and B are (K∗, K) full-rank matrices. We get fitted values depending on the selected

matrices A and B:

Ŷ (A,B) = (
1

m
Y Z∗B)(

1

m2
B′Z∗′Y ′Y Z∗B)−1(

1

m
B′Z∗′Y ′)

Y (
1

n
Y ′X∗A)(

1

n2
A′X∗′Y ′Y X∗A)−1(

1

n
A′X∗′Y ).

How can we choose matrices A and B to make the estimator of αβ ′ as accurate as possible? The

following Proposition is a direct consequence of the expression of the asymptotic variance given

in Proposition 4 and of the standard optimality of the Two Stage Least Squares (2SLS) estimator

[see e.g. Gourieroux, Monfort (1995), Property 9.6].

Proposition 6: i) We have:

min
A,B

Vas{vec[
√
n(Ŷ (A,B)− αβ ′)]} =

σ2

μ
[β{E(βjz

∗′
j )E(z∗j z

∗′
j )

−1E(z∗jβ
′
j)}−1β ′]⊗ Idn

+σ2Idm ⊗ [α{E(αix
∗′
i )E(x∗

ix
∗′
i )

−1E(x∗
iα

′
i)}−1α′],

where the minimization is w.r.t the standard ordering on symmetric matrices.

ii) This lower bound can be reached in three steps as follows:

Step 1: Estimate consistently α and β by applying a double IV method with K instruments selected

from the Z∗ and X∗.

Step 2: Then, estimate the optimal A matrix by a SUR regression of α̂i on x∗
i , and estimate the

optimal B matrix by a SUR regression of β̂i on z∗i , where α̂i and β̂i are the first step IV

estimators:

Â = (X∗′X∗)−1X∗′α̂, B̂ = (Z∗′Z∗)−1Z∗′β̂.

Step 3: Deduce the generalized double IV estimators of α and β by applying the double 2SLS ap-

proach, with instruments X ∗Â and Z∗B̂, where Â and B̂ are the estimated optimal selection

matrices derived in Step 2.

Let Ŷ ∗ denote the efficient double IV estimator of the fitted values using the optimal combina-

tions of instruments X ∗ and Z∗. The asymptotic variance of estimator Ŷ ∗ depends on instruments

X∗ and Z∗ by means of matrices {E(βjz
∗′
j )E(z∗j z

∗′
j )

−1E(z∗jβ
′
j)}−1 and {E(αix

∗′
i )E(x∗

ix
∗′
i )

−1E(x∗
iα

′
i)}−1,
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that are the inverses of the second-order moment matrices of the projection of βj on z∗j , and of the

projection of αi on x∗
i , respectively. The minimal asymptotic variance of Ŷ ∗ over all possible sets

of instruments can be obtained by an exactly identified set of instruments x∗
i and z∗j corresponding

to factors αi and βj , respectively.

Corollary 5: An optimal choice of the instruments is x∗
i = αi and z∗j = βj . The corresponding

best asymptotic variance of the estimator of the fitted values is:

min
X∗,Z∗

Vas{vec[
√
n(Ŷ ∗ − αβ ′)]} =

σ2

μ
[βE(βjβ

′
j)

−1β ′]⊗ Idn + σ2Idm ⊗ [αE(αiα
′
i)
−1α′].

The optimal instrumentsαi and βj are unobservable, but, as in Proposition 6, the efficient estimator

of the fitted values corresponding to the optimal choice of the instruments can be computed in two

steps. In the first step, we estimate consistently α and β by applying the double IV method based

on a set of valid instruments. In the second step, we get the double IV estimators of α and β by

applying the double IV approach with instruments α̂i and β̂j obtained in the first step.

2.7 Comparison with the literature

The literature on large dimensional factor analysis usually estimates the underlying factors by

Principal Component Analysis (PCA) [see e.g. Anderson, Rubin (1956), Lawley, Maxwell (1971),

Anderson (1984), Stock, Watson (2002), Bai, Ng (2002)]. Typically the PCA estimators of α

and β minimize Tr[(Y − αβ ′)′(Y − αβ ′)] under the normalization restrictions
1

m
β ′β = IdK and

α′α diagonal, or other types of identifiability restriction asking for instance for different entries

of the diagonal matrix α′α ranked in decreasing order [see e.g. Algina (1980), Bekker (1986),

Bai, Ng (2013)]. The principal component approach is especially relevant under some normality

assumptions, since it corresponds to the maximum likelihood approach [see e.g. Lawley, Maxwell

(1971)]. We briefly review Principal Component Analysis in Appendix 3.

It is useful to compare the double IV approach with PCA. For PCA, we have to derive the

decreasing sequence of eigenvalues and the associated eigenvectors involved in the singular value

decomposition (SVD) of matrix Y . Specifically, the columns of the estimate of the factor matrix

β in PCA are the eigenvectors associated with the K largest eigenvalues of matrix Y ′Y , up to a
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normalization (see Appendix 3.1). Equivalently, the PCA estimate of factor matrix α is obtained

from the eigenvectors associated with the K largest eigenvalues of matrix Y Y ′. 9

The standard approach based on PCA has two drawbacks when estimating the vector spaces

spanned by the row and column factors, respectively.

i) The first drawback is its computational complexity. For a dataset of large dimensions n, m,

with m = μn + o(n), μ ≥ 1, the number of computations is O(n3), i.e., it grows cubically in

dimension n. This can become a problem for very large data dimensions. Instead, the double IV

approach has a numerical complexity of quadratic order O(n2), i.e. proportional to the number of

observations (see Section 2.2).

ii) The second drawback concerns the updating of estimates. The double IV estimators are

easily updated with each new datum, that is, when the (n, n) observation matrix becomes a (n +

1, n + 1) observation matrix; in particular they are appropriate for online implementation. Such

simple updating does not exist with PCA.

Let us now compare the asymptotic efficiency of the double IV estimator with that of the PCA

estimator in terms of fitted values. Let us denote Ŷ PCA the estimator of the fitted values matrix

αβ ′ obtained from the PCA factor estimates. The next Proposition 7 is proved in Appendix 3.2.

The proof builds on the asymptotic analysis in e.g. Bai, Ng (2002) and Stock, Watson (2002), but

Proposition 7 is novel because it concerns the estimator of the fitted values, instead of the factor

estimates themselves.

Proposition 7: Let n,m → ∞ such that m = μn + o(n), μ ≥ 1. The PCA estimator of the

fitted values Ŷ PCA is asymptotically equivalent to the (unfeasible) double IV estimator based on

the optimal instruments xi = αi and zj = βj .

From Corollary 5 and Proposition 7, the double IV estimator with optimal instruments is asymptot-

ically equivalent to the PCA estimator for the fitted values. Thus, the double IV approach achieves

the same asymptotic efficiency as PCA, but with a reduced degree of computational complexity.

9The nonzero eigenvalues of matrices Y ′Y and Y Y ′ coincide.
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3 Dynamic Factor Analysis

Since networks have been around for a long time, there is an abundance of data and we should be

expecting more than just a static analysis. For instance, it is interesting to see how the intercon-

nections change over time (and also the clusters, if clusters are introduced, see Section 2.5.2).

3.1 The dynamic factor model

The static factor model (2.1)-(2.2) can be easily extended to a dynamic framework. The observa-

tions are matrices of interactions : Yt = (yi,j,t), t = 1, . . . , T , with dimensions (n,m). We assume

a factor decomposition with time varying factors and error terms :

yi,j,t = α′
i,tβj,t + εi,j,t, i = 1, . . . , n, j = 1, . . . , m, t = 1, . . . , T, (3.1)

or with matrix notation:

Yt = αtβ
′
t + εt, t = 1, . . . , T. (3.2)

We assume a fixed number K of factors and make the following assumption, which extends

Assumptions A.1-A.2.

