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Introduction
In this Online Appendix we provide material supplementary to Andreou, Gagliardini, Ghysels, and Rubin
(2019). In Section C we provide proofs of the Propositions 1, 2, 3 and technical Lemmas B.1-B.9 appearing in
the paper.
Section D provides additional theoretical results on identification, including the separation of common and
group-specific factors, an alternative identification strategy, different from the canonical correlation analysis
proposed in Section 2 of Andreou, Gagliardini, Ghysels, and Rubin (2019), for the common and group-specific
factor spaces in a group-factor model, and a discussion of identification of the mixed frequency factor model in
the cases of stock-sampling, and of general linear aggregation schemes for the LF observables. This section also
provides the asymptotic distribution of our factors and loadings estimators in group factor models, a digression
on some regularity conditions, and contains a discussion of properties of an iterative PCA estimator for group
factor models. Moreover, Section D also contains an exhaustive description of the dataset used in the empirical
application of Section 7 and presents additional empirical results.
Online Appendix E describes the Monte Carlo (MC) simulation study used to assess the finite sample size
and power properties of tests of hypotheses on the number of common factors kc based on the test statistics
introduced in Theorems 1 and 2. MC simulations are also used to compare the performance of the sequential
testing procedure for the selection of the number of common factors introduced in Proposition 2 with alternatives
adopted from earlier literature. Finally, we also compare the quantiles of the cross-sectional distribution of R2

and adjusted R2 of regression of simulated observables on factors, when the number of common factors is either
correctly specified, or overestimated, for a DGP in which specific factors are highly correlated.

C Proofs of Propositions 1, 2, 3 and Lemmas B.1-B.9

C.1 Proof of Proposition 1
From equation (2.2) we have

R =

(
Ikc 0
0 ΦΦ′

)
, R∗ =

(
Ikc 0
0 Φ′Φ

)
.

Matrix R is block diagonal, and the upper-left block Ikc has eigenvalue 1 with multiplicity kc. The asso-
ciated eigenspace is {(ξ′, 0′)′, ξ ∈ Rkc}. From the positive-definite character of matrix ΣF in Assumption
A.2, the lower-right block ΦΦ′ is a positive semi-definite matrix and its largest eigenvalue is ρ̃2 < 1, where
ρ̃2 = sup

{
ξ′1ΦΦ′ξ1 : ξ1 ∈ Rks1 , ‖ξ1‖ = 1

}
is the first squared canonical correlation of vectors f s1,t and fs2,t.

Therefore, we deduce that the largest eigenvalue of matrix R is equal to 1, with multiplicity kc, and the associ-
ated eigenspace, denoted by Ec, is spanned by vectors (ξ′, 0′)′, with ξ ∈ Rkc . Let S1 be an orthogonal (kc, kc)
matrix, then the columns of the (k1, k

c) matrix

W1 =

(
S1

0ks1×kc

)
are an orthonormal basis of the eigenspace Ec. We have:

W ′1h1,t = S′1f
c
t . (C.1)

Analogous arguments allow to show that the largest eigenvalue of matrix R∗ is equal to 1, with multiplicity kc

and that the associated eigenspace, denoted by E∗c , is spanned by vectors (ξ∗ ′, 0′)′, with ξ∗ ∈ Rkc . We have
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E∗c = Ec. Let S2 be an orthogonal (kc, kc) matrix. Then, the columns of the (k2, k
c) matrix

W2 =

(
S2

0ks2×kc

)
are an orthonormal basis of the eigenspace E∗c . We have:

W ′2h2,t = S′2f
c
t , (C.2)

which yields parts i) and ii).
When there is no common factor, the matrix R becomes R = ΦΦ′, and matrix R∗ becomes R∗ = Φ′Φ. By the
above arguments, the largest eigenvalue of matrixR, which is equal to the largest eigenvalue of matrixR∗, is not
larger than ρ̃2, where ρ̃2 < 1 is the first squared canonical correlation between the two group-specific factors.
This yields part iii).
Finally, we prove part iv). We showed that the lower-right block ΦΦ′ of matrix R is a positive semi-definite
matrix and all its ks1 = k1 − kc eigenvalues are strictly smaller than one. These are also eigenvalues of matrix
R. Let us denote the space spanned by the associated ks1 eigenvectors of matrix R by Es,1. This space is spanned
by vectors (0′, ξ̃′)′ with ξ̃ ∈ Rks1 . We note that, by construction, the vectors (0′, ξ̃′)′ are linearly independent
of the vectors (ξ′, 0′)′ spanning the eigenspace Ec. Let Q1 be an orthogonal (ks1, k

s
1) matrix whose columns are

eigenvectors of ΦΦ′, then the columns of matrix

W s
1 =

(
0kc×ks1
Q1

)
are an orthonormal basis of the eigenspace Es,1. We have: W s′

1 h1,t = Q′1f
s
1,t.

Analogously, we have that the lower-right block Φ′Φ of matrix R∗ is a positive semi-definite matrix and all
its ks2 = k2 − kc eigenvalues are strictly smaller than one. These are also eigenvalues of matrix R∗. Let us
denote the space spanned by the associated ks2 eigenvectors of matrix R∗ by Es,2. This space is spanned by
vectors (0′, ξ̃∗′)′ with ξ̃∗ ∈ Rks2 . We note that, by construction, the vectors (0′, ξ̃∗′)′ are linearly independent of
the vectors (ξ∗′, 0′)′ spanning the eigenspace E∗c . Let Q2 be an orthogonal (ks2, k

s
2) matrix whose columns are

eigenvectors of Φ′Φ, then the columns of matrix

W s
2 =

(
0kc×ks2
Q2

)
are an orthonormal basis of the eigenspace Es,2. We have W s′

2 h2,t = Q′2f
s
2,t. �

C.2 Proof of Proposition 2
Let us define the events Ωr,αN,T ≡ {ξ̃(r) < zαN,T }, for r = 1, ..., k, and their complementary events Ωc

r,αN,T
=

{ξ̃(r) ≥ zαN,T }. For any integer k∗ ≤ k we can write the event {k̂c = k∗} as:

{k̂c = k∗} =


Ωc
k∗,αN,T

, if k∗ = k,(⋂k
r=k∗+1 Ωr,αN,T

)⋂
Ωc
k∗,αN,T

, if 0 < k∗ < k,⋂k
r=k∗+1 Ωr,αN,T , if k∗ = 0.

(C.3)
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We prove Proposition 2 by distinguishing three cases according to the true number of common factors: kc0 = k,
0 < kc0 < k, kc0 = 0. Moreover, we use the convergence results:

P (Ωr,αN,T ) → 1, r > kc0, (C.4)

P (Ωr,αN,T ) → 0, r = kc0, (C.5)

which are proved at the end of the section.

i) Case kc0 = k. We have P (k̂c = kc0) = P (Ωc
k,αN,T

) = 1− P (Ωk,αN,T )→ 1, from equation (C.5).

ii) Case 0 < kc0 < k. From (C.3), we have {k̂c = kc0} =
(⋂k

r=kc0+1 Ωr,αN,T

)⋂
Ωc
kc0,αN,T

. The events Ωr,αN,T ,

for r = kc0 + 1, ..., k, have all probability tending to 1 from equation (C.4), and so do events
⋂k
r=kc0+1 Ωr,αN,T

and
(⋂k

r=kc0+1 Ωr,αN,T

)⋃
Ωc
kc0,αN,T

. Moreover, P (Ωc
kc0,αN,T

) = 1 − P (Ωkc0,αN,T
) → 1 from equation (C.5).

therefore, we get:

P (k̂c = kc0) = P

 k⋂
r=kc0+1

Ωr,αN,T

⋂Ωc
kc0,αN,T


= P

 k⋂
r=kc0+1

Ωr,αN,T

+ P
(

Ωc
kc0,αN,T

)
− P

 k⋂
r=kc0+1

Ωr,αN,T

⋃Ωc
kc0,αN,T

→ 1 .

iii) Case kc0 = 0. We have P (k̂c = kc0) = P
(⋂k

r=1 Ωr,αN,T

)
→ 1, because the events Ωr,αN,T , for r = 1, ..., k,

have all probability tending to 1, from equation (C.4).

C.2.1 Proofs of (C.4) and (C.5)

Let r > kc0. Then, from the arguments in the proof of Theorem 2 (ii) (see Section B.2.2), we have
ξ̃(r)

N
√
T
≤ −c1,

w.p.a. 1, for a constant c1 > 0. By Condition (ii) of Proposition 2, we have
zαN,T

N
√
T
→ 0. Then, P (Ωr,αN,T ) =

P
(
ξ̃(r)

N
√
T
<

zαN,T
N
√
T

)
→ 1 follows, which yields (C.4).

Now, let r = kc0. Then, from Theorem 2 (ii) we have ξ̃(r) d→ N(0, 1). Moreover, since αN,T → 0 by Condition
(i) of Proposition 2, we have zαN,T ≤ zα∗ for large N,T , for any given α∗ ∈ (0, 1). therefore:

P (Ωr,αN,T ) = P [ξ̃(r) < zαN,T ] ≤ P [ξ̃(r) < zα∗ ]→ α∗.

Therefore, we have lim inf
N,T→∞

P (Ωr,αN,T ) ≤ α∗, for any α∗ ∈ (0, 1). It follows P (Ωr,αN,T ) → 0, which yields

(C.5). �

C.3 Proof of Proposition 3
We omit the subpanel index j since it is immaterial for the proof’s arguments. We write the factor models in
each subpanel as:

yi,t = λ′iht + εi,t, i = 1, ..., N, t = 1, ..., T, (C.6)
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where ht is the (k, 1) vector of unobservable factors. In matrix notation, the model becomes:

Y = HΛ′ + ε, (C.7)

where Y is the (T,N) matrix of observations and H is the (T, k) matrix of factor values. We introduce a set
of high-level assumptions (Assumptions C.1-C.3 below) and show in Section C.3.7 that they are implied by
Assumptions A.2-A.4, A.5 b)-c), A.6 a) and A.7.

Assumption C.1. The factors are such that H ′H/T = Ik + op(1) as T → ∞. The loadings are such that
Λ′Λ/N = Σλ + o(1) as N →∞, where matrix Σλ is positive definite.

The matrix of factor estimates Ĥ = [ĥ1, ..., ĥT ]′ corresponds to the estimator obtained by Principal Component
Analysis (PCA), and satisfies the eigenvector-eigenvalue equation:

1

NT
Y Y ′Ĥ = ĤV̂ , (C.8)

where V̂ is the (k, k) diagonal matrix of the k largest eigenvalues of matrix Y Y ′/(NT ), and the columns of
matrix Ĥ are the associated normalized eigenvectors such that Ĥ ′Ĥ/T = Ik.
We start by establishing an asymptotic expansion of the factor estimate with explicit characterization of the
remainder term. It is obtained by manipulating equation (C.8) using the next assumption.

Assumption C.2. We have (i) 1√
NT

H ′εΛ = 1√
T

∑T
t=1 htξ

′
t = Op(1) and E[‖ξt‖2] = O(1), where ξt :=

1√
N

∑N
i=1 λiεi,t, (ii) ‖ 1

NT εε
′H‖ = Op

(
1√
m

)
, (iii) ‖ 1

NT εε
′‖ = Op

(
1√
m

)
, where m := min{N,T}.

PROPOSITION C.1. Under Assumptions C.1-C.2 we have:

(Ĥ ′)−1ĥt − ht =
1√
N
ut +

1

T
bt +

1√
NT

dt + ϑt, t = 1, ..., T, (C.9)

where matrix Ĥ = (Λ′Λ/N)−1(Ĥ ′H/T )V̂ −1 is invertible w.p.a. 1, and:

ut = (Λ′Λ/N)−1ξt, bt = Sη2
t ht,

dt = SΠ1ht, ϑt =
1√
NT

Sαt +
1

N
D2ht + rt + R̂t,

with η2
t = plim

N→∞

1
N

∑N
i=1E[ε2

i,t|Ft] and Ft is the sigma-field generated by the hs for s ≤ t,

rt = B̂′(
1

T
bt +

1√
NT

Sαt) + (Ik + B̂)′
1

T
√
N
Sκtht + (

1√
NT

D1 +
1

NT
D3)ht

+(Ik + B̂′)S(Λ′Λ/N)−1

(
1√
NT

η2
t ξt +

1

NT
κtξt +

1

N
√
N
ϕt +

1

N
√
T
γt

)
+[(Ik + B̂′)S]2Π1

1√
NT

(
1

T
η2
t ht +

1

T
√
N
κtht +

1√
NT

αt

)
+[(Ik + B̂′)S]2

(
1

T 2
η4
t ht +

1√
NT 2

κtη
2
t ht +

1√
NTT

ᾱt

+
1

T 2
√
N
κtη

2
t ht +

1

NT 2
κ2
tht +

1

NT
√
N
ϕ̄t +

1

NT
√
T
γ̄t

+
1

T
√
NT

η2
tαt +

1

NT
√
T
κtαt +

1

N
√
NT

δt +
1

NT
χt

)
, (C.10)
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R̂′t is the t-th row of matrix R̂ defined by:

R̂ =

[
1

NT

(
εε′ +HΛ′ε′

)]2 (
ĤĤ −1 −H

) [
Ĥ (H ′Ĥ/T )−1(Λ′Λ/N)−1

]2
, (C.11)

and:

S = (Λ′Λ/N)−1(H ′H/T )−1, D1 = B̂′SΠ1 + [(Ik + B̂′)S]2Π3,

D2 = (Ik + B̂′)S(Λ′Λ/N)−1Π2, D3 = [(Ik + B̂′)S]2Π2
1,

Π1 =
1√
NT

H ′εΛ =
1√
T

T∑
t=1

htξ
′
t,

Π2 =
1

NT
Λ′ε′εΛ =

1

T

T∑
t=1

ξtξ
′
t,

Π3 =
1

NT
√
NT

H ′εε′εΛ =
1√
N

(
1

T

T∑
t=1

αtξ
′
t) +

1

T
(

1√
T

T∑
t=1

η2
t htξ

′
t) +

1√
NT

(
1

T

T∑
t=1

htξ
′
tκt),

B̂ = (Λ′Λ/N)(H ′H/T )

[(
Ik + Â

)−1
− Ik

]
(H ′H/T )−1(Λ′Λ/N)−1,

Â = (H ′H/T )−1H ′(ĤĤ −1 −H)/T, (C.12)

and we define:

κt =
1√
N

N∑
i=1

(ε2
i,t − η2

t ), αt =
1√
NT

N∑
i=1

T∑
s=1,s 6=t

εi,tεi,shs,

ϕt =
1

T

N∑
i=1

T∑
s=1,s 6=t

εi,tE[εi,sξs], γt =
1√
NT

N∑
i=1

T∑
s=1,s 6=t

εi,t(εi,sξs − E[εi,sξs]),

ᾱt =
1√
NT

N∑
i=1

T∑
s=1,s 6=t

εi,tεi,sη
2
shs, ϕ̄t =

1

T

N∑
i=1

T∑
s=1,s 6=t

εi,tE[εi,sκshs],

γ̄t =
1√
NT

N∑
i=1

T∑
s=1,s 6=t

εi,t(εi,sκshs − E[εi,sκshs]),

δt =
1

T

N∑
i=1

T∑
s=1,s 6=t

εi,tE[εi,sαs],

χt =
1√
NT

N∑
i=1

T∑
s=1,s 6=t

εi,t(εi,sαs − E[εi,sαs]). (C.13)

Moreover, if the eigenvalues of matrix Σλ in Assumption C.1 are distinct, then, for a suitable ordering and choice
of the signs of the factor estimates, we have Ĥ

p−→ H ∗, where the columns of the orthogonal matrix H ∗ are
the normalized eigenvectors of Σλ.

In equation (C.9), the difference (Ĥ ′)−1ĥt − ht is written as a sum of a zero-mean term at stochastic order
1/
√
N , terms at orders 1/T , 1/

√
NT and 1/N , plus remainder terms rt and R̂t. The remainder terms are either

scaled by factors that converge to zero faster than max{ 1
T ,

1√
NT

, 1
N } = O( 1

m), where m = min{N,T}, or are

Online Appendix - 6



of higher order in the sense that involve ĤĤ −1 −H multiplied by matrices whose elements converge to zero
in probability. The result on the converge of matrix Ĥ corresponds to Proposition 1 in Bai (2003).
Equation (C.9) corresponds to the expansion in (B.1). We now control for the magnitude of the remainder terms
rt and R̂t in ϑt to show the bounds in Proposition 3. The next Proposition C.2 provides an upper bound for

T−1/2‖ĤĤ −1 −H‖ =
(

1
T

∑T
t=1 ‖(Ĥ −1)′ĥt − ht‖2

)1/2
, namely the root MSE of the factor estimates. It is

similar to Lemma A.1 in Bai (2003) but it yields a sharper upper bound. This result is used to derive a bound on
the remainder term R̂, which is also provided in Proposition C.2.

PROPOSITION C.2. Under Assumptions C.1-C.2, we have

T−1/2‖ĤĤ −1 −H‖ = Op(
1√
N

+
1

T
).

Moreover:

T−1/2‖R̂‖ = Op

[
(

1

m
+

1

N
)(

1√
N

+
1

T
)

]
(C.14)

= Op

(
1

N
+

1

T 2

)
. (C.15)

From Proposition C.2 and Assumption C.1, we have term Â defined in (C.12) is such that ‖Â‖ = Op(
1√
N

+ 1
T ).

By the series representation of the inverse matrix function in a neighborhood of the identity, we deduce that
‖(Ik + Â)−1 − Ik‖ = Op(

1√
N

+ 1
T ). Thus, from Proposition C.2 and Assumption C.1 we get that term B̂

appearing in the remainder term rt in the expansion of Proposition C.1 is such that:

B̂ = Op(
1√
N

+
1

T
). (C.16)

To control for the remainder term rt we use the next assumption.

Assumption C.3. We have: (i) E[ε2
i,t|Ft] ≤ M for all i ≥ 1 and t ≥ 1, and a constant M > 0, (ii)

1√
T

∑T
t=1 htα

′
t = Op(1), (iii) 1√

T

∑T
t=1 η

2
t htα

′
t = Op(1), (iv) 1

T

∑T
t=1 ξtα

′
t = op(1), and (v) E[‖at‖2] = O(1),

where at is any of the following processes: κtht, αt, κtξt, ϕt, γt, ᾱt, κ2
tht, ϕ̄t, γ̄t, κtαt, δt, χt.

PROPOSITION C.3. Under Assumptions A.1 and C.1-C.3, we have:

1

T

T∑
t=1

‖rt‖2 = Op(
1

N
+

1

T 2
). (C.17)

Moreover, ϑt satisfies 1
T

∑T
t=1 ϑth

′
t = Op(

1
N + 1

T 2 ) and 1
T

∑T
t=1( 1√

N
ut + 1

T bt + 1√
NT

dt + ϑt)ϑ
′
t = op(

1
N
√
T

).

Propositions C.1 and C.3 yield Proposition 3 (withH = H ′ in each group).
In the rest of this appendix we provide the proofs of Propositions C.1-C.3 and show that Assumptions C.1-C.3
are implied by the Assumptions in Appendix A.

C.3.1 Proof of Proposition C.1

From equation (C.7) we have Y Y ′ = HΛ′ΛH ′ + HΛ′ε′ + εΛH ′ + εε′. By plugging this equation into (C.8),
and rearranging the terms, we get:

ĤV̂ −H
(
Λ′Λ/N

) (
H ′Ĥ/T

)
=

1

NT
(εε′Ĥ +HΛ′ε′Ĥ + εΛH ′Ĥ). (C.18)
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The large sample behaviours of the matrices H ′Ĥ/T and V̂ are given in the next Lemmas C.4 and C.5, respec-
tively. These lemmas are similar to the results derived in e.g. Bai and Ng (2002), Bai (2003) - see in particular
their Proposition 1 - and Bai (2009) - see in particular his Proposition 1.

LEMMA C.4. Under Assumptions C.1-C.2, the matrix H ′Ĥ/T is invertible w.p.a. 1, and the inverse is such
that ‖(H ′Ĥ/T )−1‖ = Op(1).

LEMMA C.5. Under Assumptions C.1-C.2, we have V̂
p→ V , where V is the (k, k) diagonal matrix with

diagonal elements corresponding to the eigenvalues of matrix Σλ.

From Lemma C.5 and Assumption C.1, the matrix V̂ is invertible w.p.a. 1. Define the matrix:

Ĥ = (Λ′Λ/N)(H ′Ĥ/T )V̂ −1. (C.19)

From Assumption C.1 and Lemmas C.4 and C.5, matrix Ĥ is invertible w.p.a. 1. By post-multiplication
of equation (C.18) times the matrix (H ′Ĥ/T )−1(Λ′Λ/N)−1, and using the definition of matrix Ĥ given in
(C.19), we get:

ĤĤ −1 −H =
1

NT

(
εε′ +HΛ′ε′

)
Ĥ(H ′Ĥ/T )−1(Λ′Λ/N)−1 +

1

N
εΛ(Λ′Λ/N)−1. (C.20)

This equation can be rewritten as:

ĤĤ −1 −H =
1

NT

(
εε′H +HΛ′ε′H

)
Ĥ (H ′Ĥ/T )−1(Λ′Λ/N)−1 +

1

N
εΛ(Λ′Λ/N)−1

+
1

NT

(
εε′ +HΛ′ε′

) (
ĤĤ −1 −H

)
Ĥ (H ′Ĥ/T )−1(Λ′Λ/N)−1. (C.21)

By using Ĥ = [H + (ĤĤ −1 −H)]Ĥ , we have:

(H ′Ĥ/T )−1 =
[
(H ′H/T )

(
Ik + (H ′H/T )−1H ′(ĤĤ −1 −H)/T

)
Ĥ
]−1

= Ĥ −1
(
Ik + Â

)−1
(H ′H/T )−1, (C.22)

where Â = (H ′H/T )−1H ′(ĤĤ −1−H)/T . By substituting (C.22) in the first term in the RHS of (C.21), and
rearranging terms, we get:

ĤĤ −1 −H =
1

N
εΛ(Λ′Λ/N)−1 +

1

NT

(
εε′H +HΛ′ε′H

)
(H ′H/T )−1(Λ′Λ/N)−1(Ik + B̂)

+
1

NT

(
εε′ +HΛ′ε′

) (
ĤĤ −1 −H

)
Ĥ (H ′Ĥ/T )−1(Λ′Λ/N)−1, (C.23)

where

B̂ = (Λ′Λ/N)(H ′H/T )

[(
Ik + Â

)−1
− Ik

]
(H ′H/T )−1(Λ′Λ/N)−1. (C.24)

Equation (C.23) is a recursive equation for ĤĤ −1−H , since this quantity appears in the third term in the r.h.s.
By iterating this equation, we get:
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ĤĤ −1 −H

=
1

N
εΛ(Λ′Λ/N)−1 +

1

NT

(
εε′H +HΛ′ε′H

)
(H ′H/T )−1(Λ′Λ/N)−1(Ik + B̂)

+
1

NT

(
εε′ +HΛ′ε′

)( 1

N
εΛ(Λ′Λ/N)−1

)
Ĥ (H ′Ĥ/T )−1(Λ′Λ/N)−1

+
1

NT

(
εε′ +HΛ′ε′

) [ 1

NT

(
εε′H +HΛ′ε′H

)
(H ′H/T )−1(Λ′Λ/N)−1(Ik + B̂)

]
×Ĥ (H ′Ĥ/T )−1(Λ′Λ/N)−1

+
1

NT

(
εε′ +HΛ′ε′

) [ 1

NT

(
εε′ +HΛ′ε′

) (
ĤĤ −1 −H

)
Ĥ (H ′Ĥ/T )−1(Λ′Λ/N)−1

]
×Ĥ (H ′Ĥ/T )−1(Λ′Λ/N)−1.

By using that Ĥ (H ′Ĥ/T )−1(Λ′Λ/N)−1 = (H ′H/T )−1(Λ′Λ/N)−1(Ik + B̂) from (C.22) and (C.24), we get
the expansion:

ĤĤ −1 −H =
1

N
εΛ(Λ′Λ/N)−1 +

1

NT

(
εε′H +HΛ′ε′H

)
(H ′H/T )−1(Λ′Λ/N)−1(Ik + B̂)

+
1

NT

(
εε′ +HΛ′ε′

)( 1

N
εΛ

)
(Λ′Λ/N)−1(H ′H/T )−1(Λ′Λ/N)−1(Ik + B̂)

+
1

NT

(
εε′ +HΛ′ε′

) 1

NT

(
εε′H +HΛ′ε′H

) [
(H ′H/T )−1(Λ′Λ/N)−1(Ik + B̂)

]2

+R̂,

where the higher-order remainder term R̂ is defined in (C.11).
Let us rewrite the expansion as:

ĤĤ −1 −H =
1

N
εΛ(Λ′Λ/N)−1 +

1

NT

[
εε′H +H(Λ′ε′H)

]
(H ′H/T )−1(Λ′Λ/N)−1(Ik + B̂)

+
1

N2T

[
εε′εΛ +H(Λ′ε′εΛ)

]
(Λ′Λ/N)−1(H ′H/T )−1(Λ′Λ/N)−1(Ik + B̂)

+
1

N2T 2

{
(εε′)(εε′H) + (εε′H)(Λ′ε′H) +H[(Λ′ε′εε′H) + (Λ′ε′H)2]

}
×
[
(H ′H/T )−1(Λ′Λ/N)−1(Ik + B̂)

]2
+ R̂. (C.25)

We have:

1√
NT

Λ′ε′H =
1√
NT

N∑
i=1

T∑
t=1

λiεi,th
′
t = Π′1,

1

NT
Λ′ε′εΛ =

1

NT

N∑
i=1

T∑
t=1

N∑
`=1

λiεi,tε`,tλ
′
` =

1

T

T∑
t=1

ξtξ
′
t = Π′2,
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and

1

NT
√
NT

Λ′ε′εε′H =
1

NT
√
NT

N∑
i=1

T∑
t=1

N∑
`=1

T∑
s=1

λiεi,tε`,tε`,sh
′
s

=
1

NT
√
T

T∑
t=1

N∑
`=1

T∑
s=1

ξtε`,tε`,sh
′
s

=
1

NT
√
T

T∑
t=1

N∑
`=1

T∑
s=1,s 6=t

ξtε`,tε`,sh
′
s +

1

NT
√
T

T∑
t=1

N∑
`=1

ξtε
2
`,th
′
t

=
1√
N

(
1

T

T∑
t=1

ξtα
′
t) +

1

T
(

1√
T

T∑
t=1

ξtη
2
t h
′
t) +

1√
NT

(
1

T

T∑
t=1

ξtκth
′
t) = Π′3,

where matrices Π1, Π2 and Π3 are defined in (C.12). Let us now write expansion (C.25) for each date t. We
denote by at = [A]t the column vector corresponding to the t-th row a′t of matrix A. We have:

1

NT
[εε′H]t =

1

NT

N∑
i=1

T∑
s=1

εi,tεi,shs =
1

NT

N∑
i=1

ε2
i,tht +

1

NT

N∑
i=1

T∑
s=1,s 6=t

εi,tεi,shs

=
1

T
η2
t ht +

1

T
√
N
κtht +

1√
NT

αt, (C.26)

1

N2T
[εε′εΛ]t =

1

N2T

N∑
i=1

T∑
s=1

N∑
`=1

εi,tεi,sε`,sλ` =
1

N
√
NT

N∑
i=1

T∑
s=1

εi,tεi,sξs

=
1

N
√
NT

N∑
i=1

ε2
i,tξt +

1

N
√
NT

N∑
i=1

T∑
s=1,s 6=t

εi,tεi,sξs

=
1√
NT

η2
t ξt +

1

NT
κtξt +

1

N
√
N
ϕt +

1

N
√
T
γt,

and:

1

N2T 2
[εε′εε′H]t =

1

N2T 2

T∑
s=1

N∑
i=1

εi,tεi,s[εε
′H]s

=
1

NT

T∑
s=1

N∑
i=1

εi,tεi,s

(
1

T
η2
shs +

1

T
√
N
κshs +

1√
NT

αs

)
=

1

T 2
η4
t ht +

1√
NT 2

κtη
2
t ht +

1√
NTT

ᾱt

+
1

T 2
√
N
κtη

2
t ht +

1

NT 2
κ2
tht +

1

NT
√
N
ϕ̄t +

1

NT
√
T
γ̄t

+
1

T
√
NT

η2
tαt +

1

NT
√
T
κtαt +

1

N
√
NT

δt +
1

NT
χt,

using the definition of the processes in (C.13).
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The expansion in (C.25) for date t reads:

(Ĥ ′)−1ĥt − ht =
1√
N

(Λ′Λ/N)−1ξt + (Ik + B̂′)(Λ′Λ/N)−1(H ′H/T )−1 1

NT
[εε′H]t

+
1√
NT

(Ik + B̂′)(Λ′Λ/N)−1(H ′H/T )−1Π1ht

+(Ik + B̂′)(Λ′Λ/N)−1(H ′H/T )−1(Λ′Λ/N)−1 1

N2T
[εε′εΛ]t

+
1

N
(Ik + B̂′)(Λ′Λ/N)−1(H ′H/T )−1(Λ′Λ/N)−1Π2ht

+[(Ik + B̂′)(Λ′Λ/N)−1(H ′H/T )−1]2Π1
1

NT
√
NT

[εε′H]t

+[(Ik + B̂′)(Λ′Λ/N)−1(H ′H/T )−1]2
1

N2T 2
[εε′εε′H]t

+[(Ik + B̂′)(Λ′Λ/N)−1(H ′H/T )−1]2[
1√
NT

Π3 +
1

NT
Π2

1]ht + R̂t.

By plugging the expressions for 1
NT [εε′H]t, 1

N2T
[εε′εΛ]t and 1

N2T 2 [εε′εε′H]t, and rearranging terms, the ex-
pansion in (C.9) follows.
Let us now prove the convergence of matrix Ĥ . From Proposition C.2 and Assumption C.1, we have op(1) =

H ′(Ĥ −HĤ )/T = (H ′Ĥ/T )− Ĥ + op(1), which implies:

(H ′Ĥ/T ) = Ĥ + op(1). (C.27)

By combining equations (C.19) and (C.27), and using Lemma C.5 and Assumption C.1, we get:

ΣλĤ = Ĥ V + op(1). (C.28)

Moreover, from Ĥ ′Ĥ/T = Ik, Assumption C.1, Proposition C.2 and equation (C.27), we get:

Ĥ ′Ĥ = Ik + op(1). (C.29)

Recall that V is the diagonal matrix with diagonal elements corresponding to the eigenvalues of the symmetric
matrix Σλ. Then, if these eigenvalues are distinct, equations (C.28) and (C.29) imply that the columns of matrix
Ĥ converge in probability to the orthonormal eigenvectors of matrix Σλ. The conclusion follows.

C.3.2 Proof of Proposition C.2

By computing the norms of both sides of equation (C.21), using the triangular inequality and the Cauchy-
Schwarz inequality, Lemmas C.4 and C.5, and Assumption C.1, we get:

‖ĤĤ −1 −H‖ = Op

(
‖ 1

NT
εε′H‖+ ‖ 1

NT
HΛ′ε′H‖+ ‖ 1

N
εΛ‖

)
+Op

[(
‖ 1

NT
εε′‖+ ‖ 1

NT
HΛ′ε′‖

)
‖ĤĤ −1 −H‖

]
. (C.30)

To control the term in the r.h.s. we use the next lemma.

LEMMA C.6. Under Assumptions C.1 and C.2, we have: (i) ‖ 1

N
εΛ‖ = Op

(√
T

N

)
, (ii) ‖ 1

NT
HΛ′ε′‖ =
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Op

(
1√
N

)
, (iii) ‖ 1

NT
HΛ′ε′H‖ = Op

(
1√
N

)
.

By multiplying both sides of equation (C.30) times T−1/2, and using Assumption C.2 ii)-iii) and Lemma C.6,
we get:

T−1/2‖ĤĤ −1 −H‖ = Op

(
1√
N

+
1√
NT

+
1√
Tm

)
+ op(T

−1/2‖ĤĤ −1 −H‖),

where m = min{N,T}, that is:

T−1/2‖ĤĤ −1 −H‖ = Op

(
1√
N

+
1

T

)
. (C.31)

From equations (C.11) and (C.31), Assumptions C.1 and C.2 ii), and Lemmas C.4, C.5 and C.6 ii), and the
Cauchy-Schwarz inequality we have:

T−1/2‖R̂‖ = Op

[
(‖ 1

NT
εε′‖2 + ‖ 1

NT
HΛ′ε′‖2)(T−1/2‖ĤĤ −1 −H‖)

]
= Op

[
(

1

m
+

1

N
)(

1√
N

+
1

T
)

]
= Op

(
1

N
+

1

T 2

)
,

where m = min{N,T} and we use 1
m
√
N

= O( 1
N + 1

T 2 ) and 1
mT = O( 1

N + 1
T 2 ).

C.3.3 Proof of Proposition C.3

Let us first establish the MSE bound for remainder term rt. From its definition in (C.10) and Assumption C.3
we have

(
1

T

T∑
t=1

‖rt‖2)1/2 = Op

[
‖B̂‖( 1

T
+

1√
NT

)

]
+Op(

1

N
+

1

T 2
)

= Op

[
(

1√
N

+
1

T
)(

1

T
+

1√
NT

)

]
+Op(

1

N
+

1

T 2
)

= Op(
1

N
+

1

T 2
). (C.32)

Let us now show that 1
T

∑T
t=1 ϑth

′
t = Op(

1
N + 1

T 2 ). We use ϑt = ϑ̃t+ R̂t where ϑ̃t = 1√
NT

Sαt+
1
ND2ht+ rt.

From the Cauchy-Schwarz inequality and the bound in (C.15), we have:

1

T

T∑
t=1

ϑth
′
t =

1

T

T∑
t=1

ϑ̃th
′
t +

1

T

T∑
t=1

R̂th′t =
1

T

T∑
t=1

ϑ̃th
′
t +Op

(
1

N
+

1

T 2

)
.

Moreover, by using Assumption C.3, bound (C.32) and 1√
NT

= O( 1
N + 1

T 2 ), we have:

1

T

T∑
t=1

ϑ̃th
′
t =

1√
NT

S(
1√
T

T∑
t=1

αth
′
t) +Op(

1

N
+

1

T 2
) = Op(

1

N
+

1

T 2
).
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Then, 1
T

∑T
t=1 ϑth

′
t = Op(

1
N + 1

T 2 ) follows.
Let us finally show that 1

T

∑T
t=1( 1√

N
ut + 1

T bt + 1√
NT

dt + ϑt)ϑ
′
t = op(

1
N
√
T

). We have:

1

T

T∑
t=1

(
1√
N
ut +

1

T
bt +

1√
NT

dt + ϑt)ϑ
′
t =

1

T

T∑
t=1

(
1√
N
ut +

1

T
bt +

1√
NT

dt + ϑ̃t)ϑ̃
′
t

+
1

T

T∑
t=1

R̂tϑ̃′t +
1

T

T∑
t=1

[(Ĥ ′)−1ĥt − ht]R̂′t.

Moreover, by using bound (C.32) and Assumption C.3:

(
1

T

T∑
t=1

‖ϑ̃t‖2)1/2 = Op(
1

N
+

1

T 2
+

1√
NT

), (C.33)

and thus, from (C.15) and
√
T � N � T 5/2 (Assumption A.1), we get:

1

T

T∑
t=1

R̂tϑ̃′t = Op

[
T−1/2‖R̂‖( 1

T

T∑
t=1

‖ϑ̃t‖2)1/2

]

= Op

[
(

1

N
+

1

T 2
)(

1

N
+

1

T 2
+

1√
NT

)

]
= op(

1

N
√
T

).

Further, from Proposition C.2 and (C.14):

1

T

T∑
t=1

[(Ĥ ′)−1ĥt−ht]R̂′t = Op

(
T−1/2‖ĤĤ −1 −H‖T−1/2‖R̂‖

)
= Op

[
(

1

m
+

1

N
)(

1

N
+

1

T 2
)

]
= op(

1

N
√
T

),

since
√
T � N � T 5/2. Finally, from Assumption C.3 and the bound in (C.33), we have:

1

T

T∑
t=1

(
1√
N
ut +

1

T
bt +

1√
NT

dt + ϑ̃t)ϑ̃
′
t

=
1

T

T∑
t=1

1√
N
utϑ̃
′
t +

1

T

T∑
t=1

1

T
btϑ̃
′
t +Op

[
(

1√
NT

+
1

N
+

1

T 2
)2

]

=
1

T
√
N

T∑
t=1

utϑ̃
′
t +

1

T 2

T∑
t=1

btϑ̃
′
t + op(

1

N
√
T

),

and:

1

T
√
N

T∑
t=1

utϑ̃
′
t =

1

N
√
T

(
1

T

T∑
t=1

utα
′
t)S
′ +

1√
NT

(
1√
T

T∑
t=1

uth
′
t)(

1√
NT

D1 +
1

N
D2 +

1

NT
D3)′

+Op

[
1√
N

(
(

1

T
+

1√
NT

)‖B̂‖+
1√
NT

+
1

N
√
N

+
1

N
√
T

+
1

T 2

)]
+ op(

1

N
√
T

)

=
1

N
√
T

(Λ′Λ/N)−1(
1

T

T∑
t=1

ξtα
′
t)S
′ + op(

1

N
√
T

) = op(
1

N
√
T

),

Online Appendix - 13



from Assumption C.3 (iv), and:

1

T 2

T∑
t=1

btϑ̃
′
t =

1√
NT 2

(
1√
T

T∑
t=1

btα
′
t)S
′

+Op

[
1

T

(
(

1

T
+

1√
NT

)‖B̂‖+
1√
NT

+
1

N
+

1

N
√
T

+
1

T 2

)]
+ op(

1

N
√
T

)

=
1√
NT 2

S(
1√
T

T∑
t=1

η2
t htα

′
t)S
′ + op(

1

N
√
T

) = op(
1

N
√
T

),

since
√
T � N � T 5/2. Hence, 1

T

∑T
t=1( 1√

N
ut + 1

T bt + 1√
NT

dt + ϑt)ϑ
′
t = op(

1
N
√
T

) follows.

C.3.4 Proof of Lemma C.4

The proof follows closely the proof of Proposition 1 (ii) in Bai (2009). Let us denote by H0 the matrix of true
factor values, in order to distinguish it from a matrix H of generic factor values. The estimator Ĥ is obtained
from minimization of the LS criterion:

min
H,Λ:H′H/T=Ik

tr[(Y −HΛ′)(Y −HΛ′)′]. (C.34)

The criterium in (C.34), after concentration w.r.t. Λ, becomes tr(Y ′MHY ), where MH = IT − PH and
PH = H(H ′H)−1H ′. Let us divide the criterium by NT , and subtract its value at H0, to get:

SNT (H) =
1

NT
tr(Y ′MHY )− 1

NT
tr(ε′MH0ε).

The matrix of factor estimates Ĥ is the minimizer of function SNT (H) w.r.t. H such that H ′H/T = Ik. By
using Y = H0Λ′ + ε, we get:

SNT (H) =
1

NT
tr(ΛH0′MHH

0Λ′) + 2
1

NT
tr(ΛH0′MHε) +

1

NT
tr(ε′(PH − PH0)ε). (C.35)

Now, let us show that the second and third terms in the RHS are op(1) uniformly w.r.t. the (T, k) matrix H such
that H ′H/T = Ik. We follow here different arguments compared to the ones in the proof of Lemma A.1 in Bai
(2009), since we deploy slightly different assumptions. We have:

1

NT
tr(ΛH0′MHε) =

1

NT
tr(H0′εΛ)− tr

[
1

T
H0′H(

1

T
H ′H)−1 1

NT
H ′εΛ

]
= Op(‖

1

NT
H0′εΛ‖) +Op(‖

1

NT
H ′εΛ‖) = Op(‖

1√
TN

εΛ‖) = Op(
1√
N

),

and:

1

NT
tr(ε′(PH − PH0)ε) =

1

N
tr

[
1

T
ε′H(

1

T
H ′H)−1 1

T
H ′ε

]
− tr

[
1

T
ε′H0(

1

T
H0′H0)−1 1

T
H0′ε

]
=

1

T
tr

[
H ′(

1

NT
εε′)H

]
− 1

T
tr

[
(

1

T
H0′H0)−1H0′(

1

NT
εε′)H0

]
= Op(‖

1

NT
εε′‖) = op(1),
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uniformly w.r.t. the (T, k) matrix H such that H ′H/T = Ik, using Assumptions C.1 and C.2 i) and iii), Lemma
C.6 i), and the invariance of the trace under cyclical permutations.
Thus, from (C.35) we get SNT (H) = S̃NT (H) + op(1), where:

S̃NT (H) =
1

NT
tr(ΛH0′MHH

0Λ′) = tr[(H0′MHH
0/T )(Λ′Λ/N)], (C.36)

and the op(1) term is uniform w.r.t. H such that H ′H/T = Ik. We have:

S̃NT (Ĥ) ≥ 0,

0 = SNT (H0) ≥ SNT (Ĥ) = S̃NT (Ĥ) + op(1),

which imply S̃NT (Ĥ) = op(1). Then, from equation (C.36), Assumption C.1 and Ĥ ′Ĥ/T = Ik, it follows:

H0′H0/T − (H0′Ĥ/T )(Ĥ ′H0/T ) = op(1).

Thus, from Assumption C.1, we have (H0′Ĥ/T )(Ĥ ′H0/T ) = Ik + op(1). Lemma C.4 follows.

C.3.5 Proof of Lemma C.5

Let us multiply both sides of equation (C.18) by T−1H ′ to get:

(H ′Ĥ/T )V̂ − (H ′H/T )(Λ′Λ/N)(H ′Ĥ/T ) =
1

NT 2
H ′(εε′Ĥ +HΛ′ε′Ĥ + εΛH ′Ĥ).

By applying the Cauchy-Schwarz inequality, Assumption C.2 ii), Lemmas C.4 and C.6 (i), and T−1/2‖Ĥ‖ =√
k, we get:

(H ′Ĥ/T )V̂ − (H ′H/T )(Λ′Λ/N)(H ′Ĥ/T ) = op(1).

Then, from Lemma C.4 and Assumption C.1, we get:

V̂ = (H ′Ĥ/T )−1(H ′H/T )(Λ′Λ/N)(H ′Ĥ/T ) + op(1)

= (H ′Ĥ/T )−1Σλ(H ′Ĥ/T ) + op(1).

We deduce that the eigenvalues of matrix V̂ converge in probability to the eigenvalues of matrix Σλ. Since
matrix V̂ is diagonal, the conclusion follows.

C.3.6 Proof of Lemma C.6

(i) Using 1√
N

[εΛ]t = 1√
N

∑N
i=1 λiεi,t = ξt and Assumption C.2 i), we have:

‖ 1

N
εΛ‖ =

1√
N

[
tr

(
T∑
t=1

ξtξ
′
t

)]1/2

=

√
T

N

[
tr

(
1

T

T∑
t=1

ξtξ
′
t

)]1/2

= Op

(√
T

N

)
. (C.37)

(ii) By using (C.37) and T−1/2‖H‖ = Op(1), we have:

‖ 1

NT
HΛ′ε′‖ ≤ 1

T
‖H‖‖ 1

N
εΛ‖ = Op

(
1√
N

)
.
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(iii) We have:

‖ 1

NT
HΛ′ε′H‖ ≤ 1√

N
T−1/2‖H‖‖ 1√

NT
Λ′ε′H‖ = Op(

1√
N

),

by using 1√
NT

Λ′ε′H = 1√
T

∑T
t=1 ξth

′
t = Op(1) from Assumption C.2 i).

C.3.7 Check of the conditions in Assumptions C.1-C.3

Assumption C.1 is standard in the factor literature, see e.g. Bai and Ng (2002), Stock and Watson (2002), Bai
(2003). It is implied by Assumptions A.2 and A.3.

a) Check of Assumption C.2

Assumption C.2 i) is implied by Assumptions A.4 b), A.5 b) and A.6 a). Assumption C.2 ii) is implied by
Assumptions A.4 a) and Assumption C.3 (which is checked below). Indeed, from (C.26) we have:

‖ 1

NT
εε′H‖2 =

T∑
t=1

(
1

NT
[εε′H]t)

′(
1

NT
[εε′H]t) =

T∑
t=1

‖ 1

NT
[εε′H]t‖2

≤ 2
T∑
t=1

(
1

T 2
‖η2
t ht‖2 +

1

T 2N
‖κtht‖2 +

1

NT
‖αt‖2) = Op(

1

T
+

1

N
),

under Assumption C.3 v), since η2
t ≤M (Assumption A.4 a)).

Let us now show the validity of Assumption C.2 iii). We have:

‖ 1

NT
εε′‖2 =

1

N2T 2
Tr[εε′εε′] =

1

N2T 2

T∑
t=1

N∑
i=1

N∑
j=1

T∑
s=1

εi,tεi,sεj,sεj,t

=
1

N2T 2

T∑
t=1

N∑
i=1

N∑
j=1

ε2
i,tε

2
j,t +

1

N2T 2

T∑
t=1

T∑
s=1,s 6=t

N∑
i=1

N∑
j=1

εi,tεi,sεj,tεj,s.

The first term in the RHS is Op(T−1) from Assumption A.4 b). Let us now consider the second term in the
RHS. We have:

1

N2T 2

T∑
t=1

T∑
s=1,s 6=t

N∑
i=1

N∑
j=1

εi,tεi,sεj,tεj,s

=
2

T 2

T∑
t=1

t−1∑
s=1

(
1

N

N∑
i=1

εi,tεi,s

)2

=
2

T 2

T∑
t=1

t−1∑
s=1

η4
ts +

4

T 2

T∑
t=1

t−1∑
s=1

(
1

N

N∑
i=1

(εi,tεi,s − η2
ts)

)
η2
ts +

2

T 2

T∑
t=1

t−1∑
s=1

(
1

N

N∑
i=1

(εi,tεi,s − η2
ts)

)2

,

where η2
ts := plim

N→∞

1
N

∑N
i=1 εi,tεi,s. By taking expectations, and using the Cauchy-Schwarz inequality and

Assumption A.7 a), we get that 1
N2T 2

∑T
t=1

∑T
s=1,s 6=t

∑N
i=1

∑N
j=1 εi,tεi,sεj,tεj,s = Op(

1
T + 1

N ). Assumption
C.2 iii) follows.
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b) Check of the conditions in Assumption C.3

Assumption C.3 i) corresponds to Assumption A.4 a). Assumptions C.3 (ii)-(iv) are implied by Assumption A.7
b). Assumption C.3 (v) is implied by Assumptions A.5 b), c), and A.7 c).

C.4 Proof of Lemma B.1
We prove the bound for X̂1,2; the bounds for the other terms are obtained similarly. We substitute the definition
ψj,t = 1√

Nj
uj,t + 1

T bj,t + 1√
NjT

dj,t + ϑj,t into (B.3) and use N2 = N , N1 = N/µ2
N . We get:

X̂12 =
1

T
√
N

T∑
t=1

(h1,tu
′
2,t + µNu1,th

′
2,t) +

µN
TN

T∑
t=1

u1,tu
′
2,t (C.38)

+
1

T 2

T∑
t=1

(
h1,tb

′
2,t + b1,th

′
2,t

)
+

1

T 2
√
N

T∑
t=1

(
b1,tu

′
2,t + µNu1,tb

′
2,t

)
+

1

T 3

T∑
t=1

b1,tb
′
2,t

+
1

T
√
NT

T∑
t=1

(
h1,td

′
2,t + µNd1,th

′
2,t

)
+

µN

TN
√
T

T∑
t=1

(
u1,td

′
2,t + d1,tu

′
2,t

)
+

1

T 2
√
NT

T∑
t=1

(
b1,td

′
2,t + µNd1,tb

′
2,t

)
+

µN
NT 2

T∑
t=1

d1,td
′
2,t +

1

T

T∑
t=1

(h1,tϑ
′
2,t + ϑ1,th

′
2,t)

+
1

T

T∑
t=1

[(
µN√
N
u1,t +

1

T
b1,t +

µN√
NT

d1,t + ϑ1,t

)
ϑ′2,t + ϑ1,t

(
1√
N
u2,t +

1

T
b2,t +

1√
NT

d2,t

)′]
.
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To bound the terms in the r.h.s. of (C.38), we use that under Assumptions A.2-A.4, A.5 b)-c) and A.6 a) we
have:

1√
T

T∑
t=1

hj,tu
′
k,t = Op(1),

1

T

T∑
t=1

uj,tu
′
k,t = Op(1), (C.39)

1

T

T∑
t=1

hj,tb
′
k,t = Op(1), (C.40)

1

T

T∑
t=1

bj,tu
′
k,t = Op

(
1√
T

)
, (C.41)

1

T

T∑
t=1

bj,tb
′
k,t = Op(1), (C.42)

1

T

T∑
t=1

hj,td
′
k,t = Op(1), (C.43)

1√
T

T∑
t=1

uj,td
′
k,t = Op(1), (C.44)

1

T

T∑
t=1

bj,td
′
k,t = Op(1), (C.45)

1

T

T∑
t=1

dj,td
′
k,t = Op(1), (C.46)

for j, k = 1, 2. These bounds are shown below by using the definitions of uj,t, bj,t, dj,t in Proposition 3. There-
fore, the first nine summation terms in the r.h.s. of (C.38) are of order Op( 1√

NT
), Op( 1

N ), Op( 1
T ), Op( 1

T
√
NT

),

Op(
1
T 2 ), Op( 1√

NT
), Op( 1

NT ), Op( 1
T
√
NT

) and Op( 1
NT ), respectively. From Proposition 3, the last two sum-

mation terms in the r.h.s. of (C.38) are of order Op( 1
N + 1

T 2 ) and op( 1
N
√
T

), respectively. Therefore, we get

X̂1,2 = Op (δN,T ), where δN,T = max{ 1
N ,

1
T } = (min{N,T})−1.

Proof of (C.40). We have:

1

T

T∑
t=1

hj,tb
′
k,t =

(
1

T

T∑
t=1

hj,th
′
k,tη

2
k,t

)(
1

T

T∑
t=1

hk,th
′
k,t

)−1(
1

Nk

Nk∑
i=1

λk,iλ
′
k,i

)−1

.

The first and second terms in the r.h.s. are Op(1) by Assumptions A.2, A.4 b) and A.6 a) and an application of
a LLN for mixing processes. The third term in the r.h.s. is Op(1) by Assumption A.3. Then, (C.40) follows.
Proof of (C.41). We have:

bj,t =

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1(
1

T

T∑
t=1

hj,th
′
j,t

)−1

hj,tη
2
j,t, (C.47)

and:

uj,t =

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1

ξj,t,
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where η2
j,t and ξj,t are defined as in Assumption A.5. Then, we have:

1

T

T∑
t=1

bj,tu
′
k,t =

1√
T

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1(
1

T

T∑
t=1

hj,th
′
j,t

)−1 [
1√
T

T∑
t=1

η2
j,thj,tξ

′
k,t

](
1

Nk

Nk∑
i=1

λk,iλ
′
k,i

)−1

.

Now, 1√
T

∑T
t=1 η

2
j,thj,tξ

′
k,t = Op(1) follows from the bound ‖η2

j,thj,tξ
′
k,t‖r ≤ M with r > 2 (implied by

Assumptions A.4 a)-b) and A.5 b) and Cauchy-Schwarz inequality), the mixing property with size r/(r − 2) in
A.6 a), and an application of Corollary 14.3 in Davidson (1994). Then, (C.41) follows.
The proofs of the other bounds are established by similar arguments and are omitted. �

C.5 Proof of Lemma B.2
By using (I − X)−1 = I + X + X2 + Op(δ

3
N,T ) for X = Op(δN,T ), from (B.4) and Lemma B.1 we

have R̂ =
(
Ik1 − Ṽ

−1
11 X̂11 + Ṽ −1

11 X̂11Ṽ
−1

11 X̂11

)
Ṽ −1

11

(
Ṽ12 + X̂12

)(
Ik2 − Ṽ

−1
22 X̂22 + Ṽ −1

22 X̂22Ṽ
−1

22 X̂22

)
Ṽ −1

22

×
(
Ṽ21 + X̂21

)
+ Op(δ3

N,T ) and therefore:

R̂ = Ṽ −1
11 Ṽ12Ṽ

−1
22 Ṽ21

−Ṽ −1
11 X̂11Ṽ

−1
11 Ṽ12Ṽ

−1
22 Ṽ21 + Ṽ −1

11 X̂12Ṽ
−1

22 Ṽ21 − Ṽ −1
11 Ṽ12Ṽ

−1
22 X̂22Ṽ

−1
22 Ṽ21 + Ṽ −1

11 Ṽ12Ṽ
−1

22 X̂21

−Ṽ −1
11 X̂11Ṽ

−1
11 X̂12Ṽ

−1
22 Ṽ21 + Ṽ −1

11 X̂11Ṽ12Ṽ
−1

22 X̂22Ṽ
−1

22 Ṽ21 − Ṽ −1
11 X̂11Ṽ

−1
11 Ṽ12Ṽ

−1
22 X̂21

−Ṽ −1
11 X̂12Ṽ

−1
22 X̂22Ṽ

−1
22 Ṽ21 + Ṽ −1

11 X̂12Ṽ
−1

22 X̂21 − Ṽ −1
11 Ṽ12Ṽ

−1
22 X̂22Ṽ

−1
22 X̂21

+Ṽ −1
11 X̂11Ṽ

−1
11 X̂11Ṽ

−1
11 Ṽ12Ṽ

−1
22 Ṽ21 + Ṽ −1

11 Ṽ12Ṽ
−1

22 X̂22Ṽ
−1

22 X̂22Ṽ
−1

22 Ṽ21 +Op(δ
3
N,T ).

By rearranging the terms, and using the definitions of Ψ̂, Ψ̂∗, B̃, R̃, the conclusion follows. �

C.6 Proof of Lemma B.3
We define Ã = Ṽ −1

11 Ṽ12 and B̃ = Ṽ −1
22 Ṽ21. Then, R̃ = ÃB̃. Let us first derive the block form of matrix Ã.

From the formula for the inverse of the symmetric block matrix Ṽ11 =

[
Σ̃cc Σ̃c1

Σ̃1c Σ̃11

]
, we have:

Ṽ −1
11 =

[
Ωcc Ωcs

Ωsc Ωss

]
(C.48)

where:

Ωcc =
(

Σ̃cc − Σ̃c1Σ̃−1
11 Σ̃1c

)−1
(C.49)

= Σ̃−1
cc + Σ̃−1

cc Σ̃c1

(
Σ̃11 − Σ̃1cΣ̃

−1
cc Σ̃c1

)−1
Σ̃1cΣ̃

−1
cc , (C.50)

Ωss =
(

Σ̃11 − Σ̃1cΣ̃
−1
cc Σ̃c1

)−1
(C.51)

= Σ̃−1
11 + Σ̃−1

11 Σ̃1c

(
Σ̃cc − Σ̃c1Σ̃−1

11 Σ̃1c

)−1
Σ̃c1Σ̃−1

11 , (C.52)

Online Appendix - 19



and:

Ωcs = −
(

Σ̃cc − Σ̃c1Σ̃−1
11 Σ̃1c

)−1
Σ̃c1Σ̃−1

11 = Ω′sc, (C.53)

Ωsc = −
(

Σ̃11 − Σ̃1cΣ̃
−1
cc Σ̃c1

)−1
Σ̃1cΣ̃

−1
cc = Ω′cs. (C.54)

Then, by matrix multiplication we get:

A = Ṽ −1
11 Ṽ12 =

[
ΩccΣ̃cc + ΩcsΣ̃1c ΩccΣ̃c2 + ΩcsΣ̃12

ΩscΣ̃cc + ΩssΣ̃1c ΩscΣ̃c2 + ΩssΣ̃12

]
,

and from (C.49) and (C.53) we have ΩccΣ̃cc+ΩcsΣ̃1c = Ikc , from (C.51) and (C.54) we have ΩscΣ̃cc+ΩssΣ̃1c =
0, from (C.51) and (C.54) we have

ΩscΣ̃c2 + ΩssΣ̃12 =
(

Σ̃11 − Σ̃1cΣ̃
−1
cc Σ̃c1

)−1 (
Σ̃12 − Σ̃1cΣ̃

−1
cc Σ̃c2

)
= Σ̃−1

11|cΣ̃12|c,

where we use the notation Σ̃jk|` := Σ̃jk − Σ̃j`Σ̃
−1
`` Σ̃`k for j, k, ` = 1, 2, c. Moreover, from (C.49) and (C.53)

we have:

ΩccΣ̃c2 + ΩcsΣ̃12 =
(

Σ̃cc − Σ̃c1Σ̃−1
11 Σ̃1c

)−1 (
Σ̃c2 − Σ̃c1Σ̃−1

11 Σ̃12

)
= Σ̃−1

cc|1Σ̃c2|1,

while from (C.50) and (C.54) we have:

ΩccΣ̃c2 + ΩcsΣ̃12 = Σ̃−1
cc

[
Σ̃c2 − Σ̃c1

(
Σ̃11 − Σ̃1cΣ̃

−1
cc Σ̃c1

)−1 (
Σ̃12 − Σ̃1cΣ̃

−1
cc Σ̃c2

)]
= Σ̃−1

cc

(
Σ̃c2 − Σ̃c1Σ̃−1

11|cΣ̃12|c

)
.

Thus, we get:

A = Ṽ −1
11 Ṽ12 =

[
Ikc Σ̃−1

cc|1Σ̃c2|1

0 Σ̃−1
11|cΣ̃12|c

]

=

[
Ikc Σ̃−1

cc

(
Σ̃c2 − Σ̃c1Σ̃−1

11|cΣ̃12|c

)
0 Σ̃−1

11|cΣ̃12|c

]
. (C.55)

We get the expression for B = Ṽ −1
22 Ṽ21 by interchanging the indices 1 and 2:

B = Ṽ −1
22 Ṽ21 =

[
Ikc Σ̃−1

cc|2Σ̃c1|2

0 Σ̃−1
22|cΣ̃21|c

]

=

[
Ikc Σ̃−1

cc

(
Σ̃c1 − Σ̃c2Σ̃−1

22|cΣ̃21|c

)
0 Σ̃−1

22|cΣ̃21|c

]
. (C.56)

By multiplying the matrices in (C.55) and (C.56) we get:

R̃ = ÃB̃ =

[
Ikc R̃cs
0 R̃ss

]
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where
R̃ss = Σ̃−1

11|cΣ̃12|cΣ̃
−1
22|cΣ̃21|c,

and:

R̃cs = Σ̃−1
cc

(
Σ̃c1 − Σ̃c2Σ̃−1

22|cΣ̃21|c

)
+ Σ̃−1

cc

(
Σ̃c2 −+Σ̃c1Σ̃−1

11|cΣ̃12|c

)
Σ̃−1

22|cΣ̃21|c

= Σ̃−1
cc Σ̃c1

(
Ik1−kc − Σ̃−1

11|cΣ̃12|cΣ̃
−1
22|cΣ̃21|c

)
= Σ̃−1

cc Σ̃c1

(
Ik1−kc − R̃ss

)
. (C.57)

�

C.7 Proof of Lemma B.4
Substituting the expansions (B.5) and (B.10) into the eigenvalue-eigenvector equation (B.9), we get:(

R̃+ Ψ̂ +Op(δ
3
N,T )

)
(Ec Û + Esα̂) = (Ec Û + Esα̂)(Ikc + M̂).

By using R̃Ec = Ec from Lemma B.3, and keeping only the terms up to second order in δN,T , we get:

R̃Esα̂+ Ψ̂Ec Û + Ψ̂Esα̂ = Ec ÛM̂ + Esα̂+ Esα̂M̂ +Op(δ
3
N,T ). (C.58)

Pre-multiplying equation (C.58) by E′c, using the block notation Ψ̂cc = E′cΨ̂Ec, Ψ̂cs = E′cΨ̂Es and R̃cs =
E′cR̃Es and the fact that matrix Û is non-singular, we get:

M̂ = Û−1
(
R̃csα̂+ Ψ̂cc Û + Ψ̂csα̂

)
+Op(δ

3
N,T ). (C.59)

Similarly, pre-multiplying equation (C.58) by E′s, we get:

R̃ssα̂+ Ψ̂sc Û + Ψ̂ssα̂ = α̂+ α̂M̂ +Op(δ
3
N,T ), (C.60)

where Ψ̂sc = E′sΨ̂Ec and Ψ̂ss = E′sΨ̂Es. To solve this equation for α̂ up to terms Op(δ3
N,T ), it is instrumental

to get first expansions for M̂ and α̂ at order Op(δ2
N,T ).

i) Expansions at order Op(δ2
N,T )

Since Ψ̂ssα̂ = Op(δ
2
N,T ) and α̂M̂ = Op(δ

2
N,T ), from (C.60) we have:

α̂ = (Ik1−kc − R̃ss)−1Ψ̂sc Û +Op(δ
2
N,T ). (C.61)

If we plug this into (C.59) we get:

M̂ = Û−1
(
R̃csα̂+ Ψ̂cc Û

)
+Op(δ

2
N,T )

= Û−1
(

Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

)
Û +Op(δ

2
N,T ). (C.62)

ii) Expansions at order Op(δ3
N,T )
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By plugging (C.61) and (C.62) into terms Ψ̂ssα̂ and α̂M̂ in equation (C.60), and solving for α̂, we get:

α̂ = (Ik1−kc − R̃ss)−1
[
Ψ̂sc + Ψ̂ss(Ik1−kc − R̃ss)−1Ψ̂sc

−(Ik1−kc − R̃ss)−1Ψ̂sc

(
Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

)]
Û +Op(δ

3
N,T ). (C.63)

We replace (C.63) and (C.61) for the first and second occurrences of α̂ in the r.h.s. of (C.59), respectively, and
we rearrange terms to get:

M̂ = Û−1
{

Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

+R̃cs(Ik1−kc − R̃ss)−1
[
Ψ̂ss(Ik1−kc − R̃ss)−1Ψ̂sc

−(Ik1−kc − R̃ss)−1Ψ̂sc

(
Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

)]
+Ψ̂cs(Ik1−kc − R̃ss)−1Ψ̂sc

}
Û +Op(δ

3
N,T ). (C.64)

Substituting the second-order approximation of α̂ from equation (C.63) into the equation for Ŵ ∗1 in (B.10), we
get:

Ŵ ∗1 =
(
Ec + Es(Ik1−kc − R̃ss)−1

[
Ψ̂sc + Ψ̂ss(Ik1−kc − R̃ss)−1Ψ̂sc

−(Ik1−kc − R̃ss)−1Ψ̂sc

(
Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

)])
Û +Op(δ

3
N,T ). (C.65)

By replacing equation (C.64) into (B.10), we get the asymptotic expansion of Λ̂:

Λ̂ = Ikc + Û−1
{

Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

+R̃cs(Ik1−kc − R̃ss)−1
[
Ψ̂ss(Ik1−kc − R̃ss)−1Ψ̂sc

−(Ik1−kc − R̃ss)−1Ψ̂sc

(
Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc

)]
+Ψ̂cs(Ik1−kc − R̃ss)−1Ψ̂sc

}
Û +Op(δ

3
N,T ). (C.66)

Note that this approximation holds for the terms in the main diagonal, as matrix Λ̂ has been defined to be
diagonal.
The asymptotic expansions of Λ̂ and Ŵ ∗1 can be further simplified by using the next equation:

R̃cs(Ik1−kc − R̃ss)−1 = Σ̃−1
cc Σ̃c,1, (C.67)

which follows from (C.57). Equation (C.67) and equation Ṽ11Ψ̂ = Ψ̂∗ (Lemma B.2) imply:

Ψ̂cc + R̃cs(Ik1−kc − R̃ss)−1Ψ̂sc = Σ̃−1
cc

[
Σ̃ccΨ̂cc + Σ̃c,1Ψ̂sc

]
= Σ̃−1

cc

(
Ṽ11Ψ̂

)
(cc)

= Σ̃−1
cc Ψ̃∗cc,

M(cc) denoting the upper-left (kc, kc) block of matrix M . Using the latter equation as well as Σ̃ccΨ̂cs+ Σ̃c,1Ψ̂ss
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= Ψ̂∗cs in (C.66), and rearranging terms, we get:

Λ̂ = Ikc + Û−1Σ̃−1
cc

{
Ψ̂∗cc + Ψ̂∗cs(Ik1−kc − R̃ss)−1Ψ̂sc − Σ̃c,1(Ik1−kc − R̃ss)−1Ψ̂scΣ̃

−1
cc Ψ̂∗cc

}
Û

+Op(δ
3
N,T ), (C.68)

which yields equation (B.11). A similar argument yields (B.12) from (C.65). �

C.8 Proof of Lemma B.5
The proof is based on the asymptotic expansions of the terms within the trace operator in the r.h.s. of equation
(B.13). We distinguish the terms that are first-order, resp. second-order, with respect to the X̂j,k.

i) Asymptotic expansion of first-order term Ψ̂
∗(I)
cc

From equation (B.6), we have Ψ̂
∗(I)
cc =

[
−X̂11R̃+ X̂12B̃ − B̃′X̂22B̃ + B̃′X̂21

](cc)
. As matrices R̃ and B̃ have

the same structure [ Ec
... ∗ ] (see Lemma B.3), we have:

Ψ̂∗(I)cc = −X̂(cc)
11 + X̂

(cc)
12 − X̂

(cc)
22 + X̂

(cc)
21 . (C.69)

From the expressions of the matrices X̂j,k in (B.3), and using the fact that upper kc-dimensional subvector
of both h1,t and h2,t is f ct , the upper-left (kc, kc) blocks of the first and second matrices in the r.h.s. vanish.
Therefore, from (C.69) we get:

Ψ̂∗(I)cc = − 1

T

T∑
t=1

(ψ
(c)
1,t − ψ

(c)
2,t )(ψ

(c)
1,t − ψ

(c)
2,t )
′, (C.70)

where ψ(c)
j,t denotes the upper (kc, 1) block of vector ψj,t. To compute the matrix in the r.h.s., we plug the

expressions ψj,t =
1√
Nj

uj,t +
1

T
bj,t +

1√
NjT

dj,t + ϑj,t for j = 1, 2 from (B.1), and use Proposition 3 and

Assumptions A.1-A.4, A.5 b)-c) and A.6 a) to bound negligible terms up to op (εN,T ), where εN,T = (N
√
T )−1.