Assumption A*.1:

i) The time series (αi,t), i = 1, . . . , n, (βj,t), j = 1, . . . , m, and (εi,j,t), i = 1, . . . , n, j = 1, . . . , m

are independent.

ii) These time series are strongly stationary.

iii) The time series (αi,t), i = 1, . . . , n [resp (βj,t), j = 1, . . . , m; (εi,j,t), i = 1, . . . , n, j =

1, . . . , m] have identical distributions, such that:

E(αi,t|αi,t−1) = 0 [resp. E(βj,t|βj,t−1) = 0, E(εi,j,t|εi,j,t−1) = 0].

We assume a big data framework, where the three dimensions n, m and T are large. So the

asymptotics is such that n → ∞, m → ∞, and T → ∞.
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3.2 Cross-sectional analysis

The static factor analysis of Section 2 can be applied cross-sectionally to get consistent approxima-

tions of αi,t, βj,t and εi,j,t, ∀i, j, t. Let us extend the methodology of asymptotic instruments of Sec-

tion 2.3 iii) to time series and introduce a transformation of the observation path: c(y i,j,t, yi,j,t−1),

say, if we just keep the current and lagged observed values. 10 Asymptotic row instruments are:

ci,.,t =
1

m

m∑
j=1

c(yi,j,t, yi,j,t−1) ≡ x̂i,t, (3.3)

and asymptotic column instruments are:

c.,j,t =
1

n

n∑
i=1

c(yi,j,t, yi,j,t−1) ≡ ẑj,t. (3.4)

They depend on date t and their values can be gathered in matrices X̂t and Ẑt. Then, from Propo-

sition 1 we deduce consistent cross-sectional estimators of the factors and errors:

α̂t =
1

m
YtẐt, β̂t =

1

n
Y ′
t X̂tĈ

′
t, ε̂t = Yt − α̂tβ̂

′
t, (3.5)

with:

Ĉt = (
1

m2
Ẑ ′

tY
′
t YtẐt)

−1(
1

m
Ẑ ′

tY
′
t )Yt(

1

n
Y ′
t X̂t)(

1

n2
X̂ ′

tYtY
′
t X̂t)

−1.

If dimensions n and m grow at the same rate, these estimators tend to their limits αt, βt, εt, ct at

rate 1/
√
n.

The double IV approach has the important property to select time coherent identification re-

strictions on the factors, such as:

E[zj,tβ
′
j,t] = IdK ,

at all dates (in the exactly identified case). This time coherency is another advantage of the double

IV approach compared to the standard use of PCA. Indeed, the PCA applied date by date does not

provide factors with time coherent interpretation. In the double IV approach, the time coherency

is imposed by means of the choice of (stationary) instruments.

10By considering instruments which are functions of the observable path, we get much more instruments than in the

static framework in Section 2.
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3.3 Analysis of the factor dynamics

The dynamic factor model (3.1)-(3.2) can be completed by specifying the dynamics of the factors

and the errors. This dynamics has to be sufficiently flexible to be compatible with the identification

restriction:

E(zj,tβ
′
j,t) = E[c(yi,j,t, yi,j,t−1)β

′
j,t] = IdK . (3.6)

Let us consider the following parametric specifications:

Assumption A*.2: The series (αi,t) [resp. (βj,t), (εi,j,t)] is a Markov process with continuous

transition density gα(.|.; θα) [resp. gβ(.|.; θβ), gε(.|.; θε)], where θα, θβ , θε are unknown parameters.

We have the following Proposition, which is a consequence of general results on Granularity

Theory [see e.g. Gagliardini, Gourieroux (2014a, b)].

Proposition 8: Under Assumptions A∗.1-A∗.2, the estimators:

θ̂α = argmax
θα

n∑
i=n

T∑
t=1

log gα(α̂i,t|α̂i,t−1; θα),

θ̂β = argmax
θβ

m∑
j=1

T∑
t=1

log gβ(β̂j,t|β̂j,t−1; θβ),

θ̂ε = argmax
θε

n∑
i=1

m∑
j=1

T∑
t=1

log gε(ε̂i,j,t|ε̂i,j,t−1; θε),

are consistent, asymptotically normal and asymptotically efficient.

As in the static case, adjustments in the objective criteria are needed if the (joint) distribution

allows for point mass at zero for the values of date t and date t− 1.

3.4 Nested factor models

Model (3.1) includes factors α (resp. β) doubly indexed by (i, t) [resp (j, t)]. This model can be

constrained to get factors indexed by either i, or j, or t, only. Such a constrained model can be

defined as :

yi,j,t =

K∑
k=1

αi,t,kβj,t,k + εi,j,t, (3.7)

26



where:

αi,t,k ≡
L(αk)∑
l=1

ai,l(αk)bt,l(αk),

βj,t,k ≡
L(βk)∑
l=1

aj,l(βk)bt,l(βk). (3.8)

We deduce the observations as functions of the new factors a and b:

yi,j,t =

K∑
k=1

L(αk)∑
l=1

L(βk)∑
l∗=1

[ai,l(αk)aj,l∗(βk)bt,l(αk)bt,l∗(βk)] + εi,j,t, (3.9)

with
K∑
k=1

L(αk) factors indexed by i,
K∑
k=1

L(βk) factors indexed by j.

The double IV estimation approach provides consistent estimators of this constrained model

including more factors indexed by i, j, or t. They are obtained in two steps :

Step 1: Apply the double IV approach to the observations Yt = (yi,j,t) and deduce the estimated

α̂(k) = (α̂i,t,k), β̂(k) = (β̂j,t,k), k = 1, . . . , K.

Step 2: Apply the double IV approach to the pseudo-observations α̂(k), k = 1, . . . , K [resp.

β̂(k), k = 1, . . . , K] to deduce the âi,l(αk), b̂t,l(αk) [resp. âj,l(βk), b̂t,l(βk)].

4 Experimental results

To illustrate the double IV approach, we apply the methodology to artificial data sets.

4.1 One-factor model with mixtures of discrete-continuous distributions

We first consider a single static factor model:

yi,j = αiβj + εi,j, i = 1, . . . , n, j = 1, . . . , m, (4.1)

where the factors α′
is, β ′

js and errors ε′i,js are drawn independently in mixtures of point masses at

zero and log-normal distributions along the two schemes in Table 1. The schemes differ in terms

of the parameters of the log-normal distribution of the errors, with larger and more volatile errors

in scheme 2.
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Table 1: Simulation schemes 1 and 2.

weight on point parameters of the

mass at 0 log-normal distribution

μ σ2

α 0.4 0 1

β 0.4 1 2

ε, scheme 1 0.4 1 2

ε, scheme 2 0.4 3 2

The schemes in Table 1 are both compatible with zero values for the observable variable y,

with probability:

P [yi,j = 0] = P [εi,j = 0]P [either αi = 0, or βj = 0]

= P [εij = 0]{1− P [αi �= 0]P [βj �= 0]}
= 0.4(1− 0.62) = 0.256. (4.2)

We first draw independently the α′s, β ′s and ε′s along scheme 1 in Table 1 with dimensions

n = m = 10, 000. In such a big data environment, it is difficult to represent the complete set of

available data. However, summary statistics can be informative. We provide in the upper panel of

Figure 1 the North-West submatrix of Y with size (100,100) to highlight the effect of zero values.

Each observation is represented by a dot, whose color depends on the magnitude yi,j.

[Insert Figure 1: Submatrices of observations (schemes 1 and 2)]

We observe vertical and horizontal patterns of large observations, corresponding to individuals

with large β and α factors, respectively. The vertical patterns are more pronounced because of the

larger scale of the β factor.

Other summary statistics use more observations. We provide in Figures 2, 3 and 4 the sample

distributions of yi,1 and yi,2, for i = 1, . . . , 10000, the sample distributions of y1,j and y2,j , for

j = 1, . . . , 10000, and the sample distribution of yi,j , for i, j = 1, . . . , 10000, respectively.