LEMMA C.7. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a) and A.7 we have:

Ψ̂∗(I)cc = − 1

N

(
1

T

T∑
t=1

E[(µNu
(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′|Ft]

)

− 1

N
√
T

(
1√
T

T∑
t=1

[
(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′ − E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′|Ft]

])

− 1

T
√
NT

(
1√
T

T∑
t=1

[
(b̄

(c)
1,t − b̄

(c)
2,t)(µNu

(c)
1,t − u

(c)
2,t)
′ + (µNu

(c)
1,t − u

(c)
2,t)(b̄

(c)
1,t − b̄

(c)
2,t)
′
])

− 1

T 2

(
1

T

T∑
t=1

(b
(c)
1,t − b

(c)
2,t)(b

(c)
1,t − b

(c)
2,t)
′

)

− 1

T
√
NT

(
1

T

T∑
t=1

[
(b̄

(c)
1,t − b̄

(c)
2,t)(µNd

(c)
1,t − d

(c)
2,t)
′ + (µNd

(c)
1,t − d

(c)
2,t)(b̄

(c)
1,t − b̄

(c)
2,t)
′
])

+ op (εN,T ) ,
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where b̄j,t is defined as in Theorem 1. The terms in the parentheses are Op(1).

Lemma C.7 shows that the leading stochastic terms in Ψ̂
∗(I)
cc are of orderOp

(
1

N

)
,Op

(
1

N
√
T

)
,Op

(
1

T
√
NT

)
and Op

(
1

T 2

)
.

ii) Asymptotic expansion of the second-order terms in the r.h.s. of (B.13)

The asymptotic expansion of the second-order term Ψ̂∗(II)cc − 1

4
Ψ̂∗(I)cc Σ̃−1

cc Ψ̂∗(I)cc + Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1Ψ̂(I)
sc −

Σ̃c,1(Ik1−kc − R̃ss)−1Ψ̂(I)
sc Σ̃−1

cc Ψ̂∗(I)cc is provided in the next lemma.

LEMMA C.8. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a) and A.7 we have:

Ψ̂∗(II)cc − 1

4
Ψ̂∗(I)cc Σ̃−1

cc Ψ̂∗(I)cc + Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1Ψ̂(I)
sc − Σ̃c,1(Ik1−kc − R̃ss)−1Ψ̂(I)

sc Σ̃−1
cc Ψ̂∗(I)cc

=
1

T 2

{[
1

T

T∑
t=1

(
b
(c)
1,t − b

(c)
2,t

)
F ′t

]
Σ̃−1
F

[
1

T

T∑
t=1

Ft

(
b
(c)
1,t − b

(c)
2,t

)′]}

+
1

T
√
NT

{(
E
[(
b̄
(c)
1,t − b̄

(c)
2,t

)
F ′t

]
Σ−1
F

1√
T

T∑
t=1

Ft

(
µNu

(c)
1,t − u

(c)
2,t

)′
+E

[(
b̄
(c)
1,t − b̄

(c)
2,t

)
F ′t

]
Σ−1
F

1

T

T∑
t=1

Ft

(
µNd

(c)
1,t − d

(c)
2,t

)′)+
+ op(εN,T ),

where Σ̃F = 1
T

∑T
t=1 FtF

′
t and A+ := A+A′. The terms in the curly brackets are Op(1).

From Lemmas C.7 and C.8, the asymptotic expansion of the term within the square brackets in the r.h.s of (B.13)
is:

Ψ̂∗cc −
1

4
Ψ̂∗(I)cc Σ̃−1

cc Ψ̂∗(I)cc + Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1Ψ̂(I)
sc − Σ̃c,1(Ik1−kc − R̃ss)−1Ψ̂(I)

sc Σ̃−1
cc Ψ̂∗(I)cc

= − 1

N

(
1

T

T∑
t=1

E[(µNu
(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′|Ft]

)
− 1

T 2

{
1

T

T∑
t=1

∆̃b
(c)

t ∆̃b
(c)′
t

}

− 1

N
√
T

{
1√
T

T∑
t=1

[
(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′ − E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′|Ft]

]}

− 1

T
√
NT

{
1√
T

T∑
t=1

[
∆b

(c)
t (µNu

(c)
1,t − u

(c)
2,t)
′ + (µNu

(c)
1,t − u

(c)
2,t)∆b

(c)′
t

]}

− 1

T
√
NT

{
1

T

T∑
t=1

[
∆b

(c)
t (µNd

(c)
1,t − d

(c)
2,t)
′ + (µNd

(c)
1,t − d

(c)
2,t)∆b

(c)′
t

]}
+ op (εN,T ) , (C.71)

where ∆bt and ∆̃bt are the population and sample residuals defined in Theorem 1. For the fifth summation term
in the r.h.s., let us now check that:

1

T

T∑
t=1

[
∆b

(c)
t (µNd

(c)
1,t − d

(c)
2,t)
′ + (µNd

(c)
1,t − d

(c)
2,t)∆b

(c)′
t

]
= Op

(
1√
T

)
. (C.72)
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Indeed, we have:
1

T

T∑
t=1

∆b
(c)
t h′j,t = E[∆b

(c)
t h′j,t] +Op

(
1√
T

)
, (C.73)

from Assumption A.4 b) and A.6 a), and Corollary 14.3 in Davidson (1994). Then, (C.72) follows from the
definition of dj,t, the convergence in (C.73), and equality E[∆b

(c)
t h′j,t] = 0, for j = 1, 2. The latter equality

holds because ∆bt is the residual of a projection on Ft, and hj,t is spanned by Ft.
Moreover, from Assumptions A.2, A.4 b) and A.6 a), and Corollary 14.3 in Davidson (1994), we have:

Ṽjj = Ikj +Op(T
−1/2), j = 1, 2, Ṽ12 =

[
Ikc 0
0 Φ

]
+Op(T

−1/2). (C.74)

By plugging (C.71)-(C.72) into (B.13), and using
1

T
√
T
√
NT

= o(εN,T ) when N � T 3, and Σ̃cc = Ikc +

Op(T
−1/2) from (C.74), the conclusion follows.

C.8.1 Proof of Lemma C.7

We substitute the expressions ψj,t = 1√
Nj
uj,t + 1

T bj,t + 1√
NjT

dj,t + ϑj,t for j = 1, 2 into the r.h.s. of (C.70).

We use N2 = N and N1 = N/µ2
N , and partition vectors uj,t and bj,t in block-form as:

uj,t =

[
u

(c)
jt

u
(s)
jt

]
, bj,t =

[
b
(c)
jt

b
(s)
jt

]
, j = 1, 2.

Moreover, we use that from Proposition 3 the contribution of the remainder terms ϑj,t in the r.h.s. of (C.70) is of
order op (εN,T ), and that under Assumptions A.2-A.4, A.5 b)-c) and A.6 a) we have 1√

T

∑T
t=1 uj,td

′
k,t = Op(1)

and 1
T

∑T
t=1 dj,td

′
k,t = Op(1) (see (C.44) and (C.46)). Therefore, we get:

Ψ̂∗(I)cc = − 1

TN

T∑
t=1

(µNu
(c)
1,t − u

(c)
2,t)(µNu

(c)
1,t − u

(c)
2,t)
′

− 1

T 2
√
N

T∑
t=1

[
(b

(c)
1,t − b

(c)
2,t)(µNu

(c)
1,t − u

(c)
2,t)
′ + (µNu

(c)
1,t − u

(c)
2,t)(b

(c)
1,t − b

(c)
2,t)
′
]

− 1

T 3

T∑
t=1

(b
(c)
1,t − b

(c)
2,t)(b

(c)
1,t − b

(c)
2,t)
′

− 1

T 2
√
NT

T∑
t=1

[
(b

(c)
1,t − b

(c)
2,t)(µNd

(c)
1,t − d

(c)
2,t)
′ + (µNd

(c)
1,t − d

(c)
2,t)(b

(c)
1,t − b

(c)
2,t)
′
]

+ op (εN,T ) .

Online Appendix - 25



By recentering the first term in the r.h.s., and highlighting the convergence rates, we have:

Ψ̂∗(I)cc = − 1

N

(
1

T

T∑
t=1

E[(µNu
(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′|Ft]

)
(C.75)

− 1

N
√
T

(
1√
T

T∑
t=1

[
(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′ − E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′|Ft]

])

− 1

T
√
NT

(
1√
T

T∑
t=1

[
(b

(c)
1,t − b

(c)
2,t)(µNu

(c)
1,t − u

(c)
2,t)
′ + (µNu

(c)
1,t − u

(c)
2,t)(b

(c)
1,t − b

(c)
2,t)
′
])

− 1

T 2

(
1

T

T∑
t=1

(b
(c)
1,t − b

(c)
2,t)(b

(c)
1,t − b

(c)
2,t)
′

)

− 1

T
√
NT

(
1

T

T∑
t=1

[
(b

(c)
1,t − b

(c)
2,t)(µNd

(c)
1,t − d

(c)
2,t)
′ + (µNd

(c)
1,t − d

(c)
2,t)(b

(c)
1,t − b

(c)
2,t)
′
])

+ op (εN,T ) .

Finally, by using bj,t = b̄j,t(1 +Op(T
−1/2 +N−1/2)), where

b̄j,t = Σ−1
Λ,jη

2
j,thj,t,

and the Op(T−1/2 + N−1/2) term is independent of t, and the bound 1
T
√
NT

( 1√
T

+ 1√
N

) = o(εN,T ) when
N � T 3, we can further simplify this asymptotic expansion to get the expansion in Lemma C.7. �

C.8.2 Proof of Lemma C.8

i) Asymptotic expansion of Ψ̂
∗(II)
cc

Let us start with Ψ̂
∗(II)
cc . From the definitions of the matrices X̂j,k in equation (B.3), bounding the higher-order

terms as in the proof of Lemma B.1, and using that 1
T
√
NT
≤ 1√

NT
≤ 1

2

(
1
N + 1

T 2

)
, we have:

X̂j,k =
1

T
Ξ̃j,k +

1√
NT

Ŝj,k +Op

(
1

N
+

1

T 2

)
, (C.76)

where:

Ξ̃j,k =
1

T

T∑
t=1

(hj,tb
′
k,t + bj,th

′
k,t), (C.77)

Ŝj,k =
1√
T

T∑
t=1

(µN,khj,tu
′
k,t + µN,juj,th

′
k,t) +

1

T

T∑
t=1

(µN,khj,td
′
k,t + µN,jdj,th

′
k,t), (C.78)

with µN,1 = µN and µN,2 = 1. Terms Ξ̃j,k and Ŝj,k areOp(1) under Assumptions A.2-A.4, A.5 b)-c) and A.6 a).

Then, from the definition of Ψ̂∗(II) in (B.7), the bounds
(

1
T + 1√

NT

) (
1
N + 1

T 2

)
= o(εN,T ) and

(
1
N + 1

T 2

)2
=
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o(εN,T ) which hold if T 1/2 � N � T 5/2, we get:

Ψ̂∗ (II) =
1

T 2

{
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
+
(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1

22

(
Ξ̃22B̃ − Ξ̃21

)}
+

1

T
√
NT

{
−Ξ̃11Ṽ

−1
11

[
−Ŝ11R̃+ Ŝ12B̃ − B̃′Ŝ22B̃ + B̃′Ŝ21

]
−Ŝ11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
+
(
Ŝ22B̃ − Ŝ21

)′
Ṽ −1

22

(
Ξ̃22B̃ − Ξ̃21

)
+
(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1

22

(
Ŝ22B̃ − Ŝ21

)}
+op(εN,T ).

The second term in the r.h.s. can be further simplified by using (C.74) and Ξ̃j,k = Ξj,k + Op(T
−1/2), where

Ξj,k = E[hj,tb̄
′
k,t + b̄j,th

′
k,t], and neglecting terms at order op(εN,T ) to get:

Ψ̂∗ (II) =
1

T 2

{
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
+
(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1
22

(
Ξ̃22B̃ − Ξ̃21

)}
+

1

T
√
NT

{
−Ξ11

[
−Ŝ11R+ Ŝ12B −B′Ŝ22B +B′Ŝ21

]
− Ŝ11

[
−Ξ11R+ Ξ12B −B′Ξ22B +B′Ξ21

]
+
(
Ŝ22B − Ŝ21

)′
(Ξ22B − Ξ21) + (Ξ22B − Ξ21)′

(
Ŝ22B − Ŝ21

)}
+ op(εN,T ),

where:

B =

[
Ikc 0
0 Φ′

]
, R =

[
Ikc 0
0 ΦΦ′

]
.

Let us now compute the (cc) block of this expansion. Since [−Ξ11R+ Ξ12B −B′Ξ22B +B′Ξ21](cc) = 0 and[
−Ŝ11R+ Ŝ12B −B′Ŝ22B +B′Ŝ21

]
(cc)

= 0, we get:

Ψ̂∗ (II)
cc =

1

T 2

{
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
+
(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1

22

(
Ξ̃22B̃ − Ξ̃21

)}
(cc)

+
1

T
√
NT

{
−Ξ11,cs

[
−Ŝ11R+ Ŝ12B −B′Ŝ22B +B′Ŝ21

]
sc

−Ŝ11,cs

[
−Ξ11R+ Ξ12B −B′Ξ22B +B′Ξ21

]
sc

+

[(
Ŝ22B − Ŝ21

)′
(Ξ22B − Ξ21) + (Ξ22B − Ξ21)′

(
Ŝ22B − Ŝ21

)]
cc

}
+ op(εN,T ).

By straightforward matrix algebra we have:[
−Ξ11R+ Ξ12B −B′Ξ22B +B′Ξ21

]
sc

= −Ξ11,sc + Ξ12,sc − ΦΞ22,sc + ΦΞ21,sc, (C.79)[
−Ŝ11R+ Ŝ12B −B′Ŝ22B +B′Ŝ21

]
sc

= −Ŝ11,sc + Ŝ12,sc − ΦŜ22,sc + ΦŜ21,sc, (C.80)

and
[
(Ξ22B − Ξ21)′

(
Ŝ22B − Ŝ21

)]
(cc)

= (Ξ22,cc − Ξ21,cc)
′
(
Ŝ22,cc − Ŝ21,cc

)
+ (Ξ22,sc − Ξ21,sc)

′ ×
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(
Ŝ22,sc − Ŝ21,sc

)
. Then we get the asymptotic expansion:

Ψ̂∗ (II)
cc =

1

T 2

{
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
+
(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −122

(
Ξ̃22B̃ − Ξ̃21

)}
(cc)

+
1

T
√
NT

{
−Ξ11,cs

[
−Ŝ11,sc + Ŝ12,sc − ΦŜ22,sc + ΦŜ21,sc

]
−Ŝ11,cs [−Ξ11,sc + Ξ12,sc − ΦΞ22,sc + ΦΞ21,sc]

+
(

(Ξ22,cc − Ξ21,cc)
′
(
Ŝ22,cc − Ŝ21,cc

)
+ (Ξ22,sc − Ξ21,sc)

′
(
Ŝ22,sc − Ŝ21,sc

))+}
+op(εN,T ), (C.81)

where (A)+ = A+A′.

ii) Asymptotic expansion of Ψ̂
∗(I)
cs (Ik1−kc − R̃ss)

−1Ψ̂
(I)
sc

Let us now consider the term Ψ̂
∗(I)
cs (Ik1−kc − R̃ss)−1Ψ̂

(I)
sc . By the formula of the partitioned inverse for Ṽ −1

11 ,
and Lemmas B.1 and C.7, we have:

Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1Ψ̂(I)
sc

= Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1
[
(Ṽ −1

11 )ssΨ̂
∗(I)
sc +Op

(
T−1/2Ψ̂∗(I)cc

)]
= Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1(Ṽ −1

11 )ssΨ̂
∗(I)
sc +Op

(
δN,T

1√
T

(
1

N
+

1

T 2
+

1

T
√
NT

+ εN,T

))
= Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1(Ṽ −1

11 )ssΨ̂
∗(I)
sc + op(εN,T ), (C.82)

if N � T 5/2. Let us consider Ψ̂
∗(I)
cs (Ik1−kc − R̃ss)−1(Ṽ −1

11 )ssΨ̂
∗(I)
sc . By using Ψ̂∗(I) = −X̂11R̃ + X̂12B̃ −

B̃′X̂22B̃+ B̃′X̂21, the expansion for X̂j,k in (C.76), R̃ss = ΦΦ′+ op(1), and the condition T 1/2 � N � T 5/2

to control negligible terms, we get:

Ψ̂
∗(I)
cs (Ik1−kc − R̃ss)

−1(Ṽ −1
11 )ssΨ̂

∗(I)
sc

=
1

T 2

{[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

(Ik1−kc − R̃ss)
−1(Ṽ −1

11 )ss
[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

}
+

1

T
√
NT

{[
−Ξ11R+ Ξ12B −B′Ξ22B +B′Ξ21

]
cs

(
Ik1−kc − ΦΦ′

)−1
[
−Ŝ11R+ Ŝ12B −B′Ŝ22B +B′Ŝ21

]
sc

+
[
−Ŝ11R+ Ŝ12B −B′Ŝ22B +B′Ŝ21

]
cs

(
Ik1−kc − ΦΦ′

)−1 [−Ξ11R+ Ξ12B −B′Ξ22B +B′Ξ21

]
sc

}
+ op(εN,T ).

By using equations (C.79)-(C.80) and:[
−Ξ11R+ Ξ12B −B′Ξ22B +B′Ξ21

]
cs

= −Ξ11,csΦΦ′ + Ξ12,csΦ
′ − Ξ22,csΦ

′ + Ξ21,cs,[
−Ŝ11R+ Ŝ12B −B′Ŝ22B +B′Ŝ21

]
cs

= −Ŝ11,csΦΦ′ + Ŝ12,csΦ
′ − Ŝ22,csΦ

′ + Ŝ21,cs,

we get:

Ψ̂
∗(I)
cs (Ik1−kc − R̃ss)

−1(Ṽ −1
11 )ssΨ̂

∗(I)
sc

=
1

T 2

{[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

(Ik1−kc − R̃ss)
−1(Ṽ −1

11 )ss
[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

}
+

1

T
√
NT

{[
−Ξ11,csΦΦ′ + Ξ12,csΦ

′ − Ξ22,csΦ
′ + Ξ21,cs

] (
Ik1−kc − ΦΦ′

)−1
[
−Ŝ11,sc + Ŝ12,sc − ΦŜ22,sc + ΦŜ21,sc

]
+
[
−Ŝ11,csΦΦ′ + Ŝ12,csΦ

′ − Ŝ22,csΦ
′ + Ŝ21,cs

] (
Ik1−kc − ΦΦ′

)−1
[−Ξ11,sc + Ξ12,sc − ΦΞ22,sc + ΦΞ21,sc]

}
+ op(εN,T ).
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iii) Asymptotic expansion of Ψ̂
∗ (II)
cc + Ψ̂

∗(I)
cs (Ik1−kc − R̃ss)

−1Ψ̂
(I)
sc

By putting the expansions (C.81), (C.82) and (C.83) together, we get the asymptotic expansion:

Ψ̂
∗ (II)
cc + Ψ̂

∗(I)
cs (Ik1−kc − R̃ss)

−1Ψ̂
(I)
sc

=
1

T 2

{(
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
+
(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1
22

(
Ξ̃22B̃ − Ξ̃21

))
cc

+
[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

(Ik1−kc − R̃ss)
−1(Ṽ −1

11 )ss
[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

}
+

1

T
√
NT

{[
−Ξ11,cs + Ξ12,csΦ

′ − Ξ22,csΦ
′ + Ξ21,cs

] (
Ik1−kc − ΦΦ′

)−1
[
−Ŝ11,sc + Ŝ12,sc − ΦŜ22,sc + ΦŜ21,sc

]
+
[
−Ŝ11,cs + Ŝ12,csΦ

′ − Ŝ22,csΦ
′ + Ŝ21,cs

] (
Ik1−kc − ΦΦ′

)−1
[−Ξ11,sc + Ξ12,sc − ΦΞ22,sc + ΦΞ21,sc]

+
(

(Ξ22,cc − Ξ21,cc)
′(Ŝ22,cc − Ŝ21,cc) + (Ξ22,sc − Ξ21,sc)

′(Ŝ22,sc − Ŝ21,sc)
)+}

+ op(εN,T ).

By using:

[
−Ξ11,cs + Ξ12,csΦ

′ − Ξ22,csΦ
′ + Ξ21,cs

] (
Ik1−kc − ΦΦ′

)−1
[
−Ŝ11,sc + Ŝ12,sc − ΦŜ22,sc + ΦŜ21,sc

]
+
[
−Ŝ11,cs + Ŝ12,csΦ

′ − Ŝ22,csΦ
′ + Ŝ21,cs

] (
Ik1−kc − ΦΦ′

)−1
[−Ξ11,sc + Ξ12,sc − ΦΞ22,sc + ΦΞ21,sc]

= [−Ξ11,sc + ΦΞ21,sc − ΦΞ22,sc + Ξ12,sc]
′ (Ik1−kc − ΦΦ′

)−1
[
−Ŝ11,sc + Ŝ12,sc − ΦŜ22,sc + ΦŜ21,sc

]
+
[
−Ŝ11,sc + ΦŜ21,sc − ΦŜ22,sc + Ŝ12,sc

]′ (
Ik1−kc − ΦΦ′

)−1
[−Ξ11,sc + Ξ12,sc − ΦΞ22,sc + ΦΞ21,sc]

=
(

[(Ξ11,sc − Ξ12,sc)− Φ(Ξ21,sc − Ξ22,sc)]
′ (Ik1−kc − ΦΦ′

)−1
[
(Ŝ11,sc − Ŝ12,sc)− Φ(Ŝ21,sc − Ŝ22,sc)

])+
,

since Ξj,j = Ξ′j,j for j = 1, 2, Ξ1,2 = Ξ′2,1, and similarly for the Ŝj,k, we get:

Ψ̂
∗ (II)
cc + Ψ̂

∗(I)
cs (Ik1−kc − R̃ss)

−1Ψ̂
(I)
sc

=
1

T 2

{(
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
+
(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1
22

(
Ξ̃22B̃ − Ξ̃21

))
cc

+
[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

(Ik1−kc − R̃ss)
−1(Ṽ −1

11 )ss
[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

}
+

1

T
√
NT

{(
[(Ξ11,sc − Ξ12,sc)− Φ(Ξ21,sc − Ξ22,sc)]

′ (Ik1−kc − ΦΦ′
)−1

[
(Ŝ11,sc − Ŝ12,sc)− Φ(Ŝ21,sc − Ŝ22,sc)

])+
+
(

(Ξ22,cc − Ξ21,cc)
′(Ŝ22,cc − Ŝ21,cc) + (Ξ22,sc − Ξ21,sc)

′(Ŝ22,sc − Ŝ21,sc)
)+}

+ op(εN,T ).

Let us now rewrite the term at order 1
T
√
NT

. From the definitions of matrices Ξj,k and Ŝj,k, we have:

(Ξ22,cc − Ξ21,cc)
′
(
Ŝ22,cc − Ŝ21,cc

)
+ (Ξ22,sc − Ξ21,sc)

′
(
Ŝ22,sc − Ŝ21,sc

)
= E

[
(b̄

(c)
1,t − b̄

(c)
2,t)f

c′
t

] 1
√
T

T∑
t=1

fct (µNu
(c)
1,t − u

(c)
2,t)
′ + E

[
(b̄

(c)
1,t − b̄

(c)
2,t)f

c′
t

] 1

T

T∑
t=1

fct (µNd
(c)
1,t − d

(c)
2,t)
′

+E
[
(b̄

(c)
1,t − b̄

(c)
2,t)f

s′
2,t

] 1
√
T

T∑
t=1

fs2,t(µNu
(c)
1,t − u

(c)
2,t)
′ + E

[
(b̄

(c)
1,t − b̄

(c)
2,t)f

s′
2,t

] 1

T

T∑
t=1

fs2,t(µNd
(c)
1,t − d

(c)
2,t)
′,
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and:

[(Ξ11,sc − Ξ12,sc)− Φ(Ξ21,sc − Ξ22,sc)]
′ (Ik1−kc − ΦΦ′

)−1
[
(Ŝ11,sc − Ŝ12,sc)− Φ(Ŝ21,sc − Ŝ22,sc)

]
= E

[(
b̄
(c)
1,t − b̄

(c)
2,t

)
(fs1,t − Φfs2,t)

′
] (
Ik1−kc − ΦΦ′

)−1 1
√
T

T∑
t=1

(fs1,t − Φfs2,t)
(
µNu

(c)
1,t − u

(c)
2,t

)′
+E

[(
b̄
(c)
1,t − b̄

(c)
2,t

)
(fs1,t − Φfs2,t)

′
] (
Ik1−kc − ΦΦ′

)−1 1

T

T∑
t=1

(fs1,t − Φfs2,t)
(
µNd

(c)
1,t − d

(c)
2,t

)′
= E

[(
b̄
(c)
1,t − b̄

(c)
2,t

)
fs′1⊥2,t

] 1
√
T

T∑
t=1

fs1⊥2,t

(
µNu

(c)
1,t − u

(c)
2,t

)′
+ E

[(
b̄
(c)
1,t − b̄

(c)
2,t

)
fs′1⊥2,t

] 1

T

T∑
t=1

fs1⊥2,t

(
µNd

(c)
1,t − d

(c)
2,t

)′
,

where fs1⊥2,t := (Ik1−kc − ΦΦ′)−1/2 (fs1,t − Φfs2,t) is the residual of the L2 orthogonal projection of fs1,t onto
fs2,t normalized to have unit length. Moreover, since [f c ′t , fs ′1⊥2,t, f

s ′
2,t ]
′ is a linear one-to-one transformation of

Ft = [f c ′t , fs ′1,t , f
s ′
2,t ]
′ with unit identity variance-covariance matrix, we have that:

E
[
(b̄

(c)
1,t − b̄

(c)
2,t)f

c′
t

] 1√
T

T∑
t=1

f ct (µNu
(c)
1,t − u

(c)
2,t)
′ + E

[
(b̄

(c)
1,t − b̄

(c)
2,t)f

s′
2,t

] 1√
T

T∑
t=1

fs2,t(µNu
(c)
1,t − u

(c)
2,t)
′

+E
[(
b̄
(c)
1,t − b̄

(c)
2,t

)
fs′1⊥2,t

] 1√
T

T∑
t=1

fs1⊥2,t

(
µNu

(c)
1,t − u

(c)
2,t

)′
= E

[(
b̄
(c)
1,t − b̄

(c)
2,t

)
F ′t

]
Σ−1
F

1√
T

T∑
t=1

Ft

(
µNu

(c)
1,t − u

(c)
2,t

)′
,

where matrix ΣF is defined in Assumption A.2. The vector E
[(
b̄
(c)
1,t − b̄

(c)
2,t

)
F ′t

]
Σ−1
F Ft is the L2 orthogonal

projection of
(
b̄
(c)
1,t − b̄

(c)
2,t

)
onto Ft. Similarly:

E
[
(b̄

(c)
1,t − b̄

(c)
2,t)f

c′
t

] 1

T

T∑
t=1

f ct (µNd
(c)
1,t − d

(c)
2,t)
′ + E

[
(b̄

(c)
1,t − b̄

(c)
2,t)f

s′
2,t

] 1

T

T∑
t=1

f s2,t(µNd
(c)
1,t − d

(c)
2,t)
′

+E
[(
b̄
(c)
1,t − b̄

(c)
2,t

)
fs′1⊥2,t

] 1

T

T∑
t=1

f s1⊥2,t

(
µNd

(c)
1,t − d

(c)
2,t

)′
= E

[(
b̄
(c)
1,t − b̄

(c)
2,t

)
F ′t

]
Σ−1
F

1

T

T∑
t=1

Ft

(
µNd

(c)
1,t − d

(c)
2,t

)′
.

Online Appendix - 30



Then, we get:

Ψ̂∗ (II)
cc + Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1Ψ̂(I)

sc

=
1

T 2

{(
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
+
(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1

22

(
Ξ̃22B̃ − Ξ̃21

))
cc

+
[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

(Ik1−kc − R̃ss)−1(Ṽ −1
11 )ss ×[

−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

}
+

1

T
√
NT

{(
E
[(
b̄
(c)
1,t − b̄

(c)
2,t

)
F ′t

]
Σ−1
F

1√
T

T∑
t=1

Ft

(
µNu

(c)
1,t − u

(c)
2,t

)′
+ E

[(
b̄
(c)
1,t − b̄

(c)
2,t

)
F ′t

]
Σ−1
F

1

T

T∑
t=1

Ft

(
µNd

(c)
1,t − d

(c)
2,t

)′)+
+ op(εN,T ). (C.83)

Let us now rework the term at order T−2. For this purpose we use the equations:[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cc

= −Ξ̃11,cc + Ξ̃12,cc − Ξ̃22,cc + Ξ̃21,cc = 0,[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

= −Ξ̃11,sc + Ξ̃12,sc − B̃′csΞ̃22,cc

−B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc,[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

= −Ξ̃11,ccR̃cs − Ξ̃11,csR̃ss + Ξ̃12,ccB̃cs + Ξ̃12,csB̃ss

−Ξ̃22,ccB̃cs − Ξ̃22,csB̃ss + Ξ̃21,cs.

Then, a block product computation yields:(
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

])
cc

+
[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

(Ik1−kc − R̃ss)−1(Ṽ −1
11 )ss ×[

−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

= −
[
Ξ̃11,cc(Ṽ

−1
11 )cs + Ξ̃11,cs(Ṽ

−1
11 )ss

]
×[

−Ξ̃11,sc + Ξ̃12,sc − B̃′csΞ̃22,cc − B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc

]
+
[
−Ξ̃11,ccR̃cs − Ξ̃11,csR̃ss + Ξ̃12,ccB̃cs + Ξ̃12,csB̃ss − Ξ̃22,ccB̃cs − Ξ̃22,csB̃ss + Ξ̃21,cs

]
×(Ik1−kc − R̃ss)−1(Ṽ −1

11 )ss

[
−Ξ̃11,sc + Ξ̃12,sc − B̃′csΞ̃22,cc − B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc

]
=

[
−Ξ̃11,cc

(
(Ṽ −1

11 )cs(Ṽ
−1

11 )−1
ss (Ik1−kc − R̃ss) + R̃cs

)
−Ξ̃11,cs + Ξ̃12,ccB̃cs + Ξ̃12,csB̃ss − Ξ̃22,ccB̃cs − Ξ̃22,csB̃ss + Ξ̃21,cs

]
×(Ik1−kc − R̃ss)−1(Ṽ −1

11 )ss

[
−Ξ̃11,sc + Ξ̃12,sc − B̃′csΞ̃22,cc − B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc

]
.

Let us show that the term (Ṽ −1
11 )cs(Ṽ

−1
11 )−1

ss (Ik1−kc − R̃ss) + R̃cs vanishes. Indeed, from equation (C.67) we
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have:

(Ṽ −1
11 )cs(Ṽ

−1
11 )−1

ss (Ik1−kc − R̃ss) + R̃cs =
[
(Ṽ −1

11 )cs(Ṽ
−1

11 )−1
ss + R̃cs(Ik1−kc − R̃ss)−1

]
(Ik1−kc − R̃ss)

=
[
(Ṽ −1

11 )cs(Ṽ
−1

11 )−1
ss + Σ̃−1

cc Σ̃c,1

]
(Ik1−kc − R̃ss)

= Σ̃−1
cc

[
Σ̃cc(Ṽ

−1
11 )cs + Σ̃c,1(Ṽ −1

11 )ss

]
(Ṽ −1

11 )−1
ss (Ik1−kc − R̃ss)

= Σ̃−1
cc

[
(Ṽ11)cc(Ṽ

−1
11 )cs + (Ṽ11)cs(Ṽ

−1
11 )ss

]
(Ṽ −1

11 )−1
ss (Ik1−kc − R̃ss)

= 0.

Therefore, we get:(
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

])
cc

+
[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

(Ik1−kc − R̃ss)−1(Ṽ −1
11 )ss ×[

−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

=
[
−Ξ̃11,cs + Ξ̃12,ccB̃cs + Ξ̃12,csB̃ss − Ξ̃22,ccB̃cs − Ξ̃22,csB̃ss + Ξ̃21,cs

]
×(Ik1−kc − R̃ss)−1(Ṽ −1

11 )ss

[
−Ξ̃11,sc + Ξ̃12,sc − B̃′csΞ̃22,cc − B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc

]
=

[
−Ξ̃11,sc + Ξ̃12,sc − B̃′csΞ̃22,cc − B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc

]′
×(Ik1−kc − R̃ss)−1(Ṽ −1

11 )ss

[
−Ξ̃11,sc + Ξ̃12,sc − B̃′csΞ̃22,cc − B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc

]
.

Let us consider the term −Ξ̃11,sc + Ξ̃12,sc - B̃′csΞ̃22,cc - B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc =

−
[
(Ξ̃11,sc − Ξ̃12,sc)− B̃′cs(Ξ̃21,cc − Ξ̃22,cc)− B̃′ss(Ξ̃21,sc − Ξ̃22,sc)

]
. Using Ξ̃11,sc−Ξ̃12,sc = 1

T

∑
t f

s
1,t

(
b
(c)
1,t − b

(c)
2,t

)′
,

Ξ̃21,cc − Ξ̃22,cc = 1
T

∑
t f

c
t

(
b
(c)
1,t − b

(c)
2,t

)′
and Ξ̃21,sc − Ξ̃22,sc = 1

T

∑
t f

s
2,t

(
b
(c)
1,t − b

(c)
2,t

)′
, we can write it as:

−Ξ̃11,sc + Ξ̃12,sc − B̃′csΞ̃22,cc − B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc

= − 1

T

T∑
t=1

[
fs1,t − B̃′csf ct − B̃′ssfs2,t

] (
b
(c)
1,t − b

(c)
2,t

)′
.

Noting that

B̃′ = Ṽ12Ṽ
−1

22 =

[
I 0

B̃′cs B̃′ss

]
,

we deduce that:
f̃1⊥2c,t = fs1,t − B̃′csf ct − B̃′ssfs2,t, t = 1, ..., T,

are the residuals in the sample orthogonal projection of fs1,t on fs2,t and f ct . Let us now show that (Ik1−kc −
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R̃ss)
−1(Ṽ −1

11 )ss is the inverse of the sample variance of that residuals. Indeed, the sample variance is:

1

T

T∑
t=1

f̃1⊥2c,tf̃
′
1⊥2c,t =

1

T

T∑
t=1

[
fs1,t − B̃′csf ct − B̃′ssf2,t

]
fs′1,t

= Σ̃11 − B̃′csΣ̃c,1 − B̃′ssΣ̃2,1 =
(
Ṽ11 − B̃′Ṽ21

)
ss

=
(
Ṽ11(Ik1 − R̃)

)
ss

= −Σ̃1cR̃cs + Σ̃11(Ik1−kc −Rss)

=
[
−Σ̃1cR̃cs(Ik1−kc −Rss)−1 + Σ̃11

]
(Ik1−kc −Rss)

=
(
−Σ̃1cΣ̃

−1
cc Σ̃c1 + Σ̃11

)
(Ik1−kc −Rss) = [(Ṽ −1

11 )ss]
−1(Ik1−kc −Rss),

from Equation (C.67). By gathering these results, we get:(
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

])
cc

+
[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

(Ik1−kc − R̃ss)−1(Ṽ −1
11 )ss ×[

−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

=

[
1

T

T∑
t=1

(
b
(c)
1,t − b

(c)
2,t

)
f̃ ′1⊥2c,t

](
1

T

T∑
t=1

f̃1⊥2c,tf̃
′
1⊥2c,t

)−1 [
1

T

T∑
t=1

f̃1⊥2c,t

(
b
(c)
1,t − b

(c)
2,t

)′]
.

Let us now consider the term
[(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1

22

(
Ξ̃22B̃ − Ξ̃21

)]
cc

also showing at order T−2 in the r.h.s.

of the asymptotic expansion (C.83). Direct computation yields:[(
Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1

22

(
Ξ̃22B̃ − Ξ̃21

)]
cc

=

[
(Ξ̃22,cc − Ξ̃21,cc)

′ ... (Ξ̃22,sc − Ξ̃21,sc)
′
]
Ṽ −1

22

[
Ξ̃22,cc − Ξ̃21,cc

Ξ̃22,sc − Ξ̃21,sc

]

=

[
1

T

T∑
t=1

(
b
(c)
1,t − b

(c)
2,t

)
h′2,t

](
1

T

T∑
t=1

h2,th
′
2,t

)−1 [
1

T

T∑
t=1

h2,t

(
b
(c)
1,t − b

(c)
2,t

)′]
.

Online Appendix - 33



Hence, the term at order T−2 in the r.h.s. of (C.83) becomes:(
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
+
(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1

22

(
Ξ̃22B̃ − Ξ̃21

))
cc

+
[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

(Ik1−kc − R̃ss)−1(Ṽ −1
11 )ss ×[

−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

=

[
1

T

T∑
t=1

(
b
(c)
1,t − b

(c)
2,t

)
h′2,t

](
1

T

T∑
t=1

h2,th
′
2,t

)−1 [
1

T

T∑
t=1

h2,t

(
b
(c)
1,t − b

(c)
2,t

)′]

+

[
1

T

T∑
t=1

(
b
(c)
1,t − b

(c)
2,t

)
f̃ ′1⊥2c,t

](
1

T

T∑
t=1

f̃1⊥2c,tf̃
′
1⊥2c,t

)−1 [
1

T

T∑
t=1

f̃1⊥2,c

(
b
(c)
1,t − b

(c)
2,t

)′]

=

[
1

T

T∑
t=1

(
b
(c)
1,t − b

(c)
2,t

)
F ′t

]
Σ̃−1
F

[
1

T

T∑
t=1

Ft

(
b
(c)
1,t − b

(c)
2,t

)′]
, (C.84)

where:

Σ̃F =
1

T

T∑
t=1

FtF
′
t ,

because f̃1⊥2c,t is orthogonal in-sample to h2,t, and (f̃ ′1⊥2,c, h
′
2,t)
′ is a linear transformation of (f c′t , f

s′
1,t, f

s′
2,t)
′.

By substituting (C.84) into (C.83), we get:

Ψ̂∗ (II)
cc + Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1Ψ̂(I)

sc

=
1

T 2

{[
1

T

T∑
t=1

(
b
(c)
1,t − b

(c)
2,t

)
F ′t

]
Σ̃−1
F

[
1

T

T∑
t=1

Ft

(
b
(c)
1,t − b

(c)
2,t

)′]}

+
1

T
√
NT

{(
E
[(
b̄
(c)
1,t − b̄

(c)
2,t

)
F ′t

]
Σ−1
F

1√
T

T∑
t=1

Ft

(
µNu

(c)
1,t − u

(c)
2,t

)′
+ E

[(
b̄
(c)
1,t − b̄

(c)
2,t

)
F ′t

]
Σ−1
F

1

T

T∑
t=1

Ft

(
µNd

(c)
1,t − d

(c)
2,t

)′)+
+ op(εN,T ). (C.85)

iv) Conclusion

We finally consider the other second-order terms in the r.h.s. of (B.13).
By Ψ̂

∗(I)
cc = Op

(
1
N + 1

T 2 + 1
T
√
NT

+ εN,T

)
from Lemma C.7, we have:

Ψ̂∗(I)cc Σ̃−1
cc Ψ̂∗(I)cc = op(εN,T ), (C.86)

if T 1/2 � N � T 3. Moreover, by using Σ̃c,1(Ik1−kc − R̃ss)−1 = Op(T
−1/2) from (C.74), Ψ̂

(I)
sc = Op(δN,T ),

and Ψ̂
∗(I)
cc = Op

(
1
N + 1

T 2 + 1
T
√
NT

+ εN,T

)
, we have:

Σ̃c,1(Ik1−kc − R̃ss)−1Ψ̂(I)
sc Σ̃−1

cc Ψ̂∗(I)cc = Op

[
1√
T
δN,T

(
1

N
+

1

T 2
+

1

T
√
NT

+ εN,T

)]
= op (εN,T ) , (C.87)
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if T 1/2 � N � T 3. From (C.85), (C.86) and (C.87), the conclusion follows. �

C.9 Proof of Lemma B.6
We show the conditions in parts (i)-(iv) of Lemma B.6. Part (i) follows by the Law of Iterated Expectation and
E(Ut|Ft) = 0, which is implied by Assumption A.4 a). Part (ii) is implied by Assumptions A.3, A.4 b) and A.5
b). The NED property in part (iii) holds true because conditional expectations givenFt can be well approximated
by elements in the sigma-field Vt+mt−m generated by the mixing process (Vt), for large m, by Assumptions A.3,
A.4 b), A.5 b) and A.6 a)-c), as we show in the next lemma.

LEMMA C.9. Assumptions A.3, A.4 b), A.5 b) and A.6 a)-c) imply part (iii) in Lemma B.6.

To check part (iv) in Lemma B.6 we use:

lim
T,N→∞

V

(
1√
T

T∑
t=1

ZN,t

)
= lim

T,N→∞

1

T

T−1∑
h=−T+1

(T − |h|)Cov (ZN,t,ZN,t−h)

= lim
N→∞

∞∑
h=−∞

Cov (ZN,t,ZN,t−h) ,

where the first equality follows from stationarity of the data. The series converges because the zero-mean process
ZN,t is a L2-mixingale with size −1, 1 by Theorem 17.5 in Davidson (1994) and Conditions (ii)-(iii), which

implies ‖Cov (ZN,t,ZN,t−h)‖ =
∥∥E [E(ZN,t|Vt−h)Z ′N,t−h

]∥∥ ≤ ‖E(ZN,t|Vt−h)‖2‖ZN,t−h‖2 = O
(
h−ψ

)
,

uniformly in N1, N2 ≥ 1, for some ψ > 1. The latter uniform bound also allows for an application of the
Lebesgue Lemma to get:

ΩU = lim
T,N→∞

V

(
1√
T

T∑
t=1

ZN,t

)
=

∞∑
h=−∞

Γ(h),

where Γ(h) = limN→∞Cov (ZN,t,ZN,t−h), which yields equation (B.16). The computations in Subsection
B.1.6, and in particular Lemma B.7, show that the limit in Γ(h) is well-defined.

C.9.1 Proof of Lemma C.9

Assumption A.6 a) gives the strong mixing condition for process Vt. SinceUt = µN
(

Σ̃−1
Λ,1ξ1,t

)(c)
−
(

Σ̃−1
Λ,2ξ2,t

)(c)
,

where Σ̃Λ,j = Λ′jΛj/Nj for j = 1, 2, process Ut is function of the components of process Vt. Therefore, to
prove the NED property for process ZN,t, we simply have to show that processes XN,t = E(U ′tUt|Ft) and
YN,t = ∆b

(c)′
t Ut are L2-NED on (Vt). For the first process we have:

‖XN,t − E(XN,t|Vt+mt−m )‖2 ≤ ‖XN,t − E(XN,t|Ft, ..., Ft−m)‖2
= ‖E(U ′tUt|Ft)− E(U ′tUt|Ft, ..., Ft−m)‖2 = O(m−ψ),

for ψ > 1, by the Law of Iterated Expectation and Assumption A.6 b). For the second process we have:

‖YN,t − E(YN,t|Vt+mt−m )‖2 ≤ ‖U ′t(∆b
(c)
t − E[∆b

(c)
t |V

t+m
t−m ])‖2 ≤ E

[
‖Ut‖2‖∆b(c)t − E(∆b

(c)
t |V

t+m
t−m )‖2

]1/2

≤ ‖Ut‖2r‖∆b(c)t − E(∆b
(c)
t |V

t+m
t−m )‖2p,

1That is, ‖E[ZN,t|Vt−m]‖2 ≤ ζ(m), uniformly in t ≥ 1 and N1, N2 ≥ 1, where ζ(m) = O(m−ψ) for some ψ > 1.
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where p = r/(r− 1), by the Holder inequality. Term ‖Ut‖2r is bounded uniformly in N1, N2 ≥ 1 and t ≥ 1 by
Assumptions A.3 and A.5 b). Moreover, by the definition of process ∆bt we get:

‖∆b(c)t − E(∆b
(c)
t |V

t+m
t−m )‖2p ≤

2∑
j=1

‖b̄(c)j,t − E(b̄
(c)
j,t |V

t+m
t−m )‖2p ≤

2∑
j=1

‖Σ−1
Λ,j‖‖hj,t(η

2
j,t − E(η2

j,t|Vt+mt−m ))‖2p

≤
2∑
j=1

‖Σ−1
Λ,j‖‖hj,t‖4p‖η

2
j,t − E(η2

j,t|Vt+mt−m )‖4p.

The latter term is O(m−ψ) with ψ > 1 by Assumptions A.3, A.4 b) A.6 c) and 4p ≤ 8. The conclusion follows.
�

C.10 Proof of Lemma B.7
First, let us show that we can interchange the limit N → ∞ and the outer expectation in the r.h.s. of equation
(B.18), i.e.:

lim
N→∞

E [Cov (ZN,t,ZN,t−h|Ft)] = E

[
lim
N→∞

Cov (ZN,t,ZN,t−h|Ft)
]
. (C.88)

Indeed, by the Cauchy-Schwarz inequality, we have the bound Cov (ZN,t,ZN,t−h|Ft) ≤ χtχt−h, P -a.s., uni-
formly in N1, N2 ≥ 1, where χt := supN1,N2≥1E

[
‖ZN,t‖2|Ft

]1/2. The uniform upper bound χtχt−h is inte-
grable, becauseE[χtχt−h] ≤ E[χ2

t ]
1/2E[χ2

t−h]1/2 by Cauchy-Schwarz, andE[χ2
t ] = E

[
supN1,N2≥1E

(
‖ZN,t‖2|Ft

)]
≤ CE

[
supN1,N2≥1E

(
‖Ut‖4|Ft

)]
< ∞, for a constant C, by Assumption A.5 b). Then, (C.88) follows by an

application of the Lebesgue Lemma.
Second, let us write Cov (ZN,t,ZN,t−h|Ft) in block form using ZN,t = [U ′tUt − E(U ′tUt|Ft),∆b

(c)′
t Ut]

′ and
show that:

lim
N→∞

[
Cov(U ′tUt, U

′
t−hUt−h|Ft) Cov(U ′tUt,∆b

(c)′
t−hUt−h|Ft)

Cov(∆b
(c)′
t Ut, U

′
t−hUt−h|Ft) Cov(∆b

(c)′
t Ut,∆b

(c)′
t−hUt−h|Ft)

]

=

[
Cov(U∞ ′t U∞t , U

∞ ′
t−hU

∞
t−h|Ft) Cov(U∞ ′t U∞t ,∆b

(c)′
t−hU

∞
t−h|Ft)

Cov(∆b
(c)′
t U∞t , U

∞ ′
t−hU

∞
t−h|Ft) Cov(∆b

(c)′
t U∞t ,∆b

(c)′
t−hU

∞
t−h|Ft)

]
, P − a.s.(C.89)

We focus on the convergence of the upper-left block; the arguments for the other blocks are similar. We have
Cov(U ′tUt, U

′
t−hUt−h|Ft) = E[(U ′tUt)(U

′
t−hUt−h)|Ft]− E[U ′tUt|Ft]E[U ′t−hUt−h|Ft]. Let us prove that:

lim
N→∞

E[(U ′tUt)(U
′
t−hUt−h)|Ft] = E[(U∞′t U∞t )(U∞′t−hU

∞
t−h)|Ft], P − a.s. (C.90)

By definition of conditional expectation, this is equivalent to:

E

[
lim
N→∞

E[(U ′tUt)(U
′
t−hUt−h)|Ft]1A

]
= E

[
(U∞′t U∞t )(U∞′t−hU

∞
t−h)1A

]
,

for any measurable set A ∈ Ft. By Assumption A.5 b) and the Lebesgue Lemma, we can interchange the limes
and the expectation in the l.h.s., and by the Law of Iterated Expectation we get:

lim
N→∞

E
[
(U ′tUt)(U

′
t−hUt−h)1A

]
= E

[
(U∞′t U∞t )(U∞′t−hU

∞
t−h)1A

]
. (C.91)

Now, by (B.19) and stable convergence, we have (U ′tUt)(U
′
t−hUt−h)1A

d→ (U∞′t U∞t )(U∞′t−hU
∞
t−h)1A. More-
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over, by Assumption A.5 b), we have uniform integrability: supN≥1E[|(U ′tUt)(U ′t−hUt−h)1A|ρ] <∞, for some
ρ > 1. Therefore, by the Corollary of Theorem 25.12 on page 338 in Billingsley (1995), we get (C.91). By
similar arguments applied to E[U ′tUt|Ft] and E[U ′t−hUt−h|Ft], and to the other blocks of the matrix in the l.h.s.
of (C.89), equation (C.89) follows. Combining (C.88) and (C.89), the statement of Lemma B.7 follows. �

C.11 Proof of Lemma B.8
The proof of Lemma B.8 deploys the following uniform asymptotic expansions of factors and loadings estimates:

f̂ ct = Ĥ−1
c

[
f ct +

1√
N1

u
(c)
1,t

]
+ op

(
T−1/2

)
, (C.92)

f̂sj,t = Ĥ−1
s,j

[
f̃sj,t +

1√
Nj

u
(s)
j,t

]
+ op(T

−1/2), j = 1, 2, (C.93)

λ̂cj,i = Ĥ′c
[
λcj,i + Σ̃−1

cc Σ̃c,jλ
s
j,i +

1√
T
wcj,i

]
+ op

(
T−1/2

)
, j = 1, 2, (C.94)

λ̂sj,i = Ĥ′s,j
[
λsj,i +

1√
T
wsj,i

]
+ op

(
T−1/2

)
, j = 1, 2, (C.95)

where the op(T−1/2) terms are uniform w.r.t. 1 ≤ t ≤ T and 1 ≤ i ≤ Nj , vector uj,t is defined in Proposition 3,
f̃sj,t = f sj,t− Σ̃j,cΣ̃

−1
cc f

c
t , wcj,i = Σ̃−1

cc
1√
T

∑T
t=1 f

c
t εj,i,t and wsj,i = ( 1

T F̃
s ′
j F̃ sj )−1 1√

T

∑T
t=1 f̃

s
j,tεj,i,t, and matrices

Ĥc and Ĥs,j are such that Ĥ′cĤc = Ikc + op(1) and Ĥ′s,jĤs,j = Iksj + op(1).
These asymptotic expansions hold under Assumptions A.1-A.4, A.5 b)-c), A.6 a), A.7, A.8, and are derived in
Proposition D.4 in Appendix D.4.

C.11.1 Proof of Lemma B.8 Part (i)

To derive the asymptotic expansion of matrix Λ̂′jΛ̂j/Nj , we work with the matrix versions of the asymptotic
expansions in equations (C.94) and (C.95). Stacking the loadings λ̂cj,i in matrix Λ̂cj = [λ̂cj,1, ..., λ̂

c
j,Nj

]′ we get:

Λ̂cj =

[
Λcj +

1√
T

(Gcj + Λsj
√
T Σ̃j,cΣ̃

−1
cc )

]
Ĥc + op

(
T−1/2

)
,

where

Gcj =
1√
T
ε′jF

c, (C.96)

and op(T−1/2) denotes a matrix whose rows are (kc, 1) vectors uniformly of order op(T−1/2). Similarly, stack-
ing the loadings λ̂sj,i in matrix Λ̂sj = [λ̂sj,1, ..., λ̂

s
j,Nj

]′ we get:

Λ̂sj =

[
Λsj +

1√
T
Gsj

]
Ĥs,j + op

(
T−1/2

)
,

where

Gsj =
1√
T
ε′jF

s
j . (C.97)
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By gathering these expansions into matrix Λ̂j = [Λ̂cj
... Λ̂sj ], we get:

Λ̂j =

(
Λj +

1√
T
Gj +

1√
T

ΛjQj

)
Ûj + op

(
T−1/2

)
, j = 1, 2, (C.98)

where

Gj =
[
Gcj

... Gsj

]
=

1√
T
ε′jHj , Hj = [F c

... F sj ], (C.99)

Ûj =

[
Ĥc 0

0 Ĥs,j

]
, (C.100)

Qj =

[
0 0√

T Σ̃j,cΣ̃
−1
cc 0

]
. (C.101)

To compute
Λ̂′jΛ̂j
Nj

, we consider the matrix product:

1

Nj

[
Λj +

1√
T
Gj +

1√
T

ΛjQj

]′ [
Λj +

1√
T
Gj +

1√
T

ΛjQj

]
=

1

Nj
Λ′jΛj +

1

Nj

√
T

(
Λ′jGj +G′jΛj

)
+

1

NjT
G′jGj +

1√
T

[(
1

Nj
Λ′jΛj

)
Qj +Q′j

(
1

Nj
Λ′jΛj

)]
+

1

NjT

(
Q′jΛ

′
jGj +G′jΛjQj

)
+

1

T
Q′j

(
1

Nj
Λ′jΛj

)
Qj . (C.102)

Let us now bound the different terms. We have:

1√
Nj

Λ′jGj =
1√
NjT

Λ′jε
′
jHj =

1√
NjT

Nj∑
i=1

T∑
t=1

λj,ih
′
j,tεj,it = Op (1) ,

and:
1

Nj
G′jGj =

1

Nj

Nj∑
i=1

(
1√
T

T∑
t=1

hj,tεj,i,t

)(
1√
T

T∑
t=1

hj,tεj,i,t

)′
= Op(1),

by arguments similar to the proof of Lemma B.1. Thus, by using these bounds and Λ′jΛj/Nj = O(1) and
Qj = Op(1), from equation (C.102) we get:

1

Nj

[
Λj +

1√
T
Gj +

1√
T

ΛjQj

]′ [
Λj +

1√
T
Gj +

1√
T

ΛjQj

]
=

1

Nj
Λ′jΛj +

1√
T

(
LΛ,j + L′Λ,j

)
+Op

(
1√
NT

+
1

T

)
,

where

LΛ,j =

(
Λ′jΛj

Nj

)
Qj . (C.103)
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Therefore we have:

Λ̂′jΛ̂j

Nj
= Û ′j

[
Λ′jΛj

Nj
+

1√
T

(
LΛ,j + L′Λ,j

)]
Ûj + op

(
1√
T

)
.

C.11.2 Proof of Lemma B.8 Part (ii)

a) Asymptotic expansion of Γ̂j
We start by deriving the uniform asymptotic expansion for the residuals. The asymptotic expansions in (C.92)-
(C.95) allow to compute the asymptotic expansion of ε̂j,i,t:

ε̂j,i,t = yj,i,t − λ̂c ′j,if̂ ct − λ̂s ′j,if̂sj,t = εj,i,t −
[
λ̂c ′j,if̂

c
t − λc ′j,if ct

]
−
[
λ̂s ′j,if̂

s
j,t − λs ′j,ifsj,t

]
= εj,i,t −

[(
λcj,i + Σ̃−1

cc Σ̃c,jλ
s
j,i +

1√
T
wcj,i + op(T

−1/2)

)′(
f ct +

1√
N1

u
(c)
1,t + op(T

−1/2)

)
− λc ′j,if ct

]
−

[(
λsj,i +

1√
T
wsj,i + op(T

−1/2)

)′(
fsj,t − Σ̃j,cΣ̃

−1
cc f

c
t +

1√
Nj

u
(s)
j,t + op(T

−1/2)

)
− λs ′j,ifsj,t

]

= εj,i,t −
(

1√
N1

λc ′j,iu
(c)
1,t +

1√
T
wc′j,if

c
t

)
−

(
1√
Nj

λs ′j,iu
(s)
j,t +

1√
T
ws′j,if

s
j,t

)
+ op

(
T−1/2

)
. (C.104)

Here the op(T−1/2) term is uniform w.r.t. 1 ≤ i ≤ Nj , 1 ≤ t ≤ T by the bounds in the next Lemma C.10 and
Assumption A.8 d).

LEMMA C.10. Let X = Op,`(aN,T ) mean X = Op[aN,T (log T )b̄] for some b̄ > 0. Under Assumption A.8 we
have the following uniform bounds:

sup
1≤t≤T

‖hj,t‖ = Op,`(1), (C.105)

sup
1≤t≤T

‖uj,t‖ = Op,`(1), (C.106)

sup
1≤i≤Nj

‖ 1

T

T∑
t=1

hj,tεj,i,t‖ = Op,`(T
−η/2), (C.107)

where η ≥ 1/2.

If we adopt f̂ ct to compute residuals in panel j = 1, and f̂ c∗t for j = 2, we have:

ε̂j,i,t = εj,i,t −
1√
T

(
wc′j,if

c
t + ws′j,if

s
j,t

)
− 1√

Nj

(
λc ′j,iu

(c)
j,t + λs ′j,iu

(s)
j,t

)
+ op

(
T−1/2

)
. (C.108)
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Equation (C.108) allows us to compute:

γ̂j,ii =
1

T

T∑
t=1

ε̂2
j,i,t =

1

T

T∑
t=1

[
εj,i,t −

1√
T

(
wc′j,if

c
t + ws′j,if

s
j,t

)
− 1√

Nj

(
λc ′j,iu

(c)
j,t + λs ′j,iu

(s)
j,t

)]2

+ op

(
T−1/2

)
=

1

T

T∑
t=1

ε2
j,i,t −

2

T
√
T

T∑
t=1

εj,i,t
(
wc ′j,if

c
t + ws ′j,if

s
j,t

)
− 2

T
√
Nj

T∑
t=1

εj,i,t

(
λc ′j,iu

(c)
j,t + λs ′j,iu

(s)
j,t

)
+

1

T 2

T∑
t=1

(
wc ′j,if

c
t + ws ′j,if

s
j,t

)2
+

1

TNj

T∑
t=1

(
λc ′j,iu

(c)
j,t + λs ′j,iu

(s)
j,t

)2

+
2

T
√
TNj

T∑
t=1

(
wc ′j,if

c
t + ws ′j,if

s
j,t

) (
λc ′j,iu

(c)
j,t + λs ′j,iu

(s)
j,t

)
+ op

(
T−1/2

)
.

By solving out the parentheses, using wcj,i = 1√
T

∑T
t=1 εj,i,tf

c
t = Op(1), wsj,i = 1√

T

∑T
t=1 εj,i,tf

s
j,t = Op(1),

1√
T

∑T
t=1 εj,i,tu

(c)
j,t = Op(1) and 1√

T

∑T
t=1 εj,i,tu

(s)
j,t = Op(1), uniformly in 1 ≤ i ≤ Nj , we get:

γ̂j,ii =
1

T

T∑
t=1

ε2
j,i,t +Op

(
1

N

)
+ op

(
T−1/2

)
,

uniformly in 1 ≤ i ≤ Nj . Using that 1/N = o(1/
√
T ) when

√
T � N , we get:

γ̂j,ii =
1

T

T∑
t=1

ε2
j,i,t + op

(
T−1/2

)
= γj,ii +

1√
T
wεj,i + op

(
T−1/2

)
,

uniformly in 1 ≤ i ≤ Nj , where

wεj,i :=
1√
T

T∑
t=1

(ε2
j,i,t − γj,ii).

Therefore, we have:

Γ̂j = Γj +
1√
T
W ε
j + op

(
T−1/2

)
, (C.109)

where Γj = diag(γj,ii, i = 1, ..., Nj) and W ε
j = diag(wεj,i, i = 1, ..., N), for j = 1, 2.

b) Asymptotic expansion of 1
Nj

Λ̂′jΓ̂jΛ̂j
From (C.98) and (C.109) we have:

1

Nj
Λ̂′jΓ̂jΛ̂j = Û ′jΩ̂∗jjÛj + op

(
T−1/2

)
, (C.110)
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where we define:

Ω̂∗jj :=
1

Nj

(
Λj +

1√
T
Gj +

1√
T

ΛjQj

)′(
Γj +

1√
T
W ε
j

)(
Λj +

1√
T
Gj +

1√
T

ΛjQj

)
= Ω̃jj + Ω̂∗jj,I + Ω̂∗jj,II + Ω̂∗ ′jj,II + Ω̂∗jj,III + Ω̂∗ ′jj,III + Ω̂∗jj,IV + Ω̂∗jj,V

+
1√
T

(Ω̃jjQj +Q′jΩ̃jj) +
1√
T

(Ω̂∗jj,IQj +Q′jΩ̂
∗
jj,I) +

1√
T

(Ω̂∗jj,IIQj +Q′jΩ̂
∗ ′
jj,II)

+
1√
T

(Ω̂∗jj,IIIQj +Q′jΩ̂
∗ ′
jj,III) +

1

T
Q′jΩ̃jjQj +

1

T
Q′jΩ̂

∗
jj,IQj ,

and:

Ω̃jj :=
1

Nj
Λ′jΓjΛj ,

Ω̂∗jj,I :=
1

Nj

√
T

Λ′jW
ε
j Λj = Op

(
1√
NT

)
,

Ω̂∗jj,II :=
1

Nj

√
T
G′jΓjΛj = Op

(
1√
NT

)
,

Ω̂∗jj,III :=
1

NjT
G′jW

ε
j Λj = Op

(
1

T

)
,

Ω̂∗jj,IV :=
1

NjT
G′jΓjGj = Op

(
1

T

)
,

Ω̂∗jj,V :=
1

NjT
√
T
G′jW

ε
jGj = Op

(
1

T
√
T

)
.