[Insert Figure 2: Sample distributions of yi,1 and yi,2 (scheme 1)]
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[Insert Figure 3: Sample distributions of y1,j and y2,j (scheme 1)]

[Insert Figure 4: Sample distribution of yi,j (scheme 1)]

It is interesting to compare the sample distributions of yi,1 and yi,2, say. Indeed, they approximate

the distributions of yi,j given βj , for j = 1, 2. These distributions differ since β1 �= β2. More

precisely, we have β1 = 2.89 and β2 = 0 in the simulated dataset, which explains the larger scale

of observations yi,1 compared to observations yi,2 in Figure 2. Moreover, since α2 = β2 = 0, the

distributions of yi,2 and y2,j are equal, and correspond to the mixture distribution of εi,j . Let us now

consider the distributions of yi,1 and y1,j . Since β1 �= 0 and α1 �= 0, we have P [yi,1 = 0] = P [αi =

0]P [εi,j = 0] = 0.16 = P [y1,j = 0], and the continuous parts of these distributions correspond to

sums of log-normal variables. Finally, in Figure 4 the proportion of observations y i,j = 0 is close

to 0.25 as implied by (4.2).

We apply the double IV approach to this artificial data set, and compute the estimates α̂i, β̂j ,

ε̂i,j . In the single-factor model we need a single row and a single column instrument. We choose

xi = yi,. and zj = y.,j corresponding to the identity transform a(.) in Section 2.3 iii). Since factors

and errors do not have zero means, we apply the ANOVA transformation to the y data [see Section

2.3 i)]. The computation of the estimates for all sample units requires about 2 seconds on a standard

computer. The scatter plots in the three upper panels of Figure 5 show that both the factor estimates

α̂i, β̂j and the fitted values ŷi,j = α̂iβ̂j are close to the corresponding true values, uniformly across

the sample. This remark is confirmed by the comparison of the North-West (100,100) submatrices

of fitted values α̂β̂ ′ and true values αβ ′, displayed in the upper left and right panel of Figure 6,

respectively.

[Insert Figure 5: Scatter plots of estimates vs true values (schemes 1 and 2)]

[Insert Figure 6: Submatrices of fitted values (schemes 1 and 2)]

To assess the effect of the size of errors on the estimators accuracy, we simulate a second

artificial data set along scheme 2 in Table 1, with dimensions n = m = 10000, and apply the

double IV approach with the same instruments as above. The North-West submatrix of Y with size

(100,100) is displayed in the lower panel of Figure 1, and the scatter plots of estimates versus true
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values are displayed in the three lower panels of Figure 5. The North-West (100,100) submatrix of

fitted values is displayed in the lower left panel of Figure 6. Comparing the two panels of Figure 1,

under simulation scheme 2 the vertical and horizontal patterns induced by the factor structure are

less visible due to the larger size of the errors. The estimators are less accurate on the simulated

dataset under scheme 2 than under scheme 1. In the three lower panels of Figure 5, the estimators

tend to be more accurate for large values of αi and βj , i.e., when the impact of errors is smaller in

relative terms.

4.2 One-factor model with missing observations

Let us now consider a one-factor model with missing data. The observations are:

yi,j = (αiβj + εi,j)ξi,j, i = 1, ..., n, j = 1, ..., m.

The factors α, β and the errors ε are drawn from log-normal distributions with parameters given in

Table 2. We consider two simulation schemes for the indicator variable ξ, corresponding to rates

of missing observations equal to 10% and 40% in schemes 3 and 4, respectively.

Table 2: Simulation schemes 3 and 4.

parameters of the

log-normal distribution

μ σ2

α 0 1

β 1 2

ε 1 2

probability of missing data

scheme 3 P (ξi,j = 0) = 0.90

scheme 4 P (ξi,j = 0) = 0.60

The sample sizes are n = m = 10000 as in Section 4.1. We apply the double IV method after

performing the ANOVA transformation in (2.18), with instruments xi = yi,· and zj = y·,j.

[Insert Figure 7: Submatrices of observations (schemes 3 and 4)]
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[Insert Figure 8: Scatter plots of estimates vs true values (schemes 3 and 4)]

[Insert Figure 9: Submatrices of fitted values (schemes 3 and 4)]

As expected, the rate of missing observations is larger in the data matrix simulated under scheme 4

(Figure 7). This explains the smaller accuracy of the factor estimates under this scheme (Figure 8).

Moreover, in both schemes 3 and 4 the estimates of factor α are less accurate than those of factor

β.

5 Concluding remarks

Factor models are introduced to reduce the dimension of the analysis. In the static interaction

model, we pass from dimension 2, i.e. the dimension of the observations, to dimension 1, i.e. the

dimension of the factors. In the dynamic interaction model from dimension 3 to dimension 2.

The aim of our paper was to answer the question 11 : ”Are more data always better for factor

analysis ?”. For huge data sets the standard factor analysis can become numerically complicated.

However we can benefit from big data to introduce new techniques, which are much less compu-

tational demanding. The double instrumental variable approach is an example of such a technique

able to reach the same asymptotic efficiency as Principal Component Analysis. We have also

explained how asymptotic instruments can be constructed from the bidimensional endogenous ob-

servations.

We have shown that the double IV approach is easily extended to the case of incomplete data.

The approach is an alternative to other collaborative filtering methods either based on nuclear

penalized estimators, similarities between individuals, or on block structured models with Bayesian

estimation.

We have explained how to derive by simple explicit formulas the parameters of interest, includ-

ing the factor values and their distributions. In a framework of online data, it would be interesting

to consider explicitly how to update these estimates at each new data arrival. This learning aspect

is left for future research.

11appearing as the title of the paper by Boivin, Ng (2006).
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Figure 1: Submatrices of observations (schemes 1 and 2).
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Each panel of this Figure displays the North-West (100, 100) block of a simulated data matrix Y = (y i,j) in the static

one-factor model of Section 4.1. The distributions of factors α i, βj and errors εi,j are mixtures of point masses at zero

and log-normal distributions with parameters given in Table 1, for scheme 1 in the upper panel, and for scheme 2 in

the lower panel, respectively. For the cell on row i and column j, the color of the dot is related to the magnitude of

observation yi,j , such that cold (resp. hot) colors correspond to small (resp. large) observations.

38



Figure 2: Sample distributions of yi,1 and yi,2 (scheme 1).
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The left and right panels display estimates of the mixture probability distribution functions of variables y i,1 and yi,2,

respectively. In each panel, the height of the vertical bar at zero is equal to the sample proportion of zero values. The

blue curve is a kernel density estimate computed on the subsample of nonzero values, multiplied by the proportion of

nonzero values. The data are generated according to scheme 1 in Table 1.
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Figure 3: Sample distributions of y1,j and y2,j (scheme 1).
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The left and right panels display estimates of the mixture probability distribution functions of variables y 1,j and y2,j ,

respectively. In each panel, the height of the vertical bar at zero is equal to the sample proportion of zero values. The

blue curve is a kernel density estimate computed on the subsample of nonzero values, multiplied by the proportion of

nonzero values. The data are generated according to scheme 1 in Table 1.
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Figure 4: Sample distribution of yi,j (scheme 1).
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The panel displays the estimate of the mixture probability distribution function of variables y i,j . The height of the

vertical bar at zero is equal to the sample proportion of zero values. The blue curve is a kernel density estimate

computed on the subsample of nonzero values, multiplied by the proportion of nonzero values. The data are generated

according to scheme 1 in Table 1.
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Figure 5: Scatter plots of estimates vs true values (schemes 1 and 2).