Collecting the previous results, we get:

Ω̂∗jj = Ω̃jj +
1√
T

(
LΩ,j + L′Ω,j

)
+Op

(
1√
NT

+
1

T

)
, (C.111)

where:

LΩ,j = Ω̃jjQj . (C.112)

By substituting into equation (C.110) we get:

1

Nj
Λ̂′jΓ̂jΛ̂j = Û ′j

[
Ω̃jj +

1√
T

(
LΩ,j + L′Ω,j

)]
Ûj + op

(
T−1/2

)
, j = 1, 2.

�

C.11.3 Proof of Lemma C.10

We prove the uniform bounds in (C.105) and (C.107). The proof of bound (C.106) follows by similar arguments.
Proof of (C.105). Let δ = c(log T )b̄, for constants c > 0 and b̄ = 1/b, where b > 0 is defined in Assumption
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A.8 a). Then:

P [ sup
1≤t≤T

‖hj,t‖ ≥ δ] ≤
T∑
t=1

P [‖hj,t‖ ≥ δ] ≤ c1T exp(−c2δ
b) = c1T exp[−c2c

b(log T )]

= c1T
1−c2cb = o(1),

if c > (1/c2)1/b. Thus, sup
1≤t≤T

‖hj,t‖ = Op[(log T )b̄].

Proof of (C.107). Let δ = c(log T )1/2T−η/2, for constants c > 0 and η, where η ≥ 1/2 is defined in Assumption
A.8 c). Then:

P [ sup
1≤i≤Nj

‖ 1

T

T∑
t=1

hj,tεj,i,t‖ ≥ δ] ≤
Nj∑
i=1

P [‖ 1

T

T∑
t=1

hj,tεj,i,t‖ ≥ δ] ≤ Nj sup
1≤i≤Nj

P [‖ 1

T

T∑
t=1

hj,tεj,i,t‖ ≥ δ]

≤ c1NjT exp(−c2δ
2T η) + c3TNjδ

−1 exp(−c4T
η̄)

= c1NjT exp(−c2c
2(log T )) + c3TNjδ

−1 exp(−c4T
η̄)

= O(T 7/2−c2c2) + o(1) = o(1),

if c > ( 7
2c2

)1/2. Thus, sup
1≤i≤Nj

‖ 1
T

∑T
t=1 hj,tεj,i,t‖ = Op[(log T )1/2T−η/2] = Op,`(T

−η/2).

C.12 Proof of Lemma B.9
We assume that estimator f̂ ct is used to get factor loadings on panel j = 1, and estimator f̂ c ∗t is used to get
factor loadings on panel j = 2. Recall Σ̂U = (N2/N1)Σ̂

(cc)
u,11 + Σ̂

(cc)
u,22. Let r be the true number of common

factors, and let kc denote the number of common factors used in the estimation procedure. We consider the case
with r < kc ≤ k ≡ min{k1, k2}.
Let us first consider panel j = 1. The common factor estimator is f̂ ct = Ŵ ′1ĥ1,t where Ŵ1 is the k1 × kc

matrix whose columns are eigenvectors of R̂ associated with the kc largest eigenvalues, normalized to have
Ŵ ′1Ŵ1 = Ikc . Without loss of generality, let Ĥj = Ikj in Proposition 3. Then, we have R̂ = R + op(1), where

R =

(
Ir 0
0 ΦΦ′

)
. The large-sample limit of Ŵ1 is the matrix of normalized eigenvectors associated to the kc

largest eigenvalues of matrixR. These eigenvalues are 1, with multiplicity r, and ρ2
r+1, ..., ρ2

kc , that are the kc−r
largest eigenvalues of matrix ΦΦ′ (assumed distinct, to simplify the proof). Let α denote the (k1− r)× (kc− r)
matrix whose columns are the corresponding normalized eigenvectors of ΦΦ′. Then, we have Ŵ1 = W1 +op(1)
where

W1 =

[
U 0
0 α

]
,

r × r matrix U is possibly stochastic and such that U ′U = Ir, and α′α = Ikc−r. For later use, we denote by β
the (k1 − r) × (k1 − kc) matrix whose columns are an orthonormal basis of the orthogonal complement to the

columns space of α. Then, [α
... β] is an orthogonal matrix, β′β = Ik1−kc , α

′β = 0, and:

αα′ + ββ′ = Ik1−r. (C.113)

From Proposition 3 with Ĥj = Ikj we have ĥj,t ' hj,t, where symbol ' means equality up to terms that are
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asymptotically negligible for determining large-sample limits. Then:

f̂ ct 'W ′1h1,t =

[
U ′f ct
α′fs1,t

]
.

Let us consider the estimation of the factor loadings on the panel with j = 1. From (C.113) the model for this
panel can be written as:

y1,i,t = f c ′t λc1,i + fs ′1,tλ
s
1,i + ε1,i,t = [Uf c ′t ][Uλc1,i] + [α′fs1,t]

′[α′λs1,i] + [β′fs1,t]
′[β′λs1,i] + ε1,i,t

= f c ′
t
λc1,i + fs ′

1,t
λs1,i + ε1,i,t,

where f c
t

=

[
U ′f ct
α′f s1,t

]
, λc1,i =

[
U ′λc1,i
α′λs1,i

]
, fs

1,t
= β′fs1,t and λs1,i = β′λs1,i. Note that the transformed factors

f c
t

and fs
1,t

are orthogonal, and have dimensions kc and k1 − kc respectively. Since f̂ ct converges to f c
t
, by

regressing y1,i,t onto f̂ ct we estimate λc1,i. Then, the residuals satisfy the model:

ξ1,i,t ' fs ′1,t
λs1,i + ε1,i,t.

The frequency-specific factor is estimated by extracting the first k1−kc principal components from the residuals,
which yields asymptotically f̂s1,t ' Vfst , where V is an orthogonal matrix. So for the estimated factor loadings
we have:

λ̂c1,i ' λc1,i =

[
U ′λc1,i
α′λs1,i

]
, λ̂s1,i ' Vλs1,i = Vβ′λs1,i.

Thus, λ̂1,i is asymptotically an orthogonal transformation of λ1,i, i.e. λ̂1,i ' R1λ1,i, say. Using ε̂1,i,t ' ε1,i,t,
we get Σ̂u,11 ' R1Σu,11R′1, which implies Σ̂u,11 = Op(1).
Let us now consider the estimation of factor loadings in panel j = 2. By paralleling the above arguments, we
have Σ̂u,22 = Op(1). Thus, ‖Σ̂U‖ = Op(1). The conclusion follows. �

D Additional theoretical and empirical results
Section D.1 discusses the separation of common and group specific factors for identification purposes in generic
group-factor models. Section D.2 provides details about an alternative identification strategy, different from the
canonical correlation analysis proposed in Proposition 1 of Andreou, Gagliardini, Ghysels, and Rubin (2019), for
the common and group-specific factor spaces in a group-factor model. Section D.3 discusses the identification of
the mixed frequency factor model in the cases of stock-sampling, and of general linear aggregation schemes for
the LF observables. Sections D.4 and D.5 provide uniform asymptotic expansions and asymptotic distributions
of factors and loadings estimators in a group factor model. Section D.6 provides the asymptotic distribution
of factors and loadings estimators in a mixed frequency model. Section D.7 contains a digression on some
technical assumptions. Section D.8 contains a discussion of properties of an iterative PCA estimator for group
factor models. A description of the practical implementation of our estimation and testing procedures appears
in Section D.9. Section D.10 describes exhaustively the dataset used in the empirical application of Section 7.
Section D.11 presents additional empirical results.
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D.1 Separation of common and group-specific factors
The following proposition gives a sufficient condition for the identification of the group factor model (2.1) -
(2.2) when the factor dimensions kc, ks1, ks2 are known.

PROPOSITION D.1. Assume that the matrices Λ1 =

[
Λc1

... Λs1

]
and Λ2 =

[
Λc2

... Λs2

]
are full column-

rank, for N1, N2 large enough. Then, the factor model is identifiable: the data [y′1,t, y
′
2,t]
′ satisfy a group factor

model as (2.1) - (2.2) with stacked factor (f c ′t , fs ′1,t , f
s ′
2,t)
′ replaced by (f̃ c ′t , f̃ s ′1,t , f̃

s ′
2,t)
′ defined by the linear

transformation  f ct
fs1,t
fs2,t

 =

 A11 A12 A13

A21 A22 A23

A31 A32 A33

 f̃ ct
f̃s1,t
f̃s2,t

 (D.1)

if, and only if, the matrix A = (Ai,j) is a block-diagonal orthogonal matrix.

The full-rank condition in Proposition D.1 is a standard condition for separate identification of the pervasive
factor spaces in the two subgroups. The identification condition in Proposition D.1 is implied by Assumption
A.3, and implies that the matrix of loadings in the right hand side of equation (2.1) is full-rank. Proposition D.1
shows that this condition - together with the normalization restrictions in (2.2) - is also sufficient for identifi-
ability of the common factor f ct , the group-specific factors fsj,t, and the factor loadings Λcj , Λsj , up to separate
rotations. Hence, the rotational invariance of model (2.1) - (2.2) maintains the interpretation of common factor
and group-specific factors.

D.1.1 Proof of Proposition D.1

By replacing equation (D.1) into model (2.1), we get

[
y1,t

y2,t

]
=

[
Λc1A11 + Λs1A21 Λc1A12 + Λs1A22 Λc1A13 + Λs1A23

Λc2A11 + Λs2A31 Λc2A12 + Λs2A32 Λc2A13 + Λs2A33

] f̃ ct
f̃s1,t
f̃s2,t

+

[
ε1,t

ε2,t

]
.

This factor model satisfies the restrictions in the loading matrix appearing in equation (2.1) if, and only if,
Λc1A13 + Λs1A23 = 0, and Λc2A12 + Λs2A32 = 0, which can be written as linear homogeneous systems of
equations for the elements of matrices [A′13 A

′
23]′ and [A′12 A

′
32]′:[

Λc1
... Λs1

] [
A13

A23

]
= 0, and

[
Λc2

... Λs2

] [
A12

A32

]
= 0.

Since
[
Λc1

... Λs1

]
and

[
Λc2

... Λs2

]
are full column rank, it follows that A13 = 0, A23 = 0, A12 = 0, and A32 = 0.

Therefore, the transformation of the factors that is compatible with the restrictions on the loading matrix in
equation (2.1) is:  f ct

fs1,t
fs2,t

 =

 A11 0 0
A21 A22 0
A31 0 A33

 f̃ ct
f̃s1,t
f̃s2,t

 .
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We can invert this transformation and write:

f̃ ct = A−1
11 f

c
t , f̃s1,t = A−1

22 f
s
1,t −A−1

22 A21A
−1
11 f

c
t , f̃s2,t = A−1

33 f
s
2,t −A−1

33 A31A
−1
11 f

c
t .

The transformed factors satisfy the normalization restrictions in (2.2) if, and only if,

Cov(f̃ s1,t, f̃
c
t ) = −A−1

22 A21A
−1
11 (A−1

11 )′ = 0, (D.2)

Cov(f̃ s2,t, f̃
c
t ) = −A−1

33 A31A
−1
11 (A−1

11 )′ = 0, (D.3)

V (f̃ ct ) = A−1
11 (A−1

11 )′ = Ikc , (D.4)

V (f̃s1,t) = A−1
22 (A−1

22 )′ +A−1
22 A21A

−1
11 (A−1

11 )′A′21(A−1
22 )′ = Iks1 , (D.5)

V (f̃s2,t) = A−1
33 (A−1

33 )′ +A−1
33 A31A

−1
11 (A−1

11 )′A′31(A−1
33 )′ = Iks2 . (D.6)

Since the matrices A11, A22 and A33 are nonsingular, equations (D.2) and (D.3) imply A21 = 0, and A31 = 0.
Then, from equations (D.4) - (D.6), we get that matrices A11, A22 and A33 are orthogonal.

�

D.2 Identification of the common and group-specific factor spaces from the
variance-covariance matrix of stacked factors

In this section we provide an identification strategy for the common and group-specific factor spaces in a group-
factor model, which is alternative to canonical correlation analysis proposed in Proposition 1. The identification
of the factor spaces is achieved through an eigenvalue-eigenvector decomposition of the variance-covariance
matrix of the stacked principal components extracted separately from the two different groups of data.
We define the matrices wj = [wj,1, ..., wj,k], j = 1, 2, with the canonical directions. These matrices are such
that w′jVjjwj = Ik, j = 1, 2. Moreover, when ρ` 6= 0, then

w1,` =
1

ρ`
V −1

11 V12w2,` , w2,` =
1

ρ`
V −1

22 V21w1,` . (D.7)

The principal components are normalized such that V (hj,t) = Ikj , for j = 1, 2.

LEMMA D.2. Let ht = [h′1,t h
′
2,t]
′, be a random vector, such that V11 = V (h1,t) = Ik1 , V22 = V (h2,t) = Ik2 ,

V12 = Cov(h1,t, h2,t) and let V (ht) be the variance-covariance matrix of vector ht:

V (ht) =

[
Ik1 V12

V21 Ik2

]
.

Let r = rank(V21), with r ≤ k = min(k1, k2). Then, matrix V (ht) has 2r eigenvalues 1 ± ρ`, ` = 1, ..., r,
with multiplicity 1, corresponding to the non-zero canonical correlations,ρ` 6= 0 between h1,t and h2,t, and the
eigenvalue 1 with multiplicity k1 + k2 − 2r. The eigenvectors of V (ht) associated with the eigenvalues 1± ρ`,
` = 1, ..., r are

v±` =

[
w1,`

±w2,`

]
, ` = 1, ..., r,

where w1,` (resp. w2,`), are the normalized eigenvectors of R = V12V21 (resp. R∗ = V21V12), associated with
eigenvalues ρ2

` .
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From Proposition 1 and Lemma D.2 we get the next Proposition, which yields an identification result for group
factor models.

PROPOSITION D.3. i) The number kc of common factors is equal to the multiplicity of the eigenvalue 2 of
matrix V (ht). ii) LetW be the (k1 +k2, k

c) matrix whose columns are the orthonormal eigenvectors associated

with the kc eigenvalues of V (ht) equal to 2. Then, f ct =
1√
2
W ′ht (up to a one-to-one transformation).

Proposition D.3 is analogous to Proposition 3.1 in Chen (2012). Our derivation of Proposition D.3 as a con-
sequence of Lemma D.2 and Proposition 1 allows us to clarify the link between eigenvalues equal to 2 of the
stacked variance-covariance matrix and unit canonical correlations. Moreover, Lemma D.2 and Proposition D.3
admit a rather straightforward generalization to the case of a generic number of groups. Those results would be
the basis for extending the results of our paper to more than two groups, i.e., more than two sampling frequencies.

The sample counterparts of the results in Lemma D.2 and Proposition D.3 suggest an alternative estimator of the
common factor, which has been sometimes applied in the literature (see e.g. Goyal, Pérignon, and Villa (2008)
and the reference therein). In the notation of Section 3 of the paper, a consistent estimator of matrix V (ht) is

V̂ = 1
T Ĥ

′Ĥ where Ĥ := [Ĥ1
... Ĥ2], and it holds:

V̂ Ŵ = Ŵ (Ikc + Λ̂), (D.8)

where Ŵ := 1√
2

[
Ŵ1

Ŵ2

]
is a matrix with orthonormal columns in which we stack the canonical directions in

the two groups, and Λ̂ is the diagonal matrix that collects the kc largest estimated canonical correlations. Now,
by using that matrices Ĥ ′Ĥ and ĤĤ ′ have the same non zero eigenvalues, and by pre-multiplying equation
(D.8) times 1√

2
Ĥ we get ( 1

T ĤĤ
′)F̂ c? = F̂ c?(Ikc + Λ̂), where F̂ c? := 1√

2
ĤŴ . Thus, we get a T × kc matrix

of common factor estimates F̂ c? as the matrix of eigenvectors to the kc largest eigenvalues (equal to 1 + ρ̂`,
` = 1, ..., kc) of matrix 1

T ĤĤ
′ = 1

T (Ĥ1Ĥ
′
1 + Ĥ2Ĥ

′
2). We have F̂ c? = 1

2(Ĥ1Ŵ1 + Ĥ2Ŵ2) = 1
2(F̂ c + F̂ c∗),

i.e., the average of the two estimators in Definition 1.

D.2.1 Proof of Lemma D.2

Let ρi, i = 1, ..., k, be the canonical correlations between h1,t and h2,t. From Anderson (2003) and Magnus and
Neudecker (2007), ρ2

i corresponds to the i-th ordered eigenvalue of matrix R = V12V21. Let 1 + µ, say, be an
eigenvalue of matrix V (ht), and Z = [Z ′1 Z

′
2]′ ∈ Rk1+k2 be the associated (normalized) eigenvector. We have:

V (ht)Z = (1 + µ)Z .

Rewriting matrix V (ht) as:

V (ht) = Ik1+k2 +

[
0 V12

V21 0

]
, (D.9)

we get: [
0 V12

V21 0

] [
Z1

Z2

]
= µ

[
Z1

Z2

]
. (D.10)
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The last equation implies:

V12Z2 = µZ1, (D.11)

V21Z1 = µZ2, (D.12)

and:

V12V21Z1 = µ2Z1, (D.13)

V21V12Z2 = µ2Z2. (D.14)

If Z1 6= 0, then µ2 is an eigenvalue of V12V21, i.e. a squared canonical correlation, and if Z2 6= 0, then µ2 is
an eigenvalue of V21V12. From the condition rank(V21) = r, with r ≤ k, there are r canonical correlations
different from zero: ρ1 ≥ ... ≥ ρr > 0. Let w1,`, ` = 1, ..., r, be the associated eigenvectors of R = V12V21,
and w2,`, ` = 1, ..., r the corresponding eigenvectors of R∗ = V21V12. Then, the scalars

µ`,± = ±ρ`, ` = 1, ..., r,

and the vectors

v±` =

[
w1,`

± 1
ρ`
V21w1,`

]
=

[
w1,`

±w2,`

]
(D.15)

solve equation (D.10). Here, we use 1
ρ`
V21w1,` = w2,`, from property (D.7). Therefore, 1 ± ρ` are eigenvalues

of V (ht) associated with eigenvectors v±` , with ` = 1, ..., r.
Let us now consider the solutions of equation (D.10) with µ = 0. We have:

V12Z2 = 0, (D.16)

V21Z1 = 0. (D.17)

From rank(V12) = r, the null space of matrix V12 is (k2 − r)-dimensional. Let the columns of the (k2, k2 − r)
full column rank matrix Z̃2 span the (k2 − r)-dimensional space of solutions of equation (D.16). Similarly, let
the columns of the (k1, k1 − r) full column rank matrix Z̃1 span the (k1 − r)-dimensional space of solutions of
equation (D.17). Define the (k1 + k2, 2(k2 − r)) matrix:

Z̃0 =

[
Z̃1 Ok1×(k2−k1) − Z̃1 Ok1×(k2−k1)

Z̃2 Z̃2

]
.

Any column of this matrix is a solution of (D.10) with µ = 0. Since matrices Z̃1 and Z̃2 are full column rank,
the column rank of matrix Z0 is 2(k1−r)+(k2−k1) = k1 +k2−2r. Therefore, there are k1 +k2−2r linearly

independent eigenvectors of
[

0 V12

V21 0

]
associated with the eigenvalue 0. These vectors are eigenvectors of

V (ht) associated with the eigenvalue 1. �

D.2.2 Proof of Proposition D.3

From Lemma D.2, V (ht) has eigenvalue 2 if, and only if, there is a canonical correlation equal to 1. Part i)
follows from Proposition 1 i). Moreover, from Proposition 1 and Lemma D.2 the columns of matrix W =

1√
2

[
W1

W2

]
are orthonormal eigenvectors of V (ht) associated with eigenvalue 2, since W ′W = 1

2(W ′1W1 +
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W ′2W2) = Ikc . Finally, 1√
2
W ′ht = 1

2(W ′1h1,t +W ′2h2,t) = 1
2(S′1 + S′2)f ct , from (C.1) and (C.2), which implies

part ii). �

D.3 Identification with stock-sampling and generic linear aggregation schemes
In the case of stock-sampling, the low frequency observations of xL∗m,t in the mixed-frequency factor model (5.1)
are the values of xL∗M,t, i.e. xLt = xL∗M,t. Then, the model for the observable variables becomes:

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t, m = 1, ...,M,

xLt = ΛLCg
C
M,t + ΛLg

L
M,t + eLM,t.

We stack the observations xHt = xHM,t and xLt of the last high frequency subperiod and write:

[
xHt
xLt

]
=

[
ΛHC ΛH 0
ΛLC 0 ΛL

] gCM,t

gHM,t

gLM,t

+

[
eHM,t

eLM,t

]
. (D.18)

This last equation corresponds to a group factor model, with common factor gCM,t and “group-specific” factors
gHM,t, g

L
M,t. Therefore, the factor values gCM,t, f

H
M,t, f

L
M,t, and the factor loadings ΛHC , ΛLC , ΛH , ΛL, are

identifiable up to a sign as proved in Section 2.
Once the factor loadings are identified from equation (D.18), the values of the common and high frequency
factors for subperiods m = 1, ...,M − 1 are identifiable by cross-sectional regression of the high frequency data
on loadings ΛHC and ΛH in (5.1). More precisely, gCm,t and gHm,t are identified by regressing xHim,t on λHC,i
and λH,i across i = 1, 2, ..., NH , for any m = 1, ...,M − 1 and any t. To summarize, with stock-sampling, we
can identify the common factor gCm,t and the high frequency factor gHm,t at all high frequency subperiods. We
cannot estimate gLm,t, for m < M, as only gLM,t is identified by the last paired panel data set consisting of xHM,t

combined with xLt . This is not surprising, since we have no HF observation available for the LF process.
Flow sampling and stock-sampling are examples of linear aggregation schemes. The case of a general linear
aggregation scheme relating the LF observations xLt to the unobservable variables xL∗m,t, can be described using
the cumulator xL∗,cm,t defined by the process:

xL∗,cm,t = amx
L∗,c
m−1,t + bmx

L∗
m,t, xL∗,c0,t ≡ 0,

and letting xLt = xL∗,cM,t for m = M , while xL∗,cm,t is not observed otherwise. A similar representation is used by
Harvey (1989) and Nunes (2005), among others, and includes both stock and flow aggregation as special cases.
More specifically, stock-sampling corresponds to the case am = 1(m 6= M) and bm = 1(m = M), where 1(.)
denotes the indicator function. Flow sampling can be represented setting am = 1(m 6= 1) and bm = 1/M for
all m. As the aggregation scheme is linear, it is straightforward to show that applying it to the HF observables
and stacking them together with the LF ones, a representation analogous to the one in equation (5.3) is obtained.
Then, the identification of the loadings, the aggregated factors, and the common and high frequency factors,
follows as in the cases of flow and stock-sampling.
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D.4 Uniform asymptotic expansions of factor values and factor loadings in the
group factor model

We derive uniform asymptotic expansions for the estimators of the factor values and factor loadings in Defini-
tions 1 and 2 and equations (3.3) and (3.4), up to terms op(N̄−1/2), where N̄ := max{N1, T}.

PROPOSITION D.4. i) Under Assumption A.1 with µ > 0, and Assumptions A.2-A.4, A.5 b)-c), A.6 a), A.7,
A.8, the asymptotic expansions of the factors estimators are given by:

f̂ ct = Ĥ−1
c

[
f ct +

1√
N1

u
(c)
1,t +

1

T
βc1,t

]
+ op

(
N̄−1/2

)
, (D.19)

and:

f̂sj,t = Ĥ−1
s,j

[
f̃sj,t +

1√
Nj

u
(s)
j,t +

1

T
βsj,t

]
+ op(N̄

−1/2), j = 1, 2, (D.20)

where f̃ sj,t = fsj,t − Σ̃j,cΣ̃
−1
cc f

c
t and the op terms are uniform w.r.t. 1 ≤ t ≤ T . The asymptotic expansions of the

loadings estimators are:

λ̂cj,i = Ĥ′c
[
λcj,i + Σ̃−1

cc Σ̃c,jλ
s
j,i +

1√
T
wcj,i +

1

T
βcΛ,j,i

]
+ op

(
N̄−1/2

)
, j = 1, 2, (D.21)

and:

λ̂sj,i = Ĥ′s,j
[
λsj,i +

1√
T
wsj,i +

1

T
βsΛ,j,i

]
+ op

(
N̄−1/2

)
, j = 1, 2, (D.22)

where the op terms are uniform w.r.t. 1 ≤ i ≤ Nj . Matrices Ĥc and Ĥs,j are such that:

ĤcĤ′c = Σ̃cc + op(N̄
−1/2), Ĥs,jĤ′s,j = (

1

T
F̃ s ′j F̃ sj )−1 + op(N̄

−1/2), j = 1, 2, (D.23)

where F̃ sj = [f̃sj,1, ..., f̃
s
j,T ]′. Vector uj,t is defined in Proposition 3, and wcj,i = Σ̃−1

cc
1√
T

∑T
t=1 f

c
t εj,i,t and

wsj,i = ( 1
T F̃

s ′
j F̃ sj )−1 1√

T

∑T
t=1 f̃

s
j,tεj,i,t. The bias terms are such that:

βc1,t = b̄
(c)
1,t − E[(b̄

(c)
1,t − b̄

(c)
2,t)(f

s
1,t − Φfs2,t)

′](Ik1−kc − ΦΦ′)−1f s1,t,

βsj,t = [Σ
(ss)
λ,j ]−1

(
η2
j,tf

s
j,t − Σ

(ss)
λ,j E[fsj,tβ

c ′
j,t ]f

c
t − Σ

(sc)
λ,j β̃

c
j,t

)
,

βcΛ,j,i = E[βc1,tf
s ′
j,t ]λ

s
j,i − E[f ct β

c ′
1,t]λ

c
j,i,

βsΛ,j,i = −E[f sj,tβ
c ′
j,t ]λ

c
j,i − E[fsj,tβ

s ′
j,t ]λ

s
j,i,

where vector b̄j,t is defined in Theorem 1, and β̃cj,t = βcj,t − E[βcj,tf
c ′
t ]f ct .

ii) If we relax the regularity conditions to allow for µ ≥ 0 in Assumption A.1, the asymptotic expansions in
(D.19)-(D.23) hold with remainder term of uniform order op(T−1/2) (and bias terms of order T−1 absorbed
into the remainder term).

In the asymptotic expansion of f̂ ct , the stochastic term at orderN−1/2
1 comes from the estimation of the principal

components in the first subgroup. The bias at order T−1 consists both of a term arising from principal compo-
nents estimation, namely T−1b̄

(c)
1,t , and another term induced by estimation of the canonical directions associated

with the unit canonical correlations. Vector f̂ sj,t estimates the residual of the sample projection of fj,t onto f ct at

rate N−1/2
j . The bias at order T−1 is induced by both extraction of PC from the panel of residuals and the bias
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in estimator f̂ ct .
In the asymptotic expansion of λ̂cj,i, the term Σ̃−1

cc Σ̃c,jλ
s
j,i is induced by the fact that the common and frequency-

specific factors are not orthogonal in-sample. The deterministic term at order T−1 is induced by the bias in the
common factor estimates. The expansion of λ̂cj,i does not contain explicitly a bias component at order N−1

j ,
since N−1

j = op(N̄
−1/2) under Assumption A.1.

The uniform asymptotic expansions at order op(T−1/2) in Proposition D.4 ii) suffice for the proof of Theorem
2. We need the more accurate expansions at order op(N̄−1/2) in the proof of Proposition D.7, where the error-
in-variable from estimation of factor loadings has to be controlled.

D.4.1 Proof of Proposition D.4

We start by providing some uniform bounds in Subsection D.4.1 a), that are instrumental for the rest of the proof
of Proposition D.4. Then, in Subsections D.4.1 b)-e) we establish the uniform asymptotic expansions of factors
and loadings up to order op(N̄−1/2), where N̄ = max{N1, T} (proof of part i)). Finally, in Subsection D.4.1 f)
we show how to get the uniform asymptotic expansions up to order op(T−1/2) under a less restrictive asymptotic
scheme (proof of part ii)).

a) Uniform bounds

Let X = Op,`(aN,T ) mean X = Op[aN,T (log T )b̄] for some b̄ > 0. Under Assumption A.8 we have the
following uniform bounds, which complement those in Lemma C.10:

sup
1≤t≤T

‖bj,t‖ = Op,`(1), (D.24)

sup
1≤t≤T

‖dj,t‖ = Op,`(1), (D.25)

sup
1≤t≤T

‖ĥj,t‖ = Op,`(1), (D.26)

sup
1≤t≤T

‖βcj,t‖ = Op,`(1), (D.27)

sup
1≤i≤Nj

‖ 1

T

T∑
t=1

βcj,tεj,i,t‖ = Op,`(T
−η/2), (D.28)

sup
1≤i≤Nj

‖ 1

T

T∑
t=1

ε2
j,i,t‖ = Op(1), (D.29)

sup
1≤i≤Nj

1

NjT

Nj∑
`=1,`6=i

T∑
t=1

λj,`εj,`,tεj,i,t = Op,`(
1√
NT η

) +O(
1

N
), (D.30)

where η ≥ 1/2. We prove below the uniform bound in (D.30). The proofs of the other ones follow by similar
arguments.
Proof of (D.30). We have:

1

NjT

Nj∑
`=1,`6=i

T∑
t=1

λj,`εj,`,tεj,i,t =
1√
Nj

 1

T

T∑
t=1

 1√
Nj

Nj∑
`=1,` 6=i

εj,`,tεj,i,t − E[
1√
Nj

Nj∑
`=1,`6=i

λj,`εj,`,tεj,i,t]


+

1

Nj

Nj∑
`=1,`6=i

λj,`E[εj,`,tεj,i,t].
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From Assumption A.8 c) we have 1
T

∑T
t=1

(
1√
Nj

∑Nj
`=1,`6=i εj,`,tεj,i,t − E[ 1√

Nj

∑Nj
`=1,` 6=i λj,`εj,`,tεj,i,t]

)
=

Op,`(T
−η/2), uniformly in 1 ≤ i ≤ Nj , similarly as in the proof of (C.107). From Assumptions A.8 b) and d)

we have
∑Nj

`=1,` 6=i λj,`E[εj,`,tεj,i,t] = O(1), uniformly in 1 ≤ i ≤ Nj . Then, (D.30) follows.

b) Asymptotic expansion of f̂ ct
Let us start by establishing the asymptotic expansion of f̂ ct up to order op(N̄−1/2). Equation (B.12) and Ψ̂ =
Op(δN,T ) imply Ŵ ∗1 = [Ec+Es(Ik1−kc−R̃ss)−1Ψ̂

(I)
sc ]Û+Op(δ

2
N,T ). The normalized eigenvectors corresponding

to the canonical directions are: Ŵ1 = Ŵ ∗1 D̂, where D̂ = diag(Ŵ ∗ ′1 V̂11Ŵ
∗
1 )−1/2. Then, we get:

f̂ ct = Ŵ ′1ĥ1,t = D̂Û ′
[
E′cĥ1,t + Ψ̂(I) ′

sc (Ik1−kc − R̃ss)−1E′sĥ1,t

]
+Op,l

(
δ2
N,T

)
= D̂Û ′

[
f ct +

1√
N1

u
(c)
1,t +

1

T
b
(c)
1,t +

1√
N1T

d
(c)
1,t + ϑ

(c)
1,t

+Ψ̂(I) ′
sc (Ik1−kc − R̃ss)−1

(
fs1,t +

1√
N1

u
(s)
1,t +

1

T
b
(s)
1,t +

1√
N1T

d
(s)
1,t + ϑ

(s)
1,t

)]
+Op,l

(
δ2
N,T

)
, (D.31)

uniformly in 1 ≤ t ≤ T , where we use the expansion of the factor estimates in Proposition 3, and (D.26). Under
Assumption A.1 with µ > 0, N = N2 and N1 grow at the same rate such that T 1/2 � N � T 5/2. Therefore,
(log T )b̄δ2

N,T = o(N̄−1/2), for any b̄ > 0, 1√
N1
δN,T = o(N̄−1/2) and 1

T δN,T = o(N̄−1/2) under Assumption
A.1 with µ > 0. By using uniform bounds in Lemma C.10 and (D.24)-(D.25), and keeping only terms up to
op(N̄

−1/2), we get:

f̂ ct = Ĥ−1
c

[
f

(c)
t +

1√
N1

u
(c)
1,t +

1

T
b̄
(c)
1,t + Ψ̂(I) ′

sc (Ik1−kc − R̃ss)−1fs1,t

]
+ op

(
N̄−1/2

)
, (D.32)

uniformly in 1 ≤ t ≤ T , where Ĥ−1
c = D̂Û ′.

To further develop this asymptotic expansion, we need the asymptotic behavior of Ψ̂
(I)
sc . From equation Ψ̂ =

Ṽ −1
11 Ψ̂∗ (see Lemma B.2) we have Ψ̂

(I)
sc = (Ṽ −1

11 )scΨ̂
∗(I)
cc + (Ṽ −1

11 )ssΨ̂
∗(I)
sc . From Lemma C.7, we have Ψ̂

∗(I)
cc =

Op

(
1
N + 1

T 2 + 1
T
√
NT

)
= op(N̄

−1/2) under Assumption A.1 with µ > 0. Moreover, from (B.6) and Lemma
B.3 we get:

Ψ̂∗(I)sc = −(X̂11,sc − X̂12,sc) + B̃′cs(X̂21,cc − X̂22,cc) + B̃′ss(X̂21,sc − X̂22,sc).

From Lemmas B.1 and B.3, and equation (C.74), the second term in the r.h.s. is Op(T−1/2δN,T ) = op(N̄
−1/2)

under Assumption A.1 with µ > 0. Now, we substitute in the definitions of terms X̂j,k from (B.3), and use that
1
T

∑T
t=1 ψj,tψ

′
k,t = op(N̄

−1/2). We get:

Ψ̂∗(I)sc = − 1

T

T∑
t=1

(f s1,t − B̃′ssfs2,t)[ψ
(c)
1,t − ψ

(c)
2,t ]
′ + op(N̄

−1/2).
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By using the definition of ψj,t, B̃ss = Φ′ +Op(T
−1/2), and keeping terms up to op(N̄−1/2), we get:

Ψ̂∗(I)sc = − 1

T

(
1

T

T∑
t=1

(fs1,t − Φfs2,t)[b̄
(c)
1,t − b̄

(c)
2,t ]
′

)
+ op(N̄

−1/2)

= − 1

T
E[(fs1,t − Φfs2,t)(b̄

(c)
1,t − b̄

(c)
2,t)
′] + op(N̄

−1/2).

Thus, by using (Ṽ −1
11 )ss = Ik1−kc +Op(T

−1/2) and N � T 3, we get:

Ψ̂(I)
sc = − 1

T
E[(fs1,t − Φfs2,t)(b̄

(c)
1,t − b̄

(c)
2,t)
′] + op(N̄

−1/2). (D.33)

Thus, from (D.32) and (D.33), and by using (Ik1−kc− R̃ss)−1 = (Ik1−kc−ΦΦ′)−1 +Op(T
−1/2) and N � T 3,

we get:

f̂ ct = Ĥ−1
c

[
f

(c)
t +

1√
N1

u
(c)
1,t +

1

T
βc1,t

]
+ op

(
N̄−1/2

)
, (D.34)

uniformly in 1 ≤ t ≤ T , where:

βc1,t = b̄
(c)
1,t − E[(b̄

(c)
1,t − b̄

(c)
2,t)(f

s
1,t − Φfs2,t)

′](Ik1−kc − ΦΦ′)−1fs1,t,

which yields (D.19).
The asymptotic expansion for estimator f̂ c ∗t is obtained by interchanging the roles of panels j = 1 and j = 2.
Hence,

f̂ c ∗t = Ĥ∗
−1
c

[
f

(c)
t +

1√
N2

u
(c)
2,t +

1

T
βc2,t

]
+ op

(
N̄−1/2

)
,

uniformly in 1 ≤ t ≤ T , where:

βc2,t = b̄
(c)
2,t − E[(b̄

(c)
2,t − b̄

(c)
1,t)(f

s
2,t − Φ′f s1,t)

′](Ik2−kc − Φ′Φ)−1fs2,t.

Finally, let us show the asymptotic expansion for ĤcĤ′c. Substituting the expression of f̂ ct from equation (D.34)
into the equality 1

T

∑T
t=1 f̂

c
t f̂

c′
t = Ikc , we get:

Ikc = Ĥ−1
c

1

T

T∑
t=1

(
f ct +

1√
N1

u
(c)
1,t +

1

T
βc1,t

)(
f ct +

1√
N1

u
(c)
1,t +

1

T
βc1,t

)′ (
Ĥ−1
c

)′
+ op

(
N̄−1/2

)
= Ĥ−1

c Σ̃cc

(
Ĥ−1
c

)′
+ op

(
N̄−1/2

)
, (D.35)

using arguments similar to the proof of Lemma B.1 and Assumption A.1 with µ > 0. Thus, we get ĤcĤ′c =
Σ̃cc + op

(
N̄−1/2

)
, which yields the first equation in (D.23). By using (C.74) it follows:

ĤcĤ′c = Ikc +Op(T
−1/2). (D.36)

c) Asymptotic expansion of λ̂cj,i

Let us now derive the asymptotic expansion of the loading estimator λ̂cj,i = F̂ c ′yj,i/T up to order op
(
N̄−1/2

)
,

where yj,i is the i-th column of matrix Yj and F̂ c = [f̂ c1 , ..., f̂
c
T ]′. From equation (D.34) we have F̂ c =
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(
F c + 1√

N1
U c1 + 1

TB
c
1

)(
Ĥ−1
c

)′
+ op

(
N̄−1/2

)
, where U c1 = [u

(c)
1,1, ..., u

(c)
1,T ]′ and Bc

1 = [βc1,1, ..., β
c
1,T ]′, which

implies:

F̂ cĤ′c − F c =
1√
N1

U c1 +
1

T
Bc

1 + op

(
N̄−1/2

)
. (D.37)

Here op
(
N̄−1/2

)
denotes a matrix whose rows are uniformly of stochastic order op

(
N̄−1/2

)
. Then:

λ̂cj,i =
1

T
F̂ c ′yj,i =

1

T
F̂ c ′

(
F cλcj,i + F sj λ

s
j,i + εj,i

)
=

1

T
F̂ c ′

([
F̂ cĤ′c −

(
F̂ cĤ′c − F c

)]
λcj,i + F sj λ

s
j,i + εj,i

)
= Ĥ′cλcj,i −

1

T
F̂ c ′

(
F̂ cĤ′c − F c

)
λcj,i +

1

T
F̂ c ′F sj λ

s
j,i +

1

T
F̂ c ′εj,i, j = 1, 2.

By writing F̂ c =
[
F c + (F̂ cĤ′c − F c)

]
(Ĥ′c)−1, and rearranging terms, we get:

λ̂cj,i = Ĥ′c
{
λcj,i + (Ĥ′c)−1(Ĥc)−1 1

T
F c ′εj,i + (Ĥ′c)−1(Ĥc)−1 1

T
F c ′F sj λ

s
j,i

+(Ĥ′c)−1(Ĥc)−1 1

T
(F̂ cĤ′c − F c)′εj,i + (Ĥ′c)−1(Ĥc)−1 1

T
(F̂ cĤ′c − F c)′F sj λsj,i

−(Ĥ′c)−1(Ĥc)−1 1

T

[
F c + (F̂ cĤ′c − F c)

]′ (
F̂ cĤ′c − F c

)
λcj,i

}
. (D.38)

We use equation (D.37) to bound the different terms. We have:

1

T
(F̂ cĤ′c − F c)′ε1,i =

1√
N1T

U c ′1 ε1,i +
1

T 2
Bc ′

1 ε1,i + op(N̄
−1/2)

= (Λ′1Λ1/N1)−1 1

N1T

N1∑
`=1

T∑
t=1

λ1,`ε1,`,tε1,i,t + op(N̄
−1/2)

= (Λ′1Λ1/N1)−1 1

N1T

T∑
t=1

λ1,iε
2
1,i,t + (Λ′1Λ1/N1)−1 1

N1T

N1∑
`=1,` 6=i

T∑
t=1

λ1,`ε1,`,tε1,i,t

+op(N̄
−1/2) = Op(N

−1
1 ) +Op,l[(N1T

η)−1/2] + op(N̄
−1/2),

uniformly in 1 ≤ i ≤ N1, using bounds (D.28)-(D.29) and Assumption A.8 d). A similar bound holds for j = 2.
SinceN1 grows at the same rate asN and T 1/2 � N , we have N−1

1 = o(N̄−1/2). Moreover, from η ≥ 1/2 and
T 1/2 � N , we have Op,l[(N1T

η)−1/2] = op(N̄
−1/2). Hence, 1

T (F̂ cĤ′c − F c)′εj,i = op(N̄
−1/2), uniformly in

1 ≤ i ≤ N1. Moreover:

1

T
(F̂ cĤ′c − F c)′F sj =

1

T
√
N1

U c ′1 F sj +
1

T 2
Bc ′

1 F sj + op(N̄
−1/2)

=
1

T
E[βc1,tf

s ′
j,t ] +Op((N1T )−1/2) + op(N̄

−1/2) =
1

T
E[βc1,tf

s ′
j,t ] + op(N̄

−1/2),
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and:

1

T

[
F c + (F̂ cĤ′c − F c)

]′ (
F̂ cĤ′c − F c

)
=

1

T
√
N1

F c ′U c1 +
1

T 2
F c ′Bc

1 +
1

N1T
U c ′1 U c1 +

1

T 2
√
N1

(U c ′1 Bc
1 +Bc ′

1 U c1) +
1

T 3
Bc ′

1 Bc
1 + op(N̄

−1/2)

=
1

T
E[f ct β

c ′
1,t] +Op((N1T )−1/2 +N−1

1 ) + op(N̄
−1/2) =

1

T
E[f ct β

c ′
1,t] + op(N̄

−1/2).

Further, from (D.36) we have (Ĥ′c)−1(Ĥc)−1 = (ĤcĤ′c)−1 = Σ̃−1
cc + op(N̄

−1/2) = Ikc + Op(T
−1/2). Then,

from (D.38) and Assumption A.8 d) we get:

λ̂cj,i = Ĥ′c
[
λcj,i + Σ̃−1

cc

1

T
F c ′εj,i + Σ̃−1

cc

1

T
F c ′F sj λ

s
j,i +

1

T

(
E[βc1,tf

s ′
j,t ]λ

s
j,i − E[f ct β

c ′
1,t]λ

c
j,i

)]
+ op(N̄

−1/2),

uniformly in 1 ≤ i ≤ Nj . The last equation can be rewritten as

λ̂cj,i = Ĥ′c
[
λcj,i + Σ̃−1

cc Σ̃c,jλ
s
j,i +

1√
T
wcj,i +

1

T
βcΛ,j,i

]
+ op

(
N̄−1/2

)
, j = 1, 2, (D.39)

where:

wcj,i := Σ̃−1
cc

1√
T
F c ′εj,i = Σ̃−1

cc

1√
T

T∑
t=1

f ct εj,i,t,

Σ̃cc =
1

T
F c ′F c =

1

T

T∑
t=1

f ct f
c ′
t , Σ̃c,j =

1

T
F c ′F sj =

1

T

T∑
t=1

f ct f
s′
j,t,

βcΛ,j,i = E[βc1,tf
s ′
j,t ]λ

s
j,i − E[f ct β

c ′
1,t]λ

c
j,i.

If we use f̂ c ∗t for group j = 2, the bias is:

βcΛ,j,i = E[βcj,tf
s ′
j,t ]λ

s
j,i − E[f ct β

c ′
j,t ]λ

c
j,i, (D.40)

where βcj,i is the bias at order T−1 of f̂ c ∗t .

d) Asymptotic expansion of f̂ sj,t

Let us now derive the asymptotic expansion of term f̂sj,t. We start by computing the asymptotic expansion of
the regression residuals ξj,i,t := yj,i,t − f̂ c ′t λ̂cj,i, where we replace f̂ ct with f̂ c ∗t for j = 2. By substituting the
asymptotic expansions in equations (D.34) and (D.39), have:

ξj,i,t = fs ′j,tλ
s
j,i + εj,i,t −

(
f̂ c ′t λ̂cj,i − f c ′t λcj,i

)
= fs ′j,tλ

s
j,i + εj,i,t

−

[(
f ct +

1√
Nj

u
(c)
j,t +

1

T
βcj,t

)′(
λcj,i + Σ̃−1

cc Σ̃c,jλ
s
j,i +

1√
T
wcj,i +

1

T
βcΛ,j,i

)
− f c ′t λcj,i

]
+ op(N̄

−1)

= f̃s ′j,tλ
s
j,i + ej,i,t + op(N̄

−1), (D.41)
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where we define:

f̃sj,t := fsj,t − Σ̃j,cΣ̃
−1
cc f

c
t ,

ej,i,t := εj,i,t −
1√
T
f c′t w

c
j,i −

1√
Nj

u
(c) ′
j,t λ

c
j,i −

1

T

(
f c ′t βcΛ,j,i + βc ′j,tλ

c
j,i

)
.

The term op(N̄
−1) is uniform in i = 1, ..., Nj and t = 1, ..., T by bounds (C.105)-(C.106) and (D.26)-(D.27),

and Assumption A.8 d). Then, the residuals ξj,i,t, with i = 1, ..., Nj and t = 1, ..., T , satisfy an approximate
factor structure with factors f̃sj,t, loadings λsj,i and errors ej,i,t, up to op(N̄−1/2). The error terms contain a factor
structure at order T−1.
From the asymptotic theory of the PC estimators in large panels we have an asymptotic expansion as that in
Proposition 3:

f̂sj,t = Ĥ−1
s,j

[
f̃sj,t +

1√
Nj

v∗ sj,t +
1

T
b∗ sj,t +

1√
NjT

d∗ sj,t + ϑ∗ sj,t

]
, j = 1, 2, (D.42)

where Ĥs,j , j = 1, 2, is a non-singular matrix w.p.a. 1, and:

v∗ sj,t =

(
1

Nj
Λs′j Λsj

)−1 1√
Nj

Λs′j ej,t

b∗ sj,t =

(
1

Nj
Λs ′j Λsj

)−1( 1

T
F̃ s ′j F̃ sj

)−1

(η∗j,t)
2f̃sj,t,

d∗ sj,t =

(
1

Nj
Λs ′j Λsj

)−1( 1

T
F̃ s ′j F̃ sj

)−1
 1

NjT

Nj∑
i=1

T∑
r=1

ej,i,rf̃
s
j,rλ

s ′
j,i

 f̃sj,t,

where (η∗j,t)
2 = plim

Nj→∞

1
Nj

∑Nj
i=1E[e2

j,i,t|Ft] and F̃ sj denotes the matrix with rows f̃s ′j,t . We have

1

Nj
Λs ′j ej,t =

1

Nj

Nj∑
i=1

λsj,iεj,i,t −
1√
T

 1

Nj

Nj∑
i=1

λsj,iw
c ′
j,i

 f ct −
1√
Nj

(
Λs′j Λcj
Nj

)
u

(c)
j,t

− 1

T

 1

Nj

Nj∑
i=1

λsj,iβ
c ′
Λ,j,i

 f ct −
1

T

(
1

Nj
Λs ′j Λcj

)
βcj,t.

We have 1
Nj

∑Nj
i=1 λ

s
j,iw

c ′
j,i = Op(N

−1/2
j ), 1

Nj
Λs ′j Λcj = Σ

(sc)
λ,j +O(N

−1/2
j ) and from (D.40):

1

Nj

Nj∑
i=1

λsj,iβ
c ′
Λ,j,i =

(
1

Nj
Λs ′j Λsj

)
E[f sj,tβ

c ′
j,t ]−

(
1

Nj
Λs ′j Λcj

)
E[βcj,tf

c ′
t ]

= Σ
(ss)
λ,j E[fsj,tβ

c ′
j,t ]− Σ

(sc)
λ,j E[βcj,tf

c ′
t ] +O(N

−1/2
j ).

Thus:

1

Nj
Λs ′j ej,t =

1

Nj

Nj∑
i=1

λsj,iεj,i,t −
1√
Nj

(
Λs′j Λcj
Nj

)
u

(c)
j,t −

1

T

(
Σ

(ss)
λ,j E[fsj,tβ

c ′
j,t ]f

c
t + Σ

(sc)
λ,j β̃

c
j,t

)
+ op(N̄

−1/2),
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uniformly w.r.t. t = 1, ..., T , where β̃cj,t := βcj,t − E[βcj,tf
c ′
t ]f ct is the residual of the orthogonal projection of

βcj,t onto f ct , and:

1√
Nj

v∗ sj,t =
1√
Nj

vsj,t −
1

T
[Σ

(ss)
λ,j ]−1

(
Σ

(ss)
λ,j E[fsj,tβ

c ′
j,t ]f

c
t + Σ

(sc)
λ,j β̃

c
j,t

)
+ op(N̄

−1/2),

where vsj,t =
(

Λs′j Λsj
Nj

)−1
1√
Nj

∑Nj
i=1 λ

s
j,iεj,i,t −

(
Λs′j Λsj
Nj

)−1 (Λs′j Λcj
Nj

)
u

(c)
j,t . Moreover:

b∗ sj,t = [Σ
(ss)
λ,j ]−1η2

j,tf
s
j,t +Op(T

−1/2 +N−1/2).

Therefore, we have:

f̂ sj,t = Ĥ−1
s,j

[
fsj,t − Σ̃jcΣ̃

−1
cc f

c
t +

1√
Nj

vsj,t +
1

T
βsj,t

]
+ op(N

−1/2
j ), j = 1, 2, (D.43)

uniformly w.r.t. t = 1, ..., T , where:

βsj,t = [Σ
(ss)
λ,j ]−1

(
η2
j,tf

s
j,t − Σ

(ss)
λ,j E[fsj,tβ

c ′
j,t ]f

c
t − Σ

(sc)
λ,j β̃

c
j,t

)
.

Let us now show that vsj,t = u
(s)
j,t , the lower ksj -dimensional component of uj,t. For this purpose, let us denote

by Σ̃ab and (Σ̃−1)ab, with a, b = c, s the blocks of matrix Σ̃ ≡ Σ̃λ,j and of its inverse Σ̃−1. Then, we have:

vsj,t = Σ̃−1
ss

1√
Nj

Nj∑
i=1

λsj,iεj,i,t − Σ̃−1
ss Σ̃scu

(c)
j,t ,

and:

u
(c)
j,t = (Σ̃−1)cc

1√
Nj

Nj∑
i=1

λcj,iεj,i,t + (Σ̃−1)cs
1√
Nj

Nj∑
i=1

λsj,iεj,i,t.

Therefore, we get:

vsj,t = Σ̃−1
ss [Ikj − Σ̃sc(Σ̃

−1)cs]
1√
Nj

Nj∑
i=1

λsj,iεj,i,t − Σ̃−1
ss Σ̃sc(Σ̃

−1)cc
1√
Nj

Nj∑
i=1

λcj,iεj,i,t.

From the property of the matrix inverse, Ikj − Σ̃sc(Σ̃
−1)cs = Σ̃ss(Σ̃

−1)ss and Σ̃sc(Σ̃
−1)cc = −Σ̃ss(Σ̃

−1)sc.
Therefore, we get:

vsj,t = (Σ̃−1)ss
1√
Nj

Nj∑
i=1

λsj,iεj,i,t + (Σ̃−1)sc
1√
Nj

Nj∑
i=1

λcj,iεj,i,t =

Σ̃−1 1√
Nj

Nj∑
i=1

λj,iεj,i,t

(s)

= u
(s)
j,t .

Plugging the latter equation in (D.43) yields (D.20).

e) Asymptotic expansion of λ̂sj,i

Let us now derive the asymptotic expansion of factor loadings estimator λ̂sj,i up to order op
(
N̄−1/2

)
. The

analysis parallels the one in Subsection D.4.1 c). We have λ̂sj,i = F̂ s ′j ξj,i/T , where ξj,i is the i-th column of
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matrix Ξj and F̂ sj = [f̂sj,1, ..., f̂
s
j,T ]′. From equation (D.43) we have F̂ sj =

(
F̃ sj + 1√

Nj
U sj + 1

TB
s
j

)(
Ĥ−1
s,j

)′
+

op
(
N̄−1/2

)
, where U sj = [u

(s)
j,1 , ..., u

(s)
j,T ]′ and Bs

j = [βsj,1, ..., β
s
j,T ]′, which implies:

F̂ sj Ĥ′j,s − F̃ sj =
1√
Nj

U sj +
1

T
Bs
j + op

(
N̄−1/2

)
. (D.44)

Then:

λ̂sj,i =
1

T
F̂ s ′j ξj,i =

1

T
F̂ s ′j

(
F̃ sj λ

s
j,i + ej,i

)
+ op(N̄

−1/2)

=
1

T
F̂ s ′j

([
F̂ sj Ĥ′j,s −

(
F̂ sj Ĥ′j,s − F̃ sj

)]
λsj,i + ej,i

)
+ op(N̄

−1/2)

= Ĥ′j,sλsj,i −
1

T
F̂ s ′j

(
F̂ sj Ĥ′j,s − F̃ sj

)
λsj,i +

1

T
F̂ s ′j ej,i + op(N̄

−1/2), j = 1, 2,

uniformly in i = 1, ..., Nj . By writing F̂ sj =
[
F̃ sj + (F̂ sj Ĥ′j,s − F̃ sj )

]
(Ĥ′j,s)−1, and rearranging terms, we get:

λ̂sj,i = Ĥ′s,j
{
λsj,i + (Ĥ′j,s)−1(Ĥj,s)−1 1

T
F̃ s ′j ej,i

+(Ĥ′j,s)−1(Ĥj,s)−1 1

T
(F̂ sj Ĥ′j,s − F̃ sj )′ej,i

−(Ĥ′j,s)−1(Ĥj,s)−1 1

T

[
F̃ sj + (F̂ sj Ĥ′j,s − F̃ sj )

]′
(F̂ sj Ĥ′j,s − F̃ sj )λsj,i

}
+ op(N̄

−1/2). (D.45)

By using equations ej,i = εj,i − 1√
T
F cwcj,i − 1√

Nj
U cj λ

c
j,i − 1

T F
cβcΛ,j,i −

1
TB

c
jλ

c
j,i and F̃ s ′j F c = 0, equation

(D.44), and paralleling the computations in Subsection D.4.1 c), we get:

1

T
F̃ s ′j ej,i =

1

T
F̃ s ′j εj,i −

1

T
E[fsj,tβ

c ′
j,t ]λ

c
j,i + op(N̄

−1/2),

1

T
(F̂ sj Ĥ′j,s − F̃ sj )′ej,i = op(N̄

−1/2),

1

T

[
F̃ sj + (F̂ sj Ĥ′j,s − F̃ sj )

]′
(F̂ sj Ĥ′j,s − F̃ sj ) =

1

T
E[fsj,tβ

s ′
j,t ] + op(N̄

−1/2),

(Ĥ′j,s)−1(Ĥj,s)−1 = (F̃ s ′j F̃ sj /T )−1 + op(N̄
−1/2),

uniformly in i = 1, ..., Nj . Thus, from (D.45) we get:

λ̂sj,i = Ĥ′s,j
{
λsj,i + (F̃ s ′j F̃ sj /T )−1 1

T
F̃ s ′j εj,i −

1

T

(
E[fsj,tβ

c ′
j,t ]λ

c
j,i + E[fsj,tβ

s ′
j,t ]λ

s
j,i

)}
+ op(N̄

−1/2),

uniformly in i = 1, ..., Nj . This equation can be written as:

λ̂sj,i = Ĥ′s,j
[
λsj,i +

1√
T
wsj,i +

1

T
βsΛ,j,i

]
+ op(N̄

−1/2),
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where:

wsj,i = (F̃ s ′j F̃ sj /T )−1 1√
T

T∑
t=1

f̃sj,tεj,i,t,

βsΛ,j,i = −E[fsj,tβ
c ′
j,t ]λ

c
j,i − E[f sj,tβ

s ′
j,t ]λ

s
j,i.

f) Asymptotic expansions up to order op(T−1/2)

Let us start by establishing the uniform asymptotic expansion of estimator f̂ ct at order op(T−1/2). From (D.31),
using (log T )b̄δN,T = o(T−1/2), for any b̄ > 0, and the uniform bounds (C.105)-(D.26), we get:

f̂ ct = Ĥ−1
c

(
f ct +

1√
N1

u
(c)
1,t

)
+ op(T

−1/2),

uniformly in t = 1, ..., T , which yields the uniform bound for f̂ ct . The uniform bounds for the other estimators
follow by paralleling the arguments in Subsection D.4.1 c)-e). �

D.5 Asymptotic distribution of factors and loadings in generic group factor
model

The next proposition provides the asymptotic distribution of the common and group-specific factors estimators
introduced in Definitions 1 and 2 in the main body of the paper. To simplify the proof, we assume that N1 and
N2, with N2 ≤ N1, grow at the same rate, i.e., N2/N1 → µ with µ > 0. This condition could be relaxed at the
expense of a more involved restriction on N1, N2, T .

PROPOSITION D.5. Under Assumption A.1 with µ > 0, and Assumptions A.2 - A.8 we have:

√
N1

 Ĥcf̂ ct − f ct −
1

T
βc1,t

Ĥs,1f̂s1,t −
(
fs1,t − (F s ′1 F c)(F c ′F c)−1f ct

)
− 1

T
βs1,t

 d−→ N (0,Σu,11,t) , (Ft-stably), (D.46)

and:

√
N2

 Ĥ∗c f̂ c ∗t − f ct −
1

T
βc2,t

Ĥs,2f̂s2,t −
(
fs2,t − (F s ′2 F c)(F c ′F c)−1f ct

)
− 1

T
βs2,t

 d−→ N (0,Σu,22,t) , (Ft-stably), (D.47)

for any t, where matrices Ĥc, Ĥ∗c and Ĥs,j are such that ĤcĤ′c = ( 1
T F

c ′F c)−1 + op(N
−1/2
1 ), Ĥ∗cĤ∗ ′c =

( 1
T F

c ′F c)−1 + op(N
−1/2
2 ) and Ĥs,jĤ′s,j = ( 1

T F̃
s ′
j F̃ sj )−1 + op(N

−1/2
j ), we define F c = [f c1 , ..., f

c
T ]′, F sj =

[f sj,1, ..., f
s
j,T ]′ and F̃ sj = F sj − F c(F c′F c)−1(F c′F sj ) for j = 1, 2, and the bias terms are:

βc1,t = b̄
(c)
1,t − E[(b̄

(c)
1,t − b̄

(c)
2,t)(f

s
1,t − Φfs2,t)

′](Ik1−kc − ΦΦ′)−1f s1,t,

βc2,t = b̄
(c)
2,t − E[(b̄

(c)
2,t − b̄

(c)
1,t)(f

s
2,t − Φ′fs1,t)

′](Ik2−kc − Φ′Φ)−1f s2,t,

βsj,t = [Σ
(ss)
λ,j ]−1

(
η2
j,tf

s
j,t − Σ

(ss)
λ,j E[fsj,tβ

c ′
j,t ]f

c
t − Σ

(sc)
λ,j β̃

c
j,t

)
, j = 1, 2,

and β̃cj,t = βcj,t − E[βcj,tf
c ′
t ]f ct is the residual of the orthogonal projection of βcj,t onto f ct .
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From Proposition D.5 a linear transformation of vector f̂ ct (resp. f̂ c∗t ) estimates the common factor f ct at rate
1/
√
N1 (resp. 1/

√
N2) with a bias of order 1/T . The variance of the asymptotic Gaussian distribution is

the upper-left (c, c) block of matrix Σu,11,t (resp. Σu,22,t), i.e. the asymptotic variance of the estimation error
u1,t (resp. u2,t) for the PC vector in group 1 (resp. group 2). The estimation error for recovering the common
factors from the group PC’s is of order op(N

−1/2
1 ), and therefore asymptotically negligible. The estimator f̂sj,t

approximates the residual of the sample projection of the group-j specific factor on the common factor, up to a
linear transformation, at rate 1/

√
Nj and with an asymptotic bias of order 1/T .

Let us now derive the asymptotic distribution of the factor loadings estimators in equations (3.3) and (3.4). For
this purpose, we introduce the next assumption.

Assumption D.1. We have for any j = 1, 2 and i ≥ 1:

1√
T

T∑
t=1

 f ct εj,i,t
fsj,tεj,i,t
fsj,t ⊗ f ct

 d→ N

0,

 Φcc
j,i Φcs

j,i 0

Φsc
j,i Φss

j,i 0

0 0 Ψj

 ,

as T →∞, where:

Φcc
j,i =

∞∑
h=−∞

E[f ct f
c′
t−hεj,i,tεj,i,t−h], Φcs

j,i =
∞∑

h=−∞
E[f ct f

s′
j,t−hεj,i,tεj,i,t−h] = (Φsc

j,i)
′,

Φss
j,i =

∞∑
h=−∞

E[fsj,tf
s′
j,t−hεj,i,tεj,i,t−h], Ψj =

∞∑
h=−∞

E
[
fsj,tf

s′
j,t−h ⊗ f ct f c′t−h

]
.

Assumption D.1 states that time series averages of the error terms scaled by the factors, as well as time series
averages of the cross-products of common and specific factors, are asymptotically Gaussian. It is used to show
the asymptotic normality of the loadings estimators in Proposition D.6, and is implied by e.g. a mixing condition
on the individual error series jointly with the factor process. The part of Assumption D.1 concerning scaled error
terms corresponds to Assumption F.4 in Bai (2003).

PROPOSITION D.6. Under Assumption A.1 with µ > 0, Assumptions A.2 - A.8 and D.1 we have:

√
T

 (
Ĥ′c
)−1

λ̂cj,i − λcj,i(
Ĥ′s,j

)−1
λ̂sj,i − λsj,i

 d−→ N

([
0
0

]
,

[ (
Φcc
j,i + (λs′j,i ⊗ Ikc)Ψj(λ

s
j,i ⊗ Ikc)

)
Ψcs
j,i

Ψsc
j,i Ψss

j,i

])
, (D.48)

for any j, i, where Ĥc and Ĥs,j , j = 1, 2, are the same non-singular matrices of Proposition D.5.

The factor loadings are estimated at rate
√
T . Matrix Φcc

j,i is the asymptotic variance for cross-sectional OLS re-
gression of data in group j on the true values of the common factor. The additional component in the asymptotic
variance of estimator λ̂cj,i is due to the fact that the true values of common and group-specific factors are not
orthogonal in-sample. This fact is not taken into account by the estimator of factor loadings. Finally, there are
no bias terms at order N−1

1 , N−1
2 in the large sample distributions of factor loadings, since in our asymptotics√

T/N = o(1) and hence such bias terms are negligible.
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D.5.1 Proof of Proposition D.5

We use the asymptotic expansions in Proposition D.4 i). Specifically, equations (D.19) and (D.20) for j = 1
imply:

√
N1

[
Ĥcf̂ ct − f ct − 1

T β
c
1,t

Ĥs,1f̂s1,t − (fs1,t − (F s′1 F
c)(F c′F c)−1f ct )− 1

T β
s
1,t

]
= u1,t + op(1).

From Assumptions A.3 and A.5 a), we have u1,t
d−→ N (0,Σu,11,t),Ft-stably. Then, the asymptotic distribution

in (D.46) follows. The asymptotic distribution in (D.47) can be establish along similar lines.