0 10 20
−2

0

2

4

6

8

10

12
x 10

4

αi

α̂
i

0 500 1000

0

0.05

0.1

βj

β̂
j

0 200 400
−100

0

100

200

300

400

500

600

αiβj

α̂
iβ̂

j

0 5 10 15 20
−2

0

2

4

6

8

10

12
x 10

4

αi

α̂
i

0 500 1000

0

0.05

0.1

βj

β̂
j

0 200 400
−100

0

100

200

300

400

500

600

αiβj

α̂
iβ̂

j

Scheme 2

Scheme 1

The left, middle and right panels display scatter plots of estimates vs true values for (α i, α̂i), (βj , β̂j), and

(αiβj , α̂iβ̂j), respectively. The estimates are obtained with the double IV method using instruments x i = yi,· and

zj = y·,j . The data are generated according to scheme 1 in Table 1 for the three upper panels, and according to

scheme 2 in Table 1 for the three lower panels.
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Figure 6: Submatrices of fitted values (schemes 1 and 2).
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The upper left panel of this Figure displays the North-West (100, 100) block of the matrix of fitted values ŷ i,j = α̂iβ̂j

in the static one-factor model of Section 4.1. The distributions of factors α i, βj and errors εi,j are mixtures of point

masses at zero and log-normal distributions with parameters given in Table 1, scheme 1. The estimates are obtained

with the double IV method using instruments x i = yi,· and zj = y·,j . The lower left panel displays the North-West

(100, 100) block of the matrix of fitted values ŷi,j = α̂iβ̂j for data generated with parameters given in Table 1, scheme

2. The upper right panel displays the North-West (100, 100) block of matrix αβ ′. For the cell on row i and column j,

the color of the dot is related to the magnitude of fitted value ŷ i,j , such that cold (resp. hot) colors correspond to small

(resp. large) values.
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Figure 7: Submatrices of observations (schemes 3 and 4) .
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Each panel of this Figure displays the North-West (100, 100) block of a simulated data matrix Y = (y i,j) in the static

one-factor model with missing data of Section 4.2. The distributions of factors α i, βj and errors εi,j are log-normal

distributions with parameters given in Table 2, and the indicator variables ξ i,j are i.i.d. Bernoulli distributed with

parameter 0.90 (scheme 3) in the upper panel, and Bernoulli parameter 0.60 (scheme 4) in the lower panel. For the

cell on row i and column j, the color of the dot is related to the magnitude of observation y i,j , such that cold (resp.

hot) colors correspond to small (resp. large) observations.
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Figure 8: Scatter plots of estimates vs true values (schemes 3 and 4).
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The left, middle and right panels display scatter plots of estimates vs true values for (α i, α̂i), (βj , β̂j), and

(αiβj , α̂iβ̂j), respectively. The estimates are obtained with the double IV method using instruments x i = yi,· and

zj = y·,j . The data are generated according to scheme 3 in Table 2 for the three upper panels, and according to

scheme 4 in Table 2 for the three lower panels.
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Figure 9: Submatrices of fitted values (schemes 3 and 4).
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The upper and lower left panels of this Figure display the North-West (100, 100) block of the matrix of fitted values

ŷi,j = α̂iβ̂j in the static one-factor model with missing data of Section 4.2. The distributions of factors α i, βj and

errors εi,j are log-normal distributions with parameters given in Table 2, and the indicator variables ξ i,j are i.i.d.

Bernoulli distributed with parameter 0.90 (scheme 3) in the upper panel, and with Bernoulli parameter 0.60 (scheme

4) in the lower panel. The estimates are obtained with the double IV method using instruments x i = yi,· and zj = y·,j .

The upper right panel displays the North-West (100, 100) block of matrix αβ ′. For the cell on row i and column j,

the color of the dot is related to the magnitude of fitted value ŷ i,j , such that cold (resp. hot) colors correspond to small

(resp. large) values.

46



Appendix 1: Asymptotic Expansions

A.1.1 Proof of the probability limits in (2.3) and (2.4)

We have:

plim
n→∞

1

n
X ′Y = plim

n→∞

1

n

n∑
i=1

xiy
′
i

= E(xiy
′
i)

= E(xiα
′
iβ

′) + E(xiε
′
i)

= E(xiα
′
i)β

′.

The proof is similar for the limit plim
m→∞

1

m
Z ′Y ′ = C∗(z, β)α′.

A.1.2 Matrix expression of the double instrumental variable estimator

We will use the following properties of the Kronecker product [see e.g. Magnus, Neudecker

(1994)]:

(A⊗ B)(C ⊗D) = (AC)⊗ (BD), (a.1)

(A⊗ B)′ = A′ ⊗B′, (a.2)

(A⊗ B)−1 = (A−1)⊗ (B−1), (a.3)

where matrices A and B are non-singular in the last equality. We deduce from Proposition 1 i):

vec Ĉ =

{[
(
1

n
X ′Y )⊗ (

1

m
Z ′Y ′)

] [
(
1

n
Y ′X)⊗ (

1

m
Y Z)

]}−1 [
(
1

n
X ′Y )⊗ (

1

m
Z ′Y ′)

]
vecY

=

{[
(
1

n2
X ′Y Y ′X)−1(

1

n
X ′Y )

]
⊗
[
(
1

m2
Z ′Y ′Y Z)−1(

1

m
Z ′Y ′)

]}
vec Y,

by (a.1), (a.2), (a.3). Finally, by applying (2.8), we get:

Ĉ =

(
1

m2
Z ′Y ′Y Z

)−1(
1

m
Z ′Y ′

)
Y

(
1

n
Y ′X

)(
1

n2
X ′Y Y ′X

)−1

. (a.4)
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A.1.3 Consistency of the double IV estimator of C

Before deriving the limit of Ĉ, let us recall the identification restriction (2.5):

C∗(z, β) = E(zjβ
′
j) = IdK, (a.5)

and its consequences for the factor interpretations [see (2.3)-(2.5)]:

α � 1

m
Y Z, (a.6)

β � 1

n
Y ′XC ′. (a.7)

Thus, from (a.4) we get:

Ĉ � (α′α)−1α′Y β(C ′)−1[C−1β ′β(C ′)−1]−1

= (α′α)−1α′Y β(β ′β)−1C

= (α′α)−1α′(αβ ′ + ε)β(β ′β)−1C

= C + (α′α)−1α′εβ(β ′β)−1C

= C + (
1

n
α′α)−1 1

mn
α′εβ(

1

m
β ′β)−1C

� C + [E(αiα
′
i)]

−1E(αiεijβ
′
j)[E(βjβ

′
j)]

−1C = C,

since E(αiεijβ
′
j) = E(αi)E(εij)E(β ′

j) = 0, under Assumptions A.1-A.2.

A.1.4 First-order expansion of Ĉ [Proof of Proposition 3 i)]

The asymptotic equivalences obtained in Appendix 1.3 suggest how to derive the first-order ex-

pansion of Ĉ. Let us denote β∗ = β(C ′)−1. We have :

Y = αCβ∗′ + ε. (a.8)

From (2.6) we also have estimators of α and β∗ such that :

√
m(α̂i − αi) and

√
n(β̂∗

j − β∗
j ),

are of order Op(1) (see Lemma A.1 below).
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The double IV estimator of C is:

Ĉ = (α̂′α̂)−1α̂′Y β̂∗(β̂∗′ β̂∗)−1

= (α̂′α̂)−1α̂′(αCβ∗′ + ε)β̂∗(β̂∗′β̂∗)−1,

where α̂ = Y Z/m and β̂∗ = Y ′X/n, or equivalently:

nm(Ĉ − C) =

(
1

n
α̂′α̂

)−1 {
α̂′[(α− α̂)Cβ̂∗′ + (α− α̂)C(β∗ − β̂∗)′

+α̂C(β∗ − β̂∗)′ + ε]β̂∗
}
(
1

m
β̂∗′ β̂∗)−1.

The terms within the curly brackets have different orders, which are respectively:

nm√
m
, for α̂′(α− α̂)Cβ̂∗′β̂∗,

nm√
n
√
m
, for α̂′(α− α̂)C(β∗ − β̂∗)′β̂∗,

nm√
n
, for α̂′α̂C(β∗ − β̂∗)′β̂∗,

nm√
n
√
m
, for α̂′εβ̂∗.

We see that the error-in-variables on α and β∗ create the dominant terms in the expansion. We

deduce that:

√
min(n,m)(Ĉ − C) = [E(αiα

′
i)]

−1{ 1
n
α′[
√

min(n,m)(α− α̂)]C

+C
1

m
[
√

min(n,m)(β∗ − β̂∗)′]β∗}[E(β∗
jβ

∗′
j )]

−1 + oP (1). (a.9)

When n and m tend to infinity at equivalent rates:

m = μn + o(n), with μ ≥ 1, (a.10)

say, we get:

√
n(Ĉ − C) = −[E(αiα

′
i)]

−1 1√
μ
[
1

n
α′√m(α̂− α)]C

−C[
1

m

√
n(β̂∗ − β∗)′β∗][E(β∗

jβ
∗′
j )]

−1 + oP (1). (a.11)

To continue this expansion, we need now to derive the expansions of
√
m(α̂−α) and

√
n(β̂∗−

β∗).
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Lemma A.1: We have:

√
m(α̂− α) = α{ 1√

m

m∑
j=1

[βjz
′
j − E(βjz

′
j)]}+

1√
m

m∑
j=1

εjz′j ,

√
n(β̂∗ − β∗) = β∗C ′{ 1√

n

n∑
i=1

[αix
′
i − E(αix

′
i)]}+

1√
n

n∑
i=1

εix
′
i.

Proof: We have:

α̂− α =
1

m
Y Z − α = α(

1

m
β ′Z − Id) +

1

m
εZ.

Therefore:
√
m(α̂− α) = α{√m(

1

m
β ′Z − Id)}+ 1√

m
εZ

= α{ 1√
m

m∑
j=1

[βjz
′
j − E(βjz

′
j)]}+

1√
m

m∑
j=1

εjz′j .

The expansion of
√
n(β̂∗ − β∗) is obtained with similar arguments.

QED

By applying Lemma A.1, the first term in the RHS of asymptotic expansion (a.11) becomes:

−[E(αiα
′
i)]

−1 1√
μ
{( 1
n
α′α)

1√
m

m∑
j=1

[βjz
′
j − E(βjz

′
j)] +

1

n
√
m

n∑
i=1

m∑
j=1

αiεijz
′
j}C

= − 1√
μ
{ 1√

m

m∑
j=1

[βjz
′
j −E(βjz

′
j)]}C + oP (1).

By similar arguments, the second term in the RHS of (a.11) is equal to:

−C

{
1√
n

n∑
i=1

[xiα
′
i − E(xiα

′
i)]

}
C + oP (1),

which yields the expansion given in Proposition 3 i).

A.1.5 Asymptotic normality of Ĉ [Proof of Proposition 3 ii)]

The asymptotic normality is a consequence of the Central Limit Theorem (CLT), which can be

applied under Assumptions A.1-A.3. We have just to vectorize the expansion of Ĉ and then to

compute the asymptotic variance-covariance matrix. We have by applying formula (2.8):

vec[
√
n(Ĉ − C)] = − 1√

μ

{
(C ′ ⊗ Id) vec

(
1√
m

m∑
j=1

[βjz
′
j −E(βjz

′
j)]

)}

−
{
(C ′ ⊗ C])vec

(
1√
n

n∑
i=1

[xiα
′
i − E(xiα

′
i)]

)}
+ oP (1),
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and:

vec[
√
n(Ĉ − C)] = − 1√

μ

{
(C ′ ⊗ Id)

(
1√
m

m∑
j=1

[zj ⊗ βj −E(zj ⊗ βj)]

)}

−
{
(C ′ ⊗ C])vec

(
1√
n

n∑
i=1

[αi ⊗ xi − E(αi ⊗ xi)]

)}
+ oP (1),

by using that vec(ab′) = b⊗ a for a pair of vectors a and b. Proposition 3 ii) follows, since under

Assumption A.3, the two components in the first-order expansion for Ĉ are independent.

A.1.6 First-order expansion of the matrix of fitted values [Proof of Proposition

4 i)]

Let us now consider the expansion of the matrix of fitted values:

Ŷ = α̂β̂ ′ = (
1

m
Y Z)Ĉ(

1

n
X ′Y ).

We have seen in Section 1.5 of the Appendix that the first-order expansion of Ĉ does not involve

the effect of error terms ε. Therefore, in deriving the expansion of Ŷ , we can replace Y by αβ′ in

equation (2.10). We get:

Ĉ � (
1

m2
Z ′βα′αβ ′Z)−1(

1

m
Z ′βα′)αβ ′(

1

n
βα′X)(

1

n2
X ′αβ ′βα′X)−1

= (
1

m
β ′Z)−1(α′α)−1(

1

m
Z ′β)−1(

1

m
Z ′β)α′αβ ′β(

1

n
α′X)(

1

n
α′X)−1(β ′β)−1(

1

n
X ′α)−1

= (
1

m
β ′Z)−1(

1

n
X ′α)−1.

We deduce:

Ŷ � (
1

m
Y Z)(

1

m
β ′Z)−1(

1

n
X ′α)−1(

1

n
X ′Y )

= (
1

m
αβ ′Z +

1

m
εZ)(

1

m
β ′Z)−1(

1

n
X ′α)−1(

1

n
X ′αβ ′ +

1

n
X ′ε)

� αβ ′ +
1

m
εZ(

1

m
β ′Z)−1β ′ + α(

1

n
X ′α)−1 1

n
X ′ε

� αβ ′ +
1

m
εZ[E(βjz

′
j)]

−1β ′ + α[E(xiα
′
i)]

−1 1

n
X ′ε.

We deduce that:

√
n(Ŷ − αβ ′) =

1√
μ
(

1√
m
εZ)[E(βjz

′
j)]

−1β ′ + α[E(xiα
′
i)]

−1(
1√
n
X ′ε) + oP (1).
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By applying the vec operator and formula (2.8), we get :

vec[
√
n(Ŷ − αβ ′)] =

1√
μ
{(β[E(zjβ

′
j)]

−1)⊗ Idn}vec( 1√
m
εZ)

+{Idm ⊗ (α[E(xiα
′
i)]

−1)}vec( 1√
n
X ′ε) + oP (1).

A.1.7 Asymptotic normality of the matrix of fitted values [Proof of Proposi-

tion 4 ii)]

The asymptotic normality is a consequence of the CLT. We have just to derive the asymptotic

variance. By Assumption A.3, vec(
1√
m
εZ) and vec(

1√
n
X ′ε) are asymptotically non correlated.

Moreover,

Vas[vec(
1√
n
X ′ε)] = V [vec(xiε

′
i)] = V (εi ⊗ xi)

= V

⎛
⎜⎜⎜⎝

xiεi1
...

xiεim

⎞
⎟⎟⎟⎠ = E

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
V

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

xiεi1
...

xiεim

⎞
⎟⎟⎟⎠ |xi

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= Idm ⊗ [σ2E(xix
′
i)].

Similarly:

Vas[vec(
1√
m
εZ)] = [σ2E(zjz

′
j)]⊗ Idn.

The result in Proposition 4 ii) follows.

Appendix 2: Analysis of social distances

Model (2.1) is a pure descriptive model. But the introduction of appropriate restrictions can make

this model more structural. As an illustration, let us consider the determination of social distances

between individuals from observations yi,j of their joint decisions. In this framework the matrix of

observations is symmetric, and the model can be written as :

yi,j = c+ (βi − βj)
′Ω(βi − βj) + εi,j, (a.12)
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where βi is an unobserved vector of attributes, which are i.i.d zero-mean, 12 Ω an unknown sym-

metric matrix, c an unknown scalar, and the errors are such that εi,j = εj,i and the components

of vech(ε) are i.i.d. This specification assumes exogenous attributes and does not apply to the

case of endogenous attributes such as endogenous choice of the individual position in the network.