D.5.2 Proof of Proposition D.6

We prove Proposition D.6 by the asymptotic expansions in Proposition D.4 i), by keeping only terms up to
op(T

−1/2). Specifically, equation (D.21) implies:

√
T

[(
Ĥ′c
)−1

λ̂cj,i − λcj,i
]

= wcj,i + (F c′F sj /
√
T )λsj,i + op(1)

=
1√
T

T∑
t=1

f ct (εj,i,t + fs ′j,tλ
s
j,i) + op(1)

=
1√
T

T∑
t=1

[
f ct εj,i,t + (λs′j,i ⊗ Ikc)(fsj,t ⊗ f ct )

]
+ op(1).

Moreover, equation (D.22) imply:

√
T

[(
Ĥ′s,j

)−1
λ̂sj,i − λsj,i

]
=

1√
T

T∑
t=1

fsj,tεj,i,t + op(1).

Thus, we get:

√
T

 (
Ĥ′c
)−1

λ̂cj,i − λcj,i(
Ĥ′s,j

)−1
λ̂sj,i − λsj,i

 =
1√
T

T∑
t=1

[
f ct εj,i,t + (λs′j,i ⊗ Ikc)(fsj,t ⊗ f ct )

fsj,tεj,i,t

]
+ op(1).

Then, Assumption D.1 yields (D.48). �

D.6 Asymptotic distribution of factor estimates in a mixed frequency model
For the mixed frequency factor model in equation (5.1) with flow sampling, the Assumptions A.1-A.9 are meant
to apply with errors ε1,i,t = ēH,it and ε2,i,t = ēL,it , vectors of common and group-specific factors f ct = ḡCt ,

fs1,t = ḡHt and f s2,t = ḡLt , and loadings matrices Λ1 = [ ΛHC
... ΛH ] and Λ2 = [ ΛLC

... ΛL ]. The cross-sectional
dimensions are N1 = NH and N2 = NL. Additionally, we make the following assumption:

Assumption D.2. The variables λ1,i and eH,im,t are such that:

1√
NH

NH∑
i=1

λ1,i

[
eH,im,t

eH,im′,t

]
d→ N

(
0,

[
ΩH

Λ,m,m,t ΩH
Λ,m,m′,t

ΩH
Λ,m′,m,t ΩH

Λ,m′,m′,t

])
, (Ft − stably),
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as NH →∞, where

ΩH
Λ,m,m′,t = plim

NH→∞

1

NH

NH∑
i=1

NH∑
`=1

λ1,iλ
′
1,`Cov(eH,im,t, e

H,`
m′,t|Ft), m,m′ = 1, ...,M.

Assumption D.2 is analogous to Assumption A.5 a) expressed for the high frequency DGP of the idiosyncratic
innovation terms ei,Hm,t.

PROPOSITION D.7. Under the asymptotics in Assumption A.1 with µ > 0, and Assumptions A.2 - A.8, D.2,
the estimators ĝCt , ĝHm,t, ˆ̄gLt in Section 5 are such that:

√
NH

 ĤcĝCm,t − gCm,t −
1

T
βCm,t

Ĥ1,sĝ
H
m,t − [gHm,t − (ḡH′ḡC)(ḡC′ḡC)−1gCm,t]−

1

T
βHm,t

 d−→ N
(

0,Σ−1
Λ,1ΩH

Λ,m,m,tΣ
−1
Λ,1

)
,

Ft-stably, the vectors for sub-periodsm andm′ are jointly asymptotically Gaussian (Ft-stably) with covariance
Σ−1

Λ,1ΩH
Λ,m,m′,tΣ

−1
Λ,1, and:

√
NL

[
Ĥ2,s ˆ̄g

L
t − [ḡLt − (ḡL′ḡC)(ḡC′ḡC)−1ḡCt ]− 1

T
βLt

]
d−→ N

(
0,
(

Σ−1
Λ,2ΩL

Λ,tΣ
−1
Λ,2

)(LL)
)
,

Ft-stably, for anym,m′, t, where matrices Ĥc, Ĥ1,s and Ĥ2,s are such that ĤcĤ′c = ( 1
T ḡ

C′ḡC)−1+op(N̄
−1/2),

Ĥ1,sĤ′1,s = ( 1
T g̃

H′g̃H)−1 + op(N̄
−1/2) and Ĥ2,sĤ′2,s = ( 1

T g̃
L′g̃L)−1 + op(N̄

−1/2) with N̄ := max{NH , T},
we define ḡU = [ḡU1 , ..., ḡ

U
T ]′, for U = C,H,L, g̃U = ḡU − ḡC(ḡC′ḡC)−1(ḡC′ḡU ), for U = H,L, ΣΛ,1 =

lim
NH→∞

1

NH

NH∑
i=1

λ1,iλ
′
1,i and ΣΛ,2 = lim

NL→∞

1

NL

NL∑
i=1

λ2,iλ
′
2,i, the bias terms are:

[
βCm,t
βHm,t

]
= Σ−1

Λ,1

(
η̄2

1,m,th1,t − Φ̄Hh1,m,t

)
−BΛ,1h1,m,t, BΛ,1 =

[
−E[βCt ḡ

C′
t ] −E[βCt ḡ

H′
t ]

E[ḡHt β
C′
t ] −E[βHt ḡ

H′
t ]

]
,

βCt = b̄
(C)
1,t − E[(b̄

(C)
1,t − b̄

(C)
2,t )(ḡHt − ΦḡLt )′](IkH − ΦΦ′)−1ḡHt ,

βHt = (Σ
(HH)
Λ,1 )−1

(
η̄2

1,tḡ
H
t − Σ

(HH)
Λ,1 E[ḡHt β

C′
t ]ḡCt − Σ

(HC)
Λ,1 β̃Ct

)
, β̃Ct = βCt − E[βCt ḡ

C′
t ]ḡCt ,

βLt = (Σ
(LL)
Λ,2 )−1

(
η̄2

2,tḡ
L
t − Σ

(LL)
Λ,2 E[ḡLt β

C′
t ]ḡCt − Σ

(LC)
Λ,2 β̃Ct

)
,

with b̄1,t = Σ−1
Λ,1η̄

2
1,th1,t, and the upper index (LL) denotes the lower-right (kL, kL) block of a matrix, and

similarly for (HH), (LC).

From Proposition D.7, a linear transformation of vector ĝCm,t, resp. ĝHm,t, estimates the common factor gCm,t,
resp. the residual of the low-frequency sample projection of the high-frequency factor on the common factor.
2 The estimation rate is

√
NH . As an oracle property, the asymptotic variance Σ−1

Λ,1ΩH
Λ,m,m,tΣ

−1
Λ,1 equals the

asymptotic variance of the infeasible estimator obtained by principal components method applied on the HF
panel and rotated with a known matrix to separate the common and frequency-specific factors (see Theorem 1
and Proposition 1 in Bai (2003) for the asymptotic distribution of principal component estimators when N �

2Matrices Ĥc and Ĥ1,s are not feasible estimators, and thus ĤcĝCm,t and Ĥ1,sĝ
H
m,t are not empirically computable

quantities. From Proposition D.7, vector ĝCm,t itself estimates a linear transformation of gCm,t for which the flow-sampled
values have identity sample variance-covariance matrix, and similarly for ĝHm,t.
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T 2). It differs from the asymptotic variance in Theorem 2 in Wang (2012) since the number of groups is constant
in our asymptotic scheme. An error-in-variable problem originates both from estimation uncertainty, and asymp-
totic bias at order T−1, of factor loadings used in the cross-sectional regression. This error-in-variable problem
does not prevent consistency and asymptotic normality of the factor estimates in our double asymptotics, but
leads to a bias term at order 1/T . Vectors 1

T β
C
t and 1

T β
H
t are the biases at order T−1 of the estimators ˆ̄gCt

and ˆ̄gHt of the flow-sampled common and high-frequency-specific factors.3 Such biases induce biases at order
T−1 in factor loadings, which in turn yield term − 1

TBΛ,1h1,m,t in the asymptotic bias of high-frequency factor
estimates. Similarly, a linear transformation of vector ˆ̄gLt estimates the projection residual of the flow-sampled
low-frequency factor with convergence rate

√
NL and asymptotic bias at order 1/T .

D.6.1 Proof of Proposition D.7

Let us first establish the asymptotic distribution of estimator ˆ̄gLt . After replacing ε2,i,t = ēi,Lt and F c = ḡC ,
F s1 = ḡH , F s2 = ḡL, from the asymptotic expansion (D.20) in Proposition D.4 i) we get:

ˆ̄gLt = Ĥ−1
2,s

[
ḡLt − (ḡL′ḡC)(ḡC′ḡC)−1ḡCt +

1√
NL

u
(L)
2,t +

1

T
βLt

]
+ op(N

−1/2
L ),

where u(L)
2,t denotes the lower (kL, 1) block of vector u2,t =

(
1
NL

∑NL
i=1 λ2,iλ

′
2,i

)−1
1√
NL

∑NL
i=1 λ2,iē

Li
t , and

vector βLt is given in the statement of Proposition D.7. Moreover, we have u2,t
d→ N

(
0,Σ−1

Λ,2ΩL
Λ,tΣ

−1
Λ,2

)
,

Ft-stably, from Assumptions A.3 and A.5 a). By rearranging terms, the asymptotic Gaussian distribution of
estimator ˆ̄gLt follows.
Let us now derive the asymptotic distribution of estimators ĝCm,t and ĝHm,t. For this purpose, let us re-write the
model for the high frequency observables xHm,t, where m = 1, ...,M and t = 1, ..., T , in equation (5.1) as:

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t = Λ1gm,t + eHm,t

= Λ̂1Û−1
1 gm,t −

(
Λ̂1Û−1

1 − Λ1

)
gm,t + eHm,t, (D.49)

where gm,t = [ gC ′m,t, g
H ′
m,t ]′, Λ1 = [ΛHC

... ΛH ] = [Λc1
... Λs1], Λ̂1 = [Λ̂HC

... Λ̂H ] = [Λ̂c1
... Λ̂s1], and matrix Û1 is

defined in (C.103). By substituting equation (D.49) into estimator ĝm,t = [ ĝC ′m,t, ĝ
H ′
m,t ]′ =

(
Λ̂′1Λ̂1

)−1
Λ̂′1x

H
m,t,

and rearranging terms, we get:

ĝm,t = Û−1
1 gm,t −

(
Λ̂′1Λ̂1

NH

)−1
1

NH
Λ̂′1

(
Λ̂1Û−1

1 − Λ1

)
gm,t +

(
Λ̂′1Λ̂1

NH

)−1
1

NH
Λ̂′1e

H
m,t. (D.50)

From Lemma B.8 i) we have Λ̂′1Λ̂1/NH = Û ′1ΣΛ,1Û1 + op (1), which implies:(
Λ̂′1Λ̂1

NH

)−1

= Û−1
1 Σ−1

Λ,1

(
Û ′1
)−1

+ op(1). (D.51)

By plugging (D.51) into the third term in the r.h.s. of (D.50), using the equation Λ̂′1e
H
m,t = Û ′1

(
Λ̂1Û−1

1 − Λ1

)′
eHm,t+

3The asymptotic distributions of such factors and factor loadings estimators, can be obtained from Proposition D.5.
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Û ′1Λ′1e
H
m,t, and rearranging terms, we get the asymptotic expansion:

Û1ĝm,t = gm,t +
[
Σ−1

Λ,1 + op(1)
] 1

NH
Λ′1e

H
m,t

+
[
Û1(Λ̂′1Λ̂1/NH)−1Û ′1

] [
− 1

NH

(
Λ̂1Û−1

1

)′ (
Λ̂1Û−1

1 − Λ1

)
gm,t +

1

NH

(
Λ̂1Û−1

1 − Λ1

)′
eHm,t

]
.

(D.52)

The terms in the first line on the r.h.s. of (D.52) correspond to the (infeasible) cross-sectional regression of
observables on true factor loadings. The terms in the second line account for replacing the true factor loadings
with the estimated ones in the feasible regression. We control the latter terms by using the uniform asymptotic
expansion of the estimated factor loadings derived in Proposition D.4 i). We need to bound the remainder terms
up to order op(N

−1/2
H ) and take into account the bias terms of order T−1. This yields the next lemma.

LEMMA D.8. Under Assumption A.1 with µ > 0, Assumptions A.2 - A.8 we have:[
Û1(Λ̂′1Λ̂1/NH)−1Û ′1

] 1

NH

(
Λ̂1Û−1

1

)′ (
Λ̂1Û−1

1 − Λ1

)
gm,t

=

[
0(kC×1)

(ḡH′ḡC)(ḡC ′ḡC)−1gCm,t

]
+

1

T

(
Σ−1

Λ,1Φ̄H +BΛ,1

)
gm,t + op(N

−1/2
H ), (D.53)

and: [
Û1(Λ̂′1Λ̂1/NH)−1Û ′1

] 1

NH

(
Λ̂1Û−1

1 − Λ1

)′
eHm,t =

1

T
Σ−1

Λ,1η̄
2
1,m,tḡt + op(N

−1/2
H ), (D.54)

where Φ̄H , BΛ,1 and η̄2
1,m,t are defined in Proposition D.7.

From (D.52) and Lemma D.8 we get:

Û1ĝm,t = gm,t +
[
Σ−1

Λ,1 + op(1)
] [ 1

NH
Λ′1e

H
m,t

]
−

[
0(kC×1)

(ḡH′ḡC)(ḡC ′ḡC)−1gCm,t

]
+

1

T
βm,t + op(N

−1/2
H ),

i.e.,

√
NH

 ĤcĝCm,t − gCm,t −
1

T
βCm,t

Ĥ1,sĝ
H
m,t −

(
gHm,t − (ḡH′ḡC)(ḡC ′ḡC)−1gCm,t

)
− 1

T
βHm,t

 =
[
Σ−1

Λ,1 + op(1)
] [ 1√

NH
Λ′1e

H
m,t

]
+op(1),

where βm,t = [βC ′m,t, β
H ′
m,t]
′ = −

(
Σ−1

Λ,1Φ̄H +BΛ,1

)
gm,t + Σ−1

Λ,1η̄
2
1,m,tḡt. From Assumption D.2 we have

1√
NH

Λ′1e
H
m,t

d→ N(0,ΩH
Λ,m,m,t), (Ft-stably), as well as the joint asymptotic normality of 1√

NH
Λ′1e

H
m,t and

1√
NH

Λ′1e
H
m′,t for m 6= m′. The conclusion follows. �

D.6.2 Proof of Lemma D.8

Let us first show equation (D.53). We use the asymptotic expansions in Proposition D.4 i) with f ct = ḡCt ,
fs1,t = ḡHt , fs2,t = ḡLt , βc1,t = βCt , βs1,t = βHt and ε1,i,t = ēH,it . From equation (D.21) for j = 1 we have in
matrix notation:

Λ̂c1 =

{
Λc1 + Λs1(ḡH ′ḡC)(ḡC ′ḡC)−1 +

1√
T
W c

1 +
1

T

(
Λs1E[ḡHt β

C′
t ]− Λc1E[βCt ḡ

C′
t ]
)}
Ĥc + op(N

−1/2
H ),
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and from (D.22) for j = 1 we get:

Λ̂s1 =

{
Λs1 +

1√
T
W s

1 +
1

T

(
−Λc1E[βCt ḡ

H′
t ]− Λs1E[βHt ḡ

H′
t ]
)}
Ĥs,1 + op(N

−1/2
H ),

where:
W c

1 =
1√
T
ēH′ḡC(ḡC ′ḡC/T )−1, W s

1 =
1√
T
ēH′g̃H(g̃H ′g̃H/T )−1,

ēH =
[
ēH1 , ..., ē

H
T

]′, ḡC =
[
ḡC1 , ..., ḡ

C
T

]′, ḡH =
[
ḡH1 , ..., ḡ

H
T

]′ and g̃H = ḡH − ḡC(ḡC ′ḡC)−1(ḡC ′ḡH). Note
that ḡC and g̃H are mutually orthogonal in-sample. Thus, we have the expansion:

Λ̂1Û−1
1 − Λ1 =

1√
T
G1 + Λ1

(
1√
T
Q1 +

1

T
BΛ,1

)
+ op(N

−1/2
H ), (D.55)

where

G1 =

[
W c

1

... W s
1

]
=

1√
T
ēH′g̃(g̃′g̃/T )−1, g̃ =

[
ḡC

... g̃H
]
, (D.56)

Q1 =

[
0kC×kC 0kC×kH

1√
T
ḡH ′ḡC(ḡC ′ḡC/T )−1 0kH×kH

]
, (D.57)

BΛ,1 =

[
−E[βCt ḡ

C′
t ] −E[βCt ḡ

H′
t ]

E[ḡHt β
C′
t ] −E[βHt ḡ

H′
t ]

]
, (D.58)

U1 =

[
Ĥc 0

0 Ĥs,1

]
. (D.59)

From equation (D.55) it follows:

1

NH
(Λ̂1Û−1

1 )′
(

Λ̂1Û−1
1 − Λ1

)
(D.60)

=
1

NH

[
Λ1 +

1√
T
G1 + Λ1

(
1√
T
Q1 +

1

T
BΛ,1

)]′ [ 1√
T
G1 + Λ1

(
1√
T
Q1 +

1

T
BΛ,1

)]
+ op(N

−1/2
H )

=
1

NH

√
T

Λ′1G1 +
1

NHT
G′1G1 +

1

NHT
(Q′1Λ′1G1 +G′1Λ1Q1) +

1

NHT 3/2
(B′Λ,1Λ′1G1 +G′1Λ1BΛ,1)

+
1√
T

(
1

NH
Λ′1Λ1

)
Q1 +

1

T

(
1

NH
Λ′1Λ1

)
BΛ,1 +

1

T
Q′1

(
1

NH
Λ′1Λ1

)
Q1 + op(N

−1/2
H ). (D.61)

By using Λ′1G1/
√
NH = Op(1), Q1 = Op(1) and Λ′1Λ1/NH = ΣΛ,1 +O(N

−1/2
H ), we get:

1

NH
(Λ̂1Û−1

1 )′
(

Λ̂1Û−1
1 − Λ1

)
=

1√
T

ΣΛ,1Q1 +
1

T
ΣΛ,1BΛ,1 +

1

TNH
G′1G1 +

1

T
Q′1ΣΛ,1Q1 + op(N

−1/2
H ).

Let us consider the matrix 1
TNH

G′1G1. The i-th row of matrix G1 is 1√
T

∑T
t=1 ē

H,i
t g̃′t(g̃

′g̃/T )−1, where g̃t =
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[ḡC ′t , g̃H ′t ]′. Thus, we have:

1

NH
G′1G1 = (g̃′g̃/T )−1 1

NH

NH∑
i=1

(
1√
T

T∑
t=1

ēH,it g̃t

)(
1√
T

T∑
t=1

ēH,it g̃t

)′
(g̃′g̃/T )−1

=
1

NH

NH∑
i=1

E

( 1√
T

T∑
t=1

ēH,it ḡt

)(
1√
T

T∑
t=1

ēH,it ḡt

)′+Op(N
−1/2
H + T−1/2)

= Φ̄H +Op(N
−1/2
H + T−1/2),

under a summability condition on the covariances. Hence, 1
TNH

G′1G1 = 1
T Φ̄H + op(N

−1/2
H ) since T−3/2 =

o(N
−1/2
H ). This yields:

1

NH
(Λ̂1Û−1

1 )′
(

Λ̂1Û−1
1 − Λ1

)
=

1√
T

ΣΛ,1Q1 +
1

T
ΣΛ,1BΛ,1 +

1

T
Φ̄H +

1

T
Q′1ΣΛ,1Q1 + op(N

−1/2
H ).

Let us now consider term Û1

(
Λ̂′1Λ̂1

NH

)−1

Û ′1. From equation (D.55), using arguments similar to Lemma B.8 and
equation (B.27), we have:

Û1

(
Λ̂′1Λ̂1

NH

)−1

Û ′1 = Σ−1
Λ,1 −

1√
T
Q1Σ−1

Λ,1 −
1√
T

Σ−1
Λ,1Q

′
1 +Op(N

−1/2
H + T−1). (D.62)

Then, we get:Û1

(
Λ̂′1Λ̂1

NH

)−1

Û ′1

 1

NH
(Λ̂1Û−1

1 )′
(

Λ̂1Û−1
1 − Λ1

)
=

[
Σ−1

Λ,1 −
1√
T
Q1Σ−1

Λ,1 −
1√
T

Σ−1
Λ,1Q

′
1

] [
1√
T

ΣΛ,1Q1 +
1

T
ΣΛ,1BΛ,1 +

1

T
Φ̄H +

1

T
Q′1ΣΛ,1Q1

]
+ op(N

−1/2
H )

=
1√
T
Q1 +

1

T
[Σ−1

Λ,1Φ̄H +BΛ,1] + op(N
−1/2
H ),

where we use that NH and NL grow at the same rate with NH � T 3, and matrix Q1 is nilpotent. By post-
multiplying times gm,t, we get equation (D.53).
Let us now show equation (D.54). From (D.55), we have:

1

NH

(
Λ̂1Û−1

1 − Λ1

)′
eHm,t =

1

NH

√
T
G′1e

H
m,t +

1

NH

√
T
Q′1Λ′1e

H
m,t +

1

NHT
B′Λ,1Λ′1e

H
m,t

=
1

NH

√
T
G′1e

H
m,t +Op

(
1√
NHT

)
.

Online Appendix - 65



Let us consider the first term in the r.h.s. We have:

1

NH

√
T
G′1e

H
m,t = (g̃′g̃/T )−1 1

NHT

NH∑
i=1

T∑
s=1

ēH,is g̃se
H,i
m,t

= (g̃′g̃/T )−1 1

NHT

NH∑
i=1

ēH,it g̃te
H,i
m,t + (g̃′g̃/T )−1 1

NHT

NH∑
i=1

T∑
s=1,s 6=t

ēH,is g̃se
H,i
m,t.

Since 1√
NHT

∑NH
i=1

∑T
s=1,s 6=t ē

H,i
s g̃se

H,i
m,t = Op(1), the second term in the r.h.s. is Op(1/

√
NHT ). Moreover:

1

NH

NH∑
i=1

ēH,it g̃te
H,i
m,t =

1

NH

NH∑
i=1

E[ēH,it eH,im,t|Ft]ḡt +Op(N
−1/2
H + T−1/2) = η̄2

1,m,tḡt +Op(N
−1/2
H + T−1/2),

since NH � T 3, and (g̃′g̃/T )−1 = Ik1 +Op(T
−1/2). Thus, we get:

1

NH

(
Λ̂1Û−1

1 − Λ1

)′
eHm,t =

1

T
η̄2

1,m,tḡt + op(N
−1/2
H ).

From equation (D.62) we get:Û1

(
Λ̂′1Λ̂1

NH

)−1

Û ′1

 1

NH

(
Λ̂1Û−1

1 − Λ1

)′
eHm,t

=
[
Σ−1

Λ,1 +Op(N
−1/2
H + T−1/2)

] [ 1

T
η̄2
m,tḡt + op(N

−1/2
H )

]
=

1

T
Σ−1

Λ,1η̄
2
1,m,tḡt + op(N

−1/2
H ),

since NH � T 3. This yields equation (D.54). �

D.7 Digression on Assumption A.7
In this section we want to show that the conditions in Assumption A.7 hold under mild primitive conditions on
the weak serial and cross-sectional dependence of the error terms and factors. We focus especially on cross-
sectional dependence. We omit the group index j since it is immaterial for the arguments in this section. Let us
denote εt = (ε1,t, ..., εN,t) and assume the εt are i.i.d.(0,Ω) across t, with finite fourth-order moments. To sim-
plify the argument, take ht = 1 and λi = 1, so that ξt = 1√

N

∑N
i=1 εi,t and αt = 1√

NT

∑N
i=1

∑T
s=1,s 6=t εi,tεi,s

are both scalars, and η2
t = η2 is a constant. 4

4The arguments could be generalized to the case where the errors and factors feature strong mixing serial dependence.
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D.7.1 Check of Assumption A.7 a)

Under the above conditions, we have η2
ts = 0. Hence we have to show that E

[(
1√
N

∑N
i=1 εi,tεi,s

)2
]
≤M , for

any s < t and a constant M . We have for s < t:( 1√
N

N∑
i=1

εi,tεi,s

)2
 =

1

N
E
[(
ε′tεs

)2]
=

1

N
E
[
tr(εtε

′
tεsε

′
s)
]

=
1

N
tr{Ω2},

by the serial independence condition. Now, tr
{

Ω2
}

=
∑

i

∑
j σ

4
i,j . Thus, under the weak cross-sectional

dependence condition 1
N

∑
i

∑
j σ

4
i,j = 1

N tr
{

Ω2
}

= O(1), Assumption A.7 a) is met.

D.7.2 Check of Assumption A.7 b)

Let us first show the validity of the bound E[α2
t ] = O(1). We have:

E[α2
t ] =

1

NT

T∑
r=1,r 6=t

T∑
u=1,u6=s

E[ε′tεrε
′
tεu] =

1

NT

T∑
r=1,r 6=t

T∑
u=1,u6=t

trE[εtε
′
tεrε

′
u] (D.63)

=
1

NT

T∑
r=1,r 6=t

T∑
u=1,u6=t

tr(ΩE[εrε
′
u]) =

1

NT

T∑
r=1,r 6=t

tr(Ω2)

= O

(
1

N
tr(Ω2)

)
. (D.64)

Hence, E[α2
t ] = O(1) holds under the weak cross-sectional dependence condition 1

N tr
{

Ω2
}

= O(1) .

Let us now show 1
T

∑T
t=1 ξtαt = op(1). Since E[ξtαt] = 0, the conclusion follows if E

[
( 1
T

∑T
t=1 ξtαt)

2
]

=

o(1). It is enough to prove E[(ξtαt)
2] = O(1) and E[ξtαtξsαs] = o(1) for any t 6= s, uniformly in t, s.

We focus on the second bound (the first one is proved by similar arguments). Let us write ξt = 1√
N
ι′εt and
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αt = 1√
NT

∑T
r=1,r 6=t ε

′
tεr, where ι is a (N, 1) vector of ones. We have for t 6= s:

E[ξtαtξsαs] =
1

N2T

T∑
r=1,r 6=t

T∑
u=1,u 6=s

E[ε′tE(εrε
′
u|εt, εs)εsι′εtι′εs]

=
1

N2T

T∑
r=1,r 6=t,s

T∑
u=1,u6=t,s

E[ε′tE(εrε
′
u|εt, εs)εsι′εtι′εs]

+
1

N2T

T∑
u=1,u 6=s

E[ε′tεsE(ε′u|εt, εs)εsι′εtι′εs]

+
1

N2T

T∑
r=1,r 6=t

E[ε′tE(εr|εt, εs)ε′tεsι′εtι′εs]

=
T − 2

N2T
E[ε′tΩεsι

′εtι
′εs] +

2

N2T
E[ε′tεsε

′
tεsι
′εtι
′εs]

=
T − 2

N2T
ι′Ω3ι+

2

N2T
tr
{

(E[εtε
′
t(ι
′εt)])

2
}
.

Under a weak cross-sectional dependence condition, namely 1
N ι
′Ω3ι = O(1), the first term in the r.h.s. is

O(N−1). Under the condition 1
N2 tr

{
(E[εtε

′
t(ι
′εt)])

2
}

= O(1), the second term is O(T−1) (with the latter
term vanishing if the distribution of the error terms is symmetric). Hence, E[ξtαtξsαs] = o(1) for any t 6= s,
uniformly in t, s.
It remains to prove that 1√

T

∑T
t=1 αt = Op(1). We have:

E

( 1√
T

T∑
t=1

αt

)2
 =

1

T
E
[
α2
t

]
+

1

T

T∑
t=1

T∑
s=1,s 6=t

E [αtαs] .

The first term in the r.h.s. is O(T−1) if 1
N tr

{
Ω2
}

= O(1) (see (D.64)). For the second term, we have:

E[αtαs] =
1

TN

T∑
r=1,r 6=t

T∑
u=1,u6=s

E[ε′tεrε
′
sεu] =

1

NT
E[ε′tεsε

′
sεt] =

1

NT
tr(Ω2),

for t 6= s. HenceE
[(

1√
T

∑T
t=1 αt

)2
]

= O(1) under the weak cross-sectional dependence condition 1
N tr

{
Ω2
}

=

O(1).

D.7.3 Check of Assumption A.7 c)

We have to prove the boundsE[‖βt‖2] = O(1) andE[‖β̄t‖2] = O(1), where βt = 1√
NT

∑N
i=1

∑T
s=1,s 6=t εi,t(εi,sζi,s−

E[εi,sζs]) and β̄t = 1
T

∑N
i=1

∑T
s=1,s 6=t εi,tE[εi,sζs], for ζt = (κt, ξt, αt)

′. We focus on the second bound (the
first one is proved using similar arguments). In the above framework we have:

β̄t = (1− T−1)
1√
N

N∑
i=1

N∑
j=1

εi,t

 ψi,j
σ2
i,j

0

 ,
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where ψi,j := E[εi,tε
2
j,t]. Then we have:

E[‖β̄t‖2] = (1− T−1)2 1

N

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

σ2
i,kψijψkl + (1− T−1)2 1

N

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

σ2
i,kσ

2
ijσ

2
kl

= (1− T−1)2

[
1

N
ι′(Ψ′ΩΨ)ι+

1

N
ι′Ω3ι

]
,

where Ψ denotes the matrix with elements ψi,j . Hence, we have E[‖β̄t‖2] = O(1) under the weak cross-
sectional dependence conditions 1

N ι
′(Ψ′ΩΨ)ι = O(1) and 1

N ι
′Ω3ι = O(1). Note that Ψ = 0 if the distribution

of εi,t is symmetric.

D.8 Estimators based on fixed point iteration
In this Appendix we consider the estimator for group factor models based on the Least Squares (LS) method
suggested by Wang (2012). The estimator uses fixed point iteration to solve the first-order conditions. We
discuss here some issues concerning the uniqueness of the fixed point.
The group factor model is:

Y1 = F cΛc ′1 + F s1 Λs ′1 + ε1, (D.65)

Y2 = F cΛc ′2 + F s2 Λs ′2 + ε2. (D.66)

For expository purpose, we assume N1 = N2 = N . The estimators of factor values and factor loadings are
defined by minimizing the LS criterion

Q =
2∑
j=1

Tr[(Yj − F cΛc ′j − F sj Λs ′j )′(Yj − F cΛc ′j + F sj Λs ′j )], (D.67)

w.r.t. arguments F c, F sj , Λcj , Λsj , j = 1, 2, subject to the constraints:

F c ′F c/T = Ikc , F s ′j F sj /T = Iksj , F c ′F sj = 0, j = 1, 2. (D.68)

The first-order conditions (FOC) for this constrained minimization problem yield the following eigenvalue-
eigenvector problems (see the proof at the end of this section):

• F sj is the T × ksj matrix of standardized eigenvectors of matrix

MF c(YjY
′
j /N)MF c (D.69)

associated with the ksj largest eigenvalues, for j = 1, 2,

• F c is the T × kc matrix of standardized eigenvectors of matrix

MF s(Y1Y
′

1/N + Y2Y
′

2/N)MF s (D.70)

associated with the kc largest eigenvalues,

where MF c = IT − F c(F c ′F c)−1F c ′ and MF s = IT − F s(F s′F s)−1F s ′, with F s = [F s1 F s2 ]. The
eigenvectors are normalized such that F c ′F c/T = Ikc , F s ′j F sj /T = Iksj , for j = 1, 2, and satisfy automatically
the identification restrictions F c ′F sj = 0, for j = 1, 2.
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Wang (2012) suggests to solve the FOC by an iterative procedure. Given an estimate F̃ c, the estimate F̂ sj is
computed by the spectral decomposition of the matrix in (D.69) with F c = F̃ c, for j = 1, 2. The estimate
F̂ s = [F̂ s1 F̂

s
2 ] is used to compute the matrix in (D.70), whose spectral decomposition yields a new estimate F̂ c.