These attributes characterize the positions of the individuals in the social space. The symmetric

matrix Ω can have negative as well as positive eigenvalues. The eigenvectors associated with neg-

ative eigenvalues corresponds to attributes satisfying the condition of homophily of attributes; the

eigenvectors associated with positive eigenvalues adapt the model to situations where opposites

attract. This model is a constrained version of the model discussed in Section 2.3 i). Indeed, we

have :

yi,j = c+ β ′
iΩβi + β ′

jΩβj − 2β ′
iΩβj + εi,j. (a.13)

We get an ANOVA model the type :

yi,j = c+ ai + bj + di,j + εi,j, (a.14)

with both marginal and cross-effects. These effects are constrained, since they depend on a rather

small number of latent parameters, that are, the β ′
is, Ω, and c. We can transform the observations

as in Section 2.3 i) to get

ỹi,j = yi,j − yi,. − y.,j + y.,. � −2β ′
iΩβj + εi,j. (a.15)

We get a specification compatible with model (2.1), where:

αi = −2Ωβi, (a.16)

depends on βi. Hence, factors αi and βi are dependent.

This constrained model can be analyzed in two different ways.

i) We can first estimate the unconstrained model to derive α̂i, β̂i along the lines of Section 2.2

and Proposition 2. Then, in a second step, the constraints can be taken into account by consider-

ing the asymptotic least squares estimation [Gourieroux, Monfort, Trognon (1982), Kodde, Palm,

Pfann (1990)], that is by minimizing :

12The zero-mean assumption can always be made, since the equation depends on the β ′
is by means of differences

only.
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min
n∑

i=1

{‖α̂i + 2Ωβi‖2 + ‖β̂i − βi‖2}, (a.17)

with respect to βi, i = 1, . . . , n, and Ω under the symmetry restriction. The second-step estimators

of αi, βi are ˆ̂αi = 2Ω̂
ˆ̂
βi,

ˆ̂
βi, where Ω̂,

ˆ̂
βi, i = 1, . . . , n are the solutions of minimization problem

(a.17).

ii) Alternatively, we can apply an (asymptotic) instrumental variable x̂i, say, and deduce an

estimate of βj , β̂j , say, up to an invertible (K,K) matrix. Then in a second step, we can regress by

OLS yi,j on β̂ ′
iΩβ̂j to deduce a consistent estimator Ω̂ of Ω.

Anyway the method provides both consistent approximations of the unobserved attributes and

select the appropriate dissimilarity measure Ω. Thus, no arbitrary choice of dissimilarity is re-

quired.

Appendix 3: Principal Component Analysis (PCA)

In this Appendix, we first briefly review Principal Component Analysis (PCA) and its interpre-

tations [see e.g. Jolliffe (2002) for a textbook presentation]. Then, we derive the large sample

properties of the matrix of fitted values obtained from PCA.

A.3.1 PCA and its interpretations

In this subsection we consider PCA in terms of either the joint spectral analysis of matrices Y Y ′

and Y ′Y , or as an estimator derived by the Least Squares (LS) principle, or as an estimator obtained

from the Expectation Maximization (EM) algorithm in the limiting case of vanishing noise.

i) Spectral decomposition of matrices Y ′Y and Y Y ′

Let Y = (yi,j) be a (n,m) stochastic matrix. Let us consider the transposed rows yi, i =

54



1, ..., n, of matrix Y as a sample of n observations of a m-dimensional random vector. For exposi-

tory purpose, let us assume that the data have been centered such that vectors yi have zero sample

mean. In PCA we look for K ≤ min{n,m} orthonormal vectors b1, ..., bK in Rm, such that b′1yi

has the largest sample variance, b′2yi has the largest sample variance under the constraint that b2 is

orthogonal to b1, and so on. The solution to this problem consists of the normalized eigenvectors of

the (m,m) sample variance-covariance matrix
1

n
Y ′Y =

1

n

n∑
i=1

yiy
′
i associated with the K largest

eigenvalues. Then, the (m,K) matrix b̂ = [b̂1, ..., b̂K ] is such that:

1

n
Y ′Y b̂ = b̂Λ̂, b̂′b̂ = IdK , (a.18)

where Λ̂ is the diagonal matrix of the K largest eigenvalues of Y ′Y/n. The (sample) Principal

Components are the columns of the (n,K) matrix â defined by

â = Y b̂. (a.19)

They correspond to K linear aggregates of the data that retain the maximal variability.

The (n, n) matrix
1

m
Y Y ′ =

1

m

m∑
j=1

yj(yj)′ is the sample variance-covariance matrix of the

n-dimensional columns of Y . Matrices Y Y ′ and Y ′Y have the same non zero eigenvalues. In

particular, we have:
1

n
Y Y ′â = Y

1

n
Y ′Y b̂ = Y b̂Λ̂ = âΛ̂,

and the columns of matrix â are eigenvectors of Y Y ′ associated with the K largest eigenvalues.

ii) Least Squares principle

Let us consider the factor model yi,j = α′
iβj + εi,j , or in matrix format Y = αβ ′+ ε, where the

factors α and β satisfy the assumptions introduced in Section 2. Let us further adopt the standard

identification restriction E(βjβ
′
j) = IdK . This identification restriction leaves free a rotation and

sign changes of the factors. The rotation can be fixed by the restriction that matrix E(αiα
′
i) is

diagonal.

If we treat the factor values α and β as “parameters” (fixed row and column effects), we can

define estimators of α and β by minimizing the Least Squares (LS) criterion:

min
{αi},{βj}

n∑
i=1

m∑
j=1

(yi,j − α′
iβj)

2,
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subject to the sample identification restriction:

1

m

m∑
j=1

βjβ
′
j = IdK .

Equivalently in matrix notation, we get the constrained minimization problem:

min
α,β

Tr[(Y − αβ ′)′(Y − αβ ′)] (a.20)

s.t. β ′β/m = IdK .

The criterion and the constraint are invariant to factor rotations, i.e. to mappings β → βC ,

α → αC where C is an orthogonal (K,K) matrix. We can fix this rotational invariance by the

identification restriction that matrix α′α is diagonal.

The F.O.C. of problem (a.20) yield:

α = Y β(β ′β)−1, (a.21)

β = Y ′α(α′α)−1, (a.22)

and the Lagrange multipliers for the matrix restriction β ′β/m = IdK (and α′α diagonal) vanish.

The set of solutions of the nonlinear system of equations (a.21)-(a.22) is stable under mapping

β → βC, α → α(C ′)−1, where C is a nonsingular (K,K) matrix. The constraint β ′β/m = IdK

restricts the set of invariant transformations to orthogonal matrices. The estimator is a solution of

the nonlinear system of equations (a.21)-(a.22) satisfying the identification restrictions β ′β/m =

IdK and α′α diagonal.

By plugging (a.21) into (a.20), the criterion concentrated w.r.t. α becomes:

Tr[(Y − αβ ′)′(Y − αβ)] = Tr(MβY
′YMβ) = Tr(Y ′YMβ)

= Tr(Y ′Y )− Tr[β ′(
1

m
Y ′Y )β],

where Mβ = Idm−β(β ′β)−1β ′ = Idm−ββ ′/m from the identification restriction β ′β/m = IdK ,

and we use the commutative property of the trace operator. Thus, after neglecting irrelevant addi-

tive terms and rescaling the criterion, the optimization problem defining the estimator becomes:

max
β

Tr[β ′(
1

mn
Y ′Y )β]

s.t. β ′β/m = IdK .
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A solution β̂ of this optimization problem is the matrix of the normalized eigenvectors associated

with the K largest eigenvalues of the symmetric (m,m) matrix Y ′Y/(mn):

(
1

mn
Y ′Y )β̂ = β̂D̂, β̂ ′β̂/m = IdK , (a.23)

where D̂ is the (K,K) diagonal matrix of the eigenvalues. From (a.21) and the identification

restriction, the estimator of α is:

α̂ = Y β̂/m. (a.24)

The rotation fix that is selected is such that the matrix α̂ ′α̂/n is diagonal, equal to D̂.

By comparing equations (a.18)-(a.19) and (a.23)-(a.24), estimators α̂ and β̂ are rescaled ver-

sions of matrices â and b̂ obtained from PCA in paragraph i):

α̂ =
1√
m
â, β̂ =

√
mb̂,

and D̂ = Λ̂/m.

iii) Maximum Likelihood (ML) and Expectation Maximization (EM) algorithm

The PCA estimator can also be interpreted from the view point of the EM algorithm [see e.g.

Chen (2002), Section 3]. Let us write the factor model for the transposed rows of matrix Y as

yi = βαi+εi, with i = 1, ..., n, and assume independent Gaussian distributions for the latent factor

αi ∼ IIN(0, IdK) and the errors εi ∼ IIN(0, σ2Idm). The scalar σ2 > 0 and the (m,K) matrix

β are unknown parameters. We adopt the identification restriction that matrix β ′β is diagonal.

The distribution of vector yi is Gaussian yi ∼ N(0, ββ ′ + σ2Idm). We get the log-likelihood

function:

L(β, σ2) =
1

n

n∑
i=1

log f(yi|β, σ2)

= −1

2
log det Ω(β, σ2)− 1

2n

n∑
i=1

y′iΩ(β, σ
2)−1yi,

where Ω(β, σ2) = ββ ′+ σ2Idm. By maximizing this function w.r.t. parameters β and σ2 such that

β ′β is diagonal, we get the estimators:

β̂k = (λ̂k − σ̂2)1/2b̂k, k = 1, ..., K,

σ̂2 = [Tr(Y ′Y/n)−
K∑
k=1

λ̂k]/(m−K),
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where the β̂k denote the columns of the estimated matrix β̂, and the b̂k are the orthonormal eigen-

vectors of matrix Y ′Y/n associated to the K largest eigenvalues λ̂k.

The ML estimate can also be computed by the EM algorithm. The full-observation log-density

of Y and α is given by:

log f(Y, α|β, σ2) = −m

2
log σ2 − 1

2nσ2

n∑
i=1

(yi − βαi)
′(yi − βαi),

up to terms that do not depend on parameters β and σ2. This log-density has to be integrated

w.r.t. the conditional distribution of the latent factor α conditional on observations Y . By the joint

normality, we have:

αi|yi ∼ N
(
β ′(ββ ′ + σ2Idm)

−1yi, IdK − β ′(ββ ′ + σ2Idm)
−1β

)
.

For β such that β ′β is diagonal, we have β ′(ββ ′+ σ2Idm)
−1 = (β ′β+ σ2IdK)

−1β ′. Then, we get:

αi|yi ∼ N
(
(β ′β + σ2IdK)

−1β ′yi, σ2(β ′β + σ2IdK)
−1
)
.

The mean of this Gaussian distribution is given by the Ridge regression of the data vector y i on

the “regressor matrix” β. When either m gets large such that the diagonal elements of β ′β/m are

strictly positive, or σ2 gets small, the variance of the Gaussian distribution shrinks to zero, and the

conditional distribution peaks at (β ′β)−1β ′yi.

Let us now consider the Expectation (E) and Maximization (M) steps of the iterative algorithm.

Let β̃ and σ̃2 be estimates from the previous iteration. In the E-step, we compute the expectation of

log f(Y, α|β, σ2) w.r.t. the distribution of α given Y for parameters β̃ and σ̃2, to get the function:

Q(β, σ2|β̃, σ̃2) = E
β̃,σ̃2

[log f(Y, α|β, σ2)|Y ].

Define α̂i = (β̃ ′β̃ + σ̃2IdK)
−1β̃ ′yi and:

α̂ = Y β̃(β̃ ′β̃ + σ̃2IdK)
−1, Σ̂ = σ̃2(β̃ ′β̃ + σ̃2IdK)

−1. (a.25)

We have:

Q(β, σ2|β̃, σ̃2) = −m

2
log σ2 − 1

2nσ2

n∑
i=1

(yi − βα̂i)
′(yi − βα̂i)− 1

2σ2
Tr(βΣ̂β ′)

= −m

2
log σ2 − 1

2σ2

(
1

n
Tr[(Y − α̂β ′)′(Y − α̂β ′)] + Tr(βΣ̂β ′)

)
.
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In the M-step, function Q(β, σ2|β̃, σ̃2) is maximized w.r.t. the parameters β and σ2. We have:

1

n
Tr[(Y − α̂β ′)′(Y − α̂β ′)] + Tr(βΣ̂β ′)

= Tr

[(
β − (Y ′α̂/n)(α̂′α̂/n+ Σ̂)−1

)
(α̂′α̂/n+ Σ̂)

(
β − (Y ′α̂/n)(α′α̂/n+ Σ̂)−1

)′]

+
1

n
Tr

[
Y ′
(
Idn − 1

n
α̂(α̂′α̂/n+ Σ̂)−1α̂′

)
Y

]
.

Thus, the minimizer of function (β, σ2) → Q(β, σ2|β̃, σ̃2) is:

β̂ = (Y ′α̂/n)(α̂′α̂/n+ Σ̂)−1,

σ̂2 =
1

nm
Tr

[
Y ′
(
Idn − 1

n
α̂(α̂′α̂/n+ Σ̂)−1α̂′

)
Y

]
. (a.26)

Equations (a.25) and (a.26) define the updating rule for the parameters.

When m is large, and the iterations remain in the region of the parameter space such that β ′β/m

and α′α/n are positive definite matrices, matrix Σ̂ is close to zero and the updating rule becomes:

α̂ = Y β̃(β̃ ′β̃)−1, (a.27)

β̂ = Y ′α̂(α̂′α̂)−1. (a.28)

These equations correspond to an iterative algorithm for solving the FOC in (a.21)-(a.22).

A.3.2 Asymptotic distribution of the matrix of fitted values from PCA

Let us consider the factor model yi,j = α′
iβj+εi,j , where the K-dimensional latent factors αi and βj

and the errors εi,j satisfy the assumptions in Section 2. The matrix of fitted values αβ ′ is invariant

under one-to-one mappings of the factor space such that α → αC and β → β(C−1)′, where C is

a non-singular (K,K) matrix. Thus, parameter αβ ′ does not depend on the selected identification

restrictions. It is convenient to adopt the restrictions E(βjβ
′
j) = IdK and E(αiα

′
i) = D diagonal.

We assume that the (unknown) diagonal elements of matrix D = diag(d1, ..., dK) are strictly

positive, distinct and ranked in descending order: d1 > d2 > ... > dK > 0.

i) Asymptotic expansions of estimators α̂ and β̂

The PCA estimators α̂ and β̂ are defined by equations (a.23) and (a.24). We derive asymptotic

expansions of these PCA estimators. We build on the analysis provided in e.g. Bai, Ng (2002),
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Stock, Watson (2002), and modify some steps of the derivation in order to obtain a novel result on

the asymptotic distribution of the fitted values (Proposition 7).

The next lemma shows that the diagonal matrix D̂ providing the K largest eigenvalues of

Y ′Y/(nm) ranked in descending order converges in probability to D [see Section iii) below for the

proof]. The eigenvalues of matrix Y ′Y/(mn) can be ranked, because the continuous distributions

of α, β, ε ensure that the probability of equality of two eigenvalues is zero.

Lemma A.2: As n,m → ∞ such that m = μn+ o(n), with μ ≥ 1, we have: D̂
p→ D.

From Lemma A.2, matrix D̂ is invertible with probability approaching (w.p.a.) 1. Then, by

using equation (a.23) and replacing Y = αβ ′ + ε, we get:

β̂ = (
1

nm
Y ′Y )β̂D̂−1

= β(
α′α
n

)(
β ′β̂
m

)D̂−1 +
1

n
ε′α(

β ′β̂
m

)D̂−1 + β
1

mn
α′εβ̂D̂−1 +

1

mn
ε′εβ̂D̂−1. (a.29)

From equation (a.24) using Y = αβ ′ + ε, we get:

α̂ = α(
β ′β̂
m

) +
1

m
εβ̂.

By replacing β̂ in the second term of the r.h.s. using equation (a.29), we get:

α̂ = α(
β ′β̂
m

) +
1

m
εβ(

α′α
n

)(
β ′β̂
m

)D̂−1 +
1

mn
εε′α(

β ′β̂
m

)D̂−1

+
1

m2n
εβα′εβ̂D̂−1 +

1

m2n
εε′εβ̂D̂−1 (a.30)

Let us now show that matrix β ′β̂/m converges in probability to the identity matrix IdK , up

to the sign choice for the estimated factors. All terms in the r.h.s. of equation (a.29) vanish

asymptotically except the first one. Thus, we have:

IdK =
β̂ ′β̂
m

= D̂−1(
β ′β̂
m

)′(
α′α
n

)(
β ′β
m

)(
α′α
n

)(
β ′β̂
m

)D̂−1 + op(1)

= D−1(
β ′β̂
m

)′D2(
β ′β̂
m

)D−1 + op(1), (a.31)

where we use Lemma A.2. Similarly, from equation (a.30) we have:

D̂ =
α̂′α̂
n

= (
β ′β̂
m

)′(
α′α
n

)(
β ′β̂
m

) + op(1) = (
β ′β̂
m

)′D(
β ′β̂
m

) + op(1),
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which implies from Lemma A.2:

D = (
β ′β̂
m

)′D(
β ′β̂
m

) + op(1). (a.32)

Let us now define matrix Q̂ = D1/2(
β ′β̂
m

)D−1/2. Then, equations (a.31) and (a.32) imply that

matrix Q̂ is such that:

Q̂′Q̂ = IdK + op(1), Q̂′DQ̂ = D + op(1).

The next lemma is proved in Section iii) below.

Lemma A.3: Let Q̂ be a square (K,K) stochastic matrix such that Q̂′Q̂ = IdK + op(1) and

Q̂′DQ̂ = D + op(1) as n,m → ∞, where D = diag(d1, ..., dK) is a diagonal matrix with

diagonal elements d1 > d2 > ... > dK > 0. Then Q̂ = Ŝ + op(1) as n,m → ∞, where Ŝ is a

diagonal matrix such that Ŝ2 = IdK .

From Lemma A.3 we have Q̂ = Ŝ + op(1), and thus β ′β̂/m = Ŝ + op(1). In particular, matrix

β ′β̂/m is invertible w.p.a. 1. The diagonal elements of the stochastic matrix Ŝ are either 1, or −1,

and correspond to the sign indeterminacy of the factor estimates. Without loss of generality we

can assume that Ŝ = IdK .

By the invertibility of matrix β ′β̂/m, and equation (a.30), we have α � α̂(
β ′β̂
m

)−1, neglecting

higher order terms. Thus:
α′α
n

� [(
β ′β̂
m

)′]−1D̂(
β ′β̂
m

)−1.

By using this expansion in equations (a.29) and (a.30), as well as β ′β̂/m = IdK + op(1) and

D̂−1 = D−1 + op(1), we get the asymptotic expansions:

β̂ � β[(
β ′β̂
m

)′]−1 +
1

n
ε′αD−1, (a.33)

α̂ � α(
β ′β̂
m

) +
1

m
εβ. (a.34)

ii) Asymptotic distribution of the fitted values (proof of Proposition 7)

The fitted values matrix from PCA is Ŷ PCA = α̂β̂ ′. From the asymptotic expansions (a.33)

and (a.34), we get:

Ŷ PCA � αβ ′ + α(β ′β̂/m)D−1(α′ε/n) + (εβ/m)(β ′β̂/m)−1β ′.
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Then, using β ′β̂/m = IdK + op(1) we get:

√
n(Ŷ PCA − αβ ′) � αD−1

(
α′ε√
n

)
+

1√
μ

(
εβ√
m

)
β ′.

By comparing with Proposition 4, and recalling that E(αiα
′
i) = D and E(βjβ

′
j) = IdK , we deduce

that the PCA estimator of the fitted values Ŷ PCA is asymptotically equivalent to the (unfeasible)

double IV estimator based on instruments xi = αi and zj = βj . The asymptotic variance is given

by:

Vas[vec(
√
n(Ŷ PCA − αβ ′))] =

σ2

μ

{
βE[βjβ

′
j ]
−1β ′}⊗ In + σ2Idm ⊗ {

αE[αiα
′
i]
−1α′} .

As in Proposition 4, the dimensions (N,M) of the matrix of fitted values are kept constant in the

asymptotics.

iii) Proofs of the lemmas

Proof of Lemma A.2: The proof uses the singular value version of the Weyl’s inequalities [Horn

and Johnson (1985), Theorem 3.3.16]. Let λk(·) denote the k-th largest eigenvalue of a symmetric

matrix. For (n,m) matrices A and B, we have the following inequalities on the square roots of the

ranked eigenvalues of matrices A′A, B′B and (A+B)′(A+B):

[λk((A+B)′(A+B))]1/2 ≤ [λk(A
′A)]1/2 + [λ1(B

′B)]1/2,

and:

[λk((A +B)′(A+B))]1/2 ≥ [λk(A
′A)]1/2 − [λ1(B

′B)]1/2,

for any k such that 1 ≤ k ≤ min{n,m}. Now, D̂ is the diagonal matrix of the K largest eigenval-

ues of Y ′Y/(nm), and Y = αβ ′ + ε. From the singular value version of the Weyl’s inequalities, it

follows:

|
[
λk

(
1

mn
Y ′Y

)]1/2
−
[
λk

(
1

m
β(

α′α
n

)β ′
)]1/2

| ≤ λ1

[(
1

mn
ε′ε
)]1/2

, (a.35)

for any k = 1, ..., K. We have that λ1 (ε
′ε/n) converges almost surely to (1+

√
μ)2σ2 as n,m → ∞

such that m/n → μ, if the errors εi,j have finite fourth-order moments [see e.g. Geman (1980) and

Yin, Bai, Krishnaiah (1988)]. Thus, we get:

λk

(
1

mn
Y ′Y

)
= λk

(
1

m
β(

α′α
n

)β ′
)
+ op(1), (a.36)
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for any k = 1, ..., K.

The symmetric, positive semi-definite matrix A =
1

m
β(

α′α
n

)β ′ has rank K, and its non-zero

eigenvalues correspond to eigenvectors that are in the column space of matrix β. An orthonor-

mal basis of this column space is provided by the columns of matrix Z =
1√
m
β(β ′β/m)−1/2.

Thus, the K largest eigenvalues of matrix A are the eigenvalues of the (K,K) matrix Z ′AZ =

(β ′β/m)1/2(α′α/n)(β ′β/m)1/2. This matrix converges to D in probability. By the continuity of

the matrix eigenvalue function λk(·), and the fact that the diagonal matrix D has distinct diagonal

elements, we get:

λk

(
1

m
β(

α′α
n

)β ′
)

= λk

(
(β ′β/m)1/2(α′α/n)(β ′β/m)1/2

)
= λk (D) + op(1) = dk + op(1). (a.37)

From (a.36) and (a.37), the conclusion follows. Q.E.D.

Proof of Lemma A.3: The condition Q̂′Q̂ = IdK + op(1) implies that the square matrix Q̂ is

bounded in probability, and invertible w.p.a. 1. This condition also implies that [Q̂− (Q̂−1)′]′[Q̂−
(Q̂−1)′] = op(1), i.e. Q̂−1 = Q̂′ + op(1). By pre-multiplying both sides of equation Q̂′DQ̂ =

D + op(1) by Q̂, we get:

DQ̂ = Q̂D + op(1). (a.38)

Matrix equation (a.38) for element (k, l) becomes dkQ̂k,l = Q̂k,ldl + op(1). For k �= l, we have

dk �= dl, and we get Q̂k,l = op(1). Then, condition Q̂′Q̂ = IdK + op(1) implies Q̂2
k,k = 1 + op(1)

for any k = 1, ..., K. The conclusion follows, with Ŝ = diag(sign(Q̂k,k), k = 1, ..., K), where

sign(·) is the sign function. Q.E.D.
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