This procedure defines the (stochastic) mapping F̃ c → F̂ c = Ψ(F̃ c).
Let us now investigate the properties of the mapping Ψ. For this purpose we consider the setting with scalar
factors, i.e. kc = ks1 = ks2 = 1, and the next assumption.

Assumption D.3. a) The errors are ε1 = ε2 = 0, and the true factor values are such that F c ′F c/T =
F s ′j F sj /T = 1, F c ′F sj = 0, for j = 1, 2. b) F s ′1 F s2 = 0, j = 1, 2.

Assumption D.3 defines a specific realization of the errors and the factors. In part a), we shut down the errors
to mimic the large N,T , setting where the impact of the idiosyncratic shocks vanishes. The factor values match
in-sample the theoretical normalization restrictions. For expository purpose, we assume that the group-specific
factors are orthogonal, and part b) matches this condition in-sample.

PROPOSITION D.9. Under Assumption D.3, any vector F̃ c, that is a linear combination of F c, F s1 , F s2 (true
factor values), is a fixed point of the mapping Ψ (up to a sign change).

Thus, the set of fixed points of Ψ includes the three-dimensional linear space spanned by vectors F c, F s1 , F s2 .

Proof of Proposition D.9: Define the T × 3 matrix H = [F c F s1 F s2 ]. Under Assumption D.3 we have
H ′H/T = I3, and the data can be written as Y1 = H[Λc1 Λs1 0]′ and Y2 = H[Λc2 0 Λs2]′. Then, we get:

Y1Y
′

1/N = H

 Λc ′1 Λc1/N Λc ′1 Λs1/N 0
Λs ′1 Λc1/N Λs ′1 Λs1/N 0

0 0 0

H ′ ≡ HΠ1H
′.

Similarly, we have Y2Y
′

2/N = HΠ2H
′ for a suitable 3× 3 matrix Π2, and Y1Y

′
1/N + Y2Y

′
2/N = HΠH ′ with

Π = Π1 + Π2.
Now, let

F̃ c = F cβ1 + F s1β2 + F s2β3 = Hβ,

where the 3× 1 vector β = (β1, β2, β3)′ is such that β′β = 1. Then:

MF̃ c = IT −
1

T
F̃ cF̃ c ′

= IT −
1

T
Hββ′H ′ = MH +

1

T
HMβH

′,

where Mβ = I3 − β(β′β)−1β′ = I3 − ββ′. Therefore, the matrix in (D.69) corresponding to F̃ c can be written
as:

MF̃ c(YjY
′
j /N)MF̃ c = (MH +

1

T
HMβH

′)HΠjH
′(MH +

1

T
HMβH

′)

= HMβΠjMβH
′.

The eigenvector associated with the largest eigenvalue of matrix HMβΠjMβH
′ is in the column space of H:

F̂ sj = Hαj ,

where the 3 × 1 vector αj is the normalized eigenvector of matrix MβΠjMβ associated with the largest eigen-
value, j = 1, 2. In particular, αj is orthogonal to β, j = 1, 2. The vectors α1 and α2 are not collinear.
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Let F̂ s = [F̂ s1 F̂
s
2 ] = Hα, where α = [α1 α2]. The matrix in (D.70) corresponding to F̂ s is

MF̂ s(Y1Y
′

1/N + Y2Y
′

2/N)MF̂ s = HMαΠMαH
′.

The eigenvector F̂ c of this matrix associated with the largest eigenvalue is F̂ c = Hγ, where γ is the eigenvector
of matrix MαΠMα associated with the largest eigenvalue. This implies that γ is orthogonal to α1 and α2, and
thus is collinear to β. By normalization we have either γ = β, or γ = −β. Therefore, either F̂ c = F̃ c, or
F̂ c = −F̃ c. �

Proof of the FOC for the constrained minimization (D.67)-(D.68): The Lagrange multipliers for the identifi-
cation restrictions (D.68) are zero. The FOC for the factor loadings under the constraints yield:

Λcj = Y ′jF
c(F c ′F c)−1,

Λsj = Y ′jF
s
j (F s ′j F sj )−1, j = 1, 2.

From these equations, the residuals are

Yj − F cΛc ′j − F sj Λs ′j = (IT − PF c − PF sj )Yj , j = 1, 2,

where PF c = F c(F c ′F c)−1F c ′ = IT −MF c and PF sj = F sj (F s ′j F sj )−1F s ′j = IT −MF sj
. From the orthogo-

nality F c ′F sj = 0 in (D.68), matrices MF c and MF sj
commute, and matrices

IT − PF c − PF sj = MF sj
MF c = MF cMF sj

, j = 1, 2,

are idempotent. Therefore, the concentrated LS criterion becomes:

Q =
2∑
j=1

Tr[Y ′jMF cMF sj
Yj ]. (D.71)

From the constraints (D.68) and the commutative property of the trace, the concentrated LS criterion can be
rewritten as:

Q =

2∑
j=1

Tr[MF sj
MF cYjY

′
jMF c ]

=

2∑
j=1

Tr[MF cYjY
′
jMF c ]−

2∑
j=1

1

T
Tr[F s ′j MF cYjY

′
jMF cF

s
j ].

For j = 1, 2, the minimization of this concentrated criterion w.r.t. F sj is equivalent to the maximization of
Tr[F s ′j MF cYjY

′
jMF cF

s
j ]. Under the constraint F s′F sj /T = Iksj , this problem is solved by the matrix of

normalized eigenvectors of matrix MF cYjY
′
jMF c associated with the ksj largest eigenvalues.

Similarly, from the constraints (D.68) and the commutative property of the trace, the concentrated LS criterion
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(D.71) can be rewritten as:

Q =
2∑
j=1

Tr[MF cMF sj
YjY

′
jMF sj

]

=

2∑
j=1

Tr[MF sj
YjY

′
jMF sj

]−
2∑
j=1

1

T
Tr[F c ′MF sj

YjY
′
jMF sj

F c]

=
2∑
j=1

Tr[MF sj
YjY

′
jMF sj

]− 1

T
Tr[F c ′MF s(

2∑
j=1

YjY
′
j )MF sF

c].

The minimization of this concentrated criterion w.r.t. F c is equivalent to the maximization of
Tr[F c ′MF s(

∑2
j=1 YjY

′
j )MF sF

c]. Under the constraint F c ′F c/T = Ikc , this problem is solved by the matrix
of normalized eigenvectors of matrix MF s(

∑2
j=1 YjY

′
j )MF s associated with the kc largest eigenvalues. �

D.9 Practical implementation of the procedure
Let us first assume that kC , kH , kL, i.e. the number of respectively common, high and low frequency factors in
equation (5.1), are known and are all strictly larger than zero. The identification strategy presented in Section
2 directly implies a simple three-step estimation procedure for the factor values and the factor loadings (see
Section 3), which is summarized here for practical implementation purposes:

1. PCA performed on the HF and LF panels separately
Define the (T,NH) matrix of temporally aggregated (in our application flow-sampled) demeaned HF
observables as XH = [xH1 , ..., x

H
T ]′, and the (T,NL) matrix of demeaned LF observables as XL =

[xL1 , ..., x
L
T ]′. The estimated pervasive factors of the HF data, which are collected in (T, kC + kH) matrix

ĥH = [ĥH,1, ..., ĥH,T ]′, are obtained performing PCA on the HF data:(
1

TNH
XHXH′

)
ĥH = ĥH V̂H ,

where V̂H is the diagonal matrix of the eigenvalues of (TNH)−1XHXH′. Analogously, the estimated
pervasive factors of the LF data, which are collected in the (T, kC + kL) matrix ĥL = [ĥL,1, ..., ĥL,T ]′,
are obtained performing PCA on the LF data:(

1

TNL
XLXL′

)
ĥL = ĥLV̂L,

where V̂L is the diagonal matrix of the eigenvalues of (TNL)−1XLXL′.

2. Canonical correlation analysis performed on estimated principal components
Let ŴC

H be the (kC+kH , kC) matrix whose columns are the canonical directions for ĥH,t associated with
the kC largest canonical correlations between ĥH and ĥL. Then, an estimator of the (in our application
flow-sampled) common factor is ˆ̄gCt = ŴC ′

H ĥH,t, for t = 1, ..., T . Analogously, ˆ̄gC∗t = ŴC ′
L ĥL,t, for

t = 1, ..., T , where ŴC
L is the (kC + kL, kC) matrix of the canonical directions for ĥL,t.

As explained in Subsection D.2, an alternative estimator of the flow-sampled common factor values
ˆ̄gC?t , t = 1, ..., T , is obtained from the eigenvectors associated to the kC largest eigenvalues of matrix
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1
T (ĥH ĥ

′
H + ĥLĥ

′
L). 5 The rest of the estimation procedure can be performed replacing ˆ̄gCt with ˆ̄gC?t .

The estimated loadings matrices Λ̂HC and Λ̂LC are obtained from the least squares regressions of xHt and
xLt on estimated factor ˆ̄gCt . Collect the residuals of these regressions:

ˆ̄ξHt = xHt − Λ̂HC ˆ̄gCt ,

ˆ̄ξLt = xLt − Λ̂LC ˆ̄gCt ,

in the following (T,NU ), with U = H,L, matrices:

Ξ̂U =
[

ˆ̄ξU1 , ...,
ˆ̄ξUT

]′
, U = H,L.

Then, the estimators of the HF and LF factors, collected in the (T, kU ), U = H,L, matrices:

ĜU =
[
ˆ̄gU1 , ..., ˆ̄g

U
T

]′
, U = H,L,

are obtained extracting the first kH and kL PCs from the matrices of residuals:(
1

TNU
Ξ̂U Ξ̂U ′

)
ĜU = ĜU V̂ U

S , U = H,L,

where V̂ U
S , with U = H,L, are the diagonal matrices of the associated eigenvalues. Next, the estimated

loadings matrices Λ̂H and Λ̂L are obtained from the least squares regression of ξ̂Ht and ξ̂Lt on respectively
the estimated factors ˆ̄gHt and ˆ̄gLt .

3. Reconstruction of the common and high frequency-specific factors
The estimates of the common and HF factors for each HF subperiod, denoted by ĝCm,t and ĝHm,t, for any
m = 1, ...,M and t = 1, ..., T , are obtained by cross-sectional regression of xm,t on the estimated

loadings [Λ̂HC
... Λ̂H ] obtained from the second step.

As discussed in Section 5, an alternative estimation approach consists in performing PCA prior to aggregation.
In this case, the first step in the above procedure is modified as follows:

1.’ PCA performed on the HF and LF panels separately prior to aggregation
Define the (TM,NH) matrix of HF observables as XHF = [xH1,1, ..., x

H
M,1, ..., x

H
M,T ]′. We perform PCA

on the HF data: (
1

TMNH
XHFXHF ′

)
ȟHF = ȟHF V̌HF ,

where ȟHF is the (TM, kC + kH) matrix of eigenvectors, and V̌HF is the diagonal matrix of the
eigenvalues, of matrix (TMNH)−1XHFXHF ′. Then, the estimated flow-sampled values of the per-
vasive factors in the HF panel are collected in the (T, kC + kH) matrix ĥH = [ĥH,1, ..., ĥH,T ] where
ĥH,t =

∑M
m=1 ȟHF,m,t. The estimated pervasive factors in the LF panel are obtained as in step 1 above.

The other steps 2 and 3 are unchanged.
Since the factors dimensions are unknown, the aforementioned procedure is implemented with estimated factors
dimensions k̂C , k̂H , and k̂L. Inference on the number of common, low and high-frequency-specific factors
proceeds as follows:

5As shown in Subsection D.2, we have ˆ̄gC?t = 1
2 (ˆ̄gCt + ˆ̄gC∗t ).
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1. Estimate k1 = kC + kH and k2 = kC + kL, i.e. the numbers of pervasive factors in panels XH and XL,
by some consistent estimators, as the ICp1 and ICp2 criteria of Bai and Ng (2002).

2. Let k := min(k̂1, k̂2). Test sequentially:

H0 = H(r) : kC = r against H1 : kC < r,

for any given r = k, k − 1, ..., 1. We use the statistic ξ̃(r) defined in equation (4.6), which is based
on ξ̂(r) =

∑r
`=1 ρ̂`, where the ρ̂`, for ` = 1, ..., r, are the r largest canonical correlations between ĥH,t

and ĥL,t. Here, ĥH,t and ĥL,t are the first k̂XH and k̂XL PCs extracted from the XH and XL panels,
respectively, and the canonical correlations are the squared roots of the eigenvalues of matrix R̂ defined
in equation (3.1). We reject H0 = H(r) if ξ̃(r) < zαNT , where critical value zαNT is set as in equation
(4.7), with γ = 0.1 and constant c = 0.95 as in the Monte Carlo study. Estimate k̂C is the largest
dimension r such that H0 is not rejected, or k̂C = 0 if H0 is rejected for all r.

3. The dimensions of frequency-specific factors are obtained by difference: k̂H = k̂1 − k̂C , and k̂L =
k̂2 − k̂C .

D.9.1 Implementation choices

The PCA in step 1 (or step 1’) in the estimation procedure is performed on demeaned and standardized data.
Hence, for step 1 the demeaned observables xHit and xLit are replaced by xHit /σHi and xLit /σ

Li, where σHi and
σLi are the sample standard deviations of the HF and LF series. For step 1’ the HF observables are standardized
at high-frequency.

In the empirical analysis in Section 7, we use ˆ̄gC?t to estimate the common factor values and perform PCA on the
flow-sampled HF data. To compute the test statistics ξ̃(r) in Theorem 2 we need the estimator Σ̂U of matrices
ΣU and Σ̃U . The estimator proposed in Theorem 2 is valid under the assumption of uncorrelated errors within
and between each of the two panels. Another estimator which takes into account (contemporaneous) weak
cross sectional correlations in the errors is Σ̂∗U = (N2/N1)Σ̂

(cc)
u,11 + Σ̂

(cc)
u,22 −

√
N2/N1Σ̂

(cc)
u,12 −

√
N2/N1Σ̂

(cc)
u,21,

where Σ̂u,ij =
(

1
Ni

Λ̂′iΛ̂i

)−1
(

1√
NiNj

Λ̂′iΓ̂ijΛ̂j

)(
1
Nj

Λ̂′jΛ̂j

)−1
for i, j = 1, 2, with estimated loadings Λ̂1 =

[Λ̂HC
... Λ̂H ] and Λ̂2 = [Λ̂LC

... Λ̂L], and N1 = NH and N2 = NL. Moreover, Γ̂ij is an estimator of the cross
sectional covariance matrix of the panels of residuals ˆ̄ei and ˆ̄ej with i, j = 1, 2, using thresholding, where ˆ̄e1

(resp. ˆ̄e2) is the (T,NH) (resp. (T,NL)) panel of residuals obtained by regressing each series xHit (resp. xLit )
in panel XH (resp. XL) on both ˆ̄gCt and ˆ̄gHt (resp. ˆ̄gLt ) factors. In the empirical application we use the second
estimator Σ̂∗U .

D.10 Dataset description
Figure D.1 shows that the share of the Industrial Production (IP) sector in the US economy has been in decline
since the late 70’s, which marks the beginning of our sample period. We use the class of mixed frequency group
factor model as well as the test of common versus group specific factors introduced in this paper to shed light
on the key question of interest, namely whether, despite the shrinking size of the IP sectors, the factors related
to IP are still dominant determinants of US output fluctuations.
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Figure D.1: Sectoral decomposition of US nominal GDP.
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The figure displays the evolution from 1977 to 2011 of the sectoral decomposition of US nominal GDP. We aggregate the
shares of different sectors available from the website of the US Bureau of Economic Analysis, according to their North
American Industry Classification System (NAICS) codes, in 5 different macro sectors: Industrial Production (yellow),
Services (red), Government (green), Construction (white), Others (grey).

D.10.1 High Frequency dataset: Industrial Production sectors

Our high frequency dataset includes the same 117 sectors constituting the aggregate Industrial Production index
considered by Foerster, Sarte, and Watson (2011) for the years 1977-2011. This sample period coincides with the
maximum number of years for which the data for the 42 non-Industrial Production sectors of our low frequency
panel were available and therefore - differently from Foerster, Sarte, and Watson (2011) - we do not consider the
entire time series available for IP data starting in 1972. We download the monthly level of the 117 IP indices
from the Board of Governors of the Federal Reserve System (FED)6. From these raw data, which are indices of
real output, we compute the corresponding quarterly growth rates.
The 117 sectors roughly correspond to a four-digit industry in the North American Industry Classification Sys-
tem (NAICS) for year 2002. The IP sectors are classified by the FED according in the following subsectors:
Manufacturing, Mining and Utilities. Manufacturing comprises those industries included in NAICS definition
of manufacturing plus the logging and newspaper, periodical, book, and directory publishing industries that have
traditionally been considered manufacturing, and is divided in Durable, Nondurable and Other manufacturing.
Durable manufacturing includes three-digit NAICS codes 321, 327, 331-337, and 339. Nondurable manufactur-
ing includes three-digit NAICS codes 311-316 and 322-326. Other manufacturing includes NAICS codes 1133
and 5111. Mining includes three-digit NAICS codes 211-213. Utilities include electric utilities and natural gas
distribution, corresponding to NAICS codes 2211 and 2212.7 We refer to Foerster, Sarte, and Watson (2011),

6See http://www.federalreserve.gov/releases/G17/default.htm .
7For a detailed description of the IP constituents see http://www.federalreserve.gov/releases/g17/
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and especially to their Appendix A, for a list of the names of the 117 sectors, and the methodology used to
approximate the missing data for some sectors.

Table D.1: List of non-Industrial Production sectors. (Source: BEA)

Sector NAICS 2002 codes

Farms 111, 112
Forestry, fishing, and related activities 113, 114, 115
Construction 23
Wholesale trade 42
Retail trade 44, 45
Air transportation 481
Rail transportation 482
Water transportation 483
Truck transportation 484
Transit and ground passenger transportation 485
Pipeline transportation 486
Other transportation and support activities 487, 488, 492
Warehousing and storage 493
Publishing industries (includes software) 511, 516
Motion picture and sound recording industries 512
Broadcasting and telecommunications 515, 517
Information and data processing services 518, 519
Federal Reserve banks, credit intermediation, and related activities 521, 522
Securities, commodity contracts, and investments 523
Insurance carriers and related activities 524
Funds, trusts, and other financial vehicles 525
Real estate 531
Rental and leasing services and lessors of intangible assets 532, 533
Legal services 5411
Computer systems design and related services 5415
Miscellaneous professional, scientific, and technical services 5412-5414, 5416-5419
Management of companies and enterprises 55
Administrative and support services 561
Waste management and remediation services 562
Educational services 61
Ambulatory health care services 621
Hospitals and nursing and residential care facilities 622, 623
Social assistance 624
Performing arts, spectator sports, museums, and related activities 711, 712
Amusements, gambling, and recreation industries 713
Accommodation 721
Food services and drinking places 722
Other services, except government 81
Federal Government - General government -
Federal Government - Government enterprises - (includes 491)
State and Local Government - General government -
State and Local Government - Government enterprises -

D.10.2 Low Frequency dataset: non-Industrial Production sectors

The US Bureau of Economic Analysis (BEA) publishes at yearly frequency the growth rates for the real Gross
Domestic Product and real Gross Output for all the sectors of the US economy, not only for the sectors included
in the IP index. We use the Release Date November 13, 2012 dataset as downloaded for the BEA website8. The
period 1977-2011 coincides with the maximum number of years for which the data for the 42 non-Industrial

About.htm .
8See http://www.bea.gov/industry/gdpbyind_data.htm .
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Production sectors in our low frequency panel were available at the date of download of the dataset. 9 Our origi-
nal BEA dataset includes the time series for the output growth rates of 65 mutually exclusive sectors constituting
the entire US economy, for the sample period 1977-2011. These sectors are aggregates of either 2 or 3 digits
2002 NAICS codes. Out of these 65 sectors, 19 are Manufacturing sectors (NAICS 2002 codes: 31-33), 3 are
Mining sectors (NAICS 2002 codes: 211-213) and one is Utilities (NAICS 2002 code: 22). These 23 sectors are
all included in the IP dataset, and therefore are excluded from our LF panel to avoid duplication of sectors in the
two panels. The IP sectors Logging, Newspaper Publishers and Periodical, Book, and Other Publishers (NAICS
1133, 5111, 5112) are subsectors of the 2 BEA sectors Publishing industries (includes software) and Forestry,
fishing, and related activities. We keep these 2 sectors in the low frequency panel. Therefore our non-IP low
frequency panel includes the 42 sectors listed in Table D.1 together with the corresponding NAICS 2002 codes.
In Table D.2 we report the names of the sectors corresponding to the aggregated version of the yearly indices
used in Table 3, and in the analogous tables in the subsample analysis (Section D.11.4), together with their
corresponding first or first two NAICS 2002 codes. The yearly growth rates of these real aggregated indices are
downloaded from the BEA website.

Table D.2: List of aggregates of non-Industrial Production sectors. (Source: BEA)

Sector NAICS 2002 codes

GDP (all sectors) all sectors included
Manufacturing 31, 32, 33
Agriculture, forestry, fishing, and hunting 11
Construction 23
Wholesale trade 42
Retail trade 44, 45
Transportation and warehousing 48, 49 (except 491)
Information 51
Finance, insurance, real estate, rental, and leasing 52, 53
Professional and business services 54
Educational services, health care, and social assistance 6
Arts, entertainment, recreation, accommodation, and food services 7
Government - (includes 491)

D.11 Additional empirical results
This section collects supplemental empirical results to the ones presented in Section 7 of the paper. It is divided
into four parts: Subsection D.11.1 gives the results of a “Granularity analysis” analogous to the one in Section
II.B of Foerster, Sarte, and Watson (2011) - performed on our dataset. Subsection D.11.2 covers empirical
results analogous to Section 7.2 obtained with an alternative estimation and inference method, in which PCs are
extracted from the HF panel prior to aggregation. Subsection D.11.3 provides additional tables and figures to
the ones in Section 7.2. Subsection D.11.4 reports the results of the empirical analysis performed on different
sub-samples of the one considered in Section 7.

9Time series for 22 aggregates of our 42 sectors are also available from the BEA website since 1947, and time series
for a more disaggregated version of our 42 indices, but only for Gross Output, is available only from 1997.
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D.11.1 Granularity analysis

In this section we report the results of the same analysis, performed on our dataset, as the one in Section II.B of
Foerster, Sarte, and Watson (2011). Our objective is to rule out the possibilities that a) sectoral weights in GDP
and IP aggregate indexes are the major determinants in explaining the variability of the indexes themselves,
and b) that their aggregate variability is driven mainly by sector-specific variability. Specifically, we replicate
the analysis of Tables 1, 2, and 3 in Foerster, Sarte, and Watson (2011) for the growth rates of the sectoral
components of the following four different indices:

1. The quarterly IP index, decomposed in the same 117 different sectoral indices as in Foerster, Sarte, and
Watson (2011). The weights of each sector used in the share-weight decomposition correspond to the
sectoral weights in the IP index. Results are displayed in Tables D.3 - D.5.

2. The annual GDP index, decomposed in all the 65 different sectoral indices produced by the BEA. The
weights of each sector used in the share-weight decomposition correspond to the sectoral weights in the
GDP index as produced by the BEA. Results are displayed in Tables D.6 - D.8.

3. A new synthetic annual Manufacturing index, which we created from the 19 different sectoral GDP in-
dices labeled as “Manufacturing” (NAICS 2002 code: 22), produced by the BEA. The weights of each
sector used in the share-weight decomposition correspond to the sectoral weights in the GDP index as
produced by the BEA. Results are displayed in Tables D.9 - D.11.

4. A new synthetic annual non-IP index, which we created from the 42 different sectoral non-IP indices listed
in Table D.1, produced by the BEA. The weights of each sector used in the share-weight decomposition
correspond to the sectoral weights in the GDP index as produced by the BEA. Results are displayed in
Tables D.12 - D.14.

The notation, and the formulas used to produce the results in Tables D.3 - D.14, are the same as those used
in Tables 1, 2, and 3 in Foerster, Sarte, and Watson (2011). The time series of the four components of the
share-weight decomposition of Tables D.3, D.6, D.9, and D.12, are displayed in Figures D.2, D.3, D.4, and
D.5, respectively. Finally, Figures D.6 and D.7 display the histograms of the standard deviations of the growth
rates of the 117 IP indices (quarterly), and 42 non-IP indices (annual), computed over the four different sample
periods considered in the empirical analysis. In the captions of Figures D.6 and D.7 we report tables displaying
the 25%, 50%, and 75% quantiles of the empirical distributions represented by the histograms.
Overall, the results support our objectives and provide evidence to rule out the aforementioned possibilities a)
and b), as mentioned above.
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Quarterly IP Index

Table D.3: Share weight decomposition of quarterly Industrial Production index.
Series 1977-2011 1977-1983 1984-2007 2008-2011

gt =
∑
witxit 5.7 7.9 3.6 9.7

(1/N)
∑
xit 7.3 9.9 4.2 13.7∑

(w̄i − (1/N))xit 2.2 3.3 1.5 2.9∑
(wit − w̄i)xit 1.0 1.0 0.5 2.1

Entries are the sample standard deviations of the quarterly growth rates of the quarterly Industrial Production index growth
(gt) and its components (xi,t). Percentage points are at annual rates. The table corresponds to Table 1 in Foerster, Sarte,
and Watson (2011).

Table D.4: Average pairwise correlations of sectoral Industrial Production indices.
1977-2011 1977-1983 1984-2007 2008-2011

0.21 0.25 0.12 0.34

Entries are the average pairwise sample correlations of the quarterly growth rates of the 117 Industrial Production indices
considered in the paper. The table corresponds to Table 2 in Foerster, Sarte, and Watson (2011).

Table D.5: Standard deviation of aggregate Industrial Production indices constructed with and without
sectoral covariance

1977-2011 1977-1983 1984-2007 2008-2011

A. Using Actual wit Share Weights

With sectoral covariation 5.7 7.9 3.6 9.7
Without sectoral covariation 1.9 2.5 1.6 2.5

B. Using Equal (1/N) Share Weights

With sectoral covariation 7.3 9.9 4.2 13.7
Without sectoral covariation 1.9 2.7 1.4 2.4

The entries for rows labeled “with sectoral covariation” are sample standard deviations of
∑
witxit (Panel A) and

N−1
∑
xit (Panel B). The entries labeled “without sectoral covariation” are computed as:

√
T−1

∑
t

∑
i h

2
it(xit − x̄i)2,

where hit = wit in panel A and hit = N−1 in panel B. Percentage points are at annual rates. The table corresponds to
Table 3 in Foerster, Sarte, and Watson (2011).
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Annual GDP sectoral indices (all sectors)

Table D.6: Share weight decomposition of annual GDP index.
Series (GDP) 1977-2011 1977-1983 1984-2007 2008-2011

gt =
∑
witxit 2.1 2.6 1.4 2.3

(1/N)
∑
xit 2.7 3.4 1.7 5.2∑

(w̄i − (1/N))xit 0.9 1.0 0.8 1.8∑
(wit − w̄i)xit 0.4 0.2 0.2 1.2

Entries are the sample standard deviations of the annual growth rates of annual GDP index growth (gt) and its components
(xi,t). The index is constructed using weights of nominal GDP. The table is the analogous of Table 1 in Foerster, Sarte, and
Watson (2011) for GDP data.

Table D.7: Average pairwise correlations of sectoral GDP indices.
1977-2011 1977-1983 1984-2007 2008-2011

0.18 0.29 0.11 0.19

Entries are the average pairwise sample correlations of the annual growth rates of the 65 sectoral GDP indices. The table
is the analogous of Table 2 in Foerster, Sarte, and Watson (2011) for GDP data.

Table D.8: Standard deviation of aggregate GDP indices constructed with and without sectoral covari-
ance

1977-2011 1977-1983 1984-2007 2008-2011

A. Using Actual wit Share Weights

With sectoral covariation 2.1 2.6 1.4 2.3
Without sectoral covariation 0.8 0.9 0.7 1.0

B. Using Equal (1/N) Share Weights

With sectoral covariation 2.7 3.4 1.7 5.2
Without sectoral covariation 1.2 1.1 1.0 1.9

The entries for rows labeled “with sectoral covariation” are sample standard deviations of
∑
witxit (Panel A) and

N−1
∑
xit (Panel B). The entries labeled “without sectoral covariation” are computed as:

√
T−1

∑
t

∑
i h

2
it(xit − x̄i)2,

where hit = wit in panel A and hit = N−1 in panel B. The table is the analogous of Table 3 in Foerster, Sarte, and Watson
(2011) for GDP data.

Online Appendix - 80



Annual Manufacturing sectors in GDP index

Table D.9: Share weight decomposition of aggregate Manufacturing index.
Series(GDP) 1977-2011 1977-1983 1984-2007 2008-2011

gt =
∑
witxit 4.5 5.8 3.5 7.6

(1/N)
∑
xit 5.3 6.9 3.4 10.9∑

(w̄i − (1/N))xit 1.2 0.9 1.1 2.2∑
(wit − w̄i)xit 1.6 0.6 0.4 4.8

Entries are the sample standard deviations of the annual growth rate and the components of the annual index (gt) created
from the 19 Manufacturing sectors in the GDP index. The index is constructed using weights of nominal GDP. The table
is the analogous of Table 1 in Foerster, Sarte, and Watson (2011) for Manufacturing data.

Table D.10: Average pairwise correlations of sectoral Manufacturing indices.
1977-2011 1977-1983 1984-2007 2008-2011

0.35 0.48 0.27 0.29

Entries are the average pairwise sample correlations of the annual growth rates of the 19 Manufacturing sectors in the GDP
index. The table is the analogous of Table 2 in Foerster, Sarte, and Watson (2011) for Manufacturing data.

Table D.11: Standard deviation of aggregate Manufacturing indices constructed with and without
sectoral covariance

1977-2011 1977-1983 1984-2007 2008-2011

A. Using Actual wit Share Weights

With sectoral covariation 4.5 5.8 3.5 7.6
Without sectoral covariation 2.7 2.6 2.3 3.9

B. Using Equal (1/N) Share Weights

With sectoral covariation 5.3 6.9 3.4 10.9
Without sectoral covariation 2.8 2.9 1.9 5.3

The entries for rows labeled “with sectoral covariation” are sample standard deviations of
∑
witxit (Panel A) and

N−1
∑
xit (Panel B). The entries labeled “without sectoral covariation” are computed as:

√
T−1

∑
t

∑
i h

2
it(xit − x̄i)2,

where hit = wit in panel A and hit = N−1 in panel B. The table is the analogous of Table 3 in Foerster, Sarte, and Watson
(2011) for Manufacturing data.
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Annual non-IP sectors in GDP sectoral indices

Table D.12: Share weight decomposition of aggregate index of non-IP sectors.
Series(GDP) 1977-2011 1977-1983 1984-2007 2008-2011

gt =
∑
witxit 1.7 2.1 1.3 1.9

(1/N)
∑
xit 2.1 2.6 1.3 3.4∑

(w̄i − (1/N))xit 0.9 0.5 1.0 1.5∑
(wit − w̄i)xit 0.2 0.3 0.2 0.2

Entries are the sample standard deviations of the annual growth rate and the components of the annual index (gt) created
from the 42 non-IP sectors in the GDP index considered in our paper. The index is constructed using weights of nominal
GDP. The table is the analogous of Table 1 in Foerster, Sarte, and Watson (2011) for non-IP data.

Table D.13: Average pairwise correlations of sectoral non-IP indices.
1977-2011 1977-1983 1984-2007 2008-2011

0.18 0.32 0.10 0.21

Entries are the average pairwise sample correlations of the annual growth rates of the 42 non-IP sectors in the GDP index
considered in our paper. The table is the analogous of Table 2 in Foerster, Sarte, and Watson (2011) for non-IP data.

Table D.14: Standard deviation of aggregate indices of non-IP sectors constructed with and without
sectoral covariance

1977-2011 1977-1983 1984-2007 2008-2011

A. Using Actual wit Share Weights

With sectoral covariation 1.7 2.1 1.3 1.9
Without sectoral covariation 0.9 0.9 0.8 0.9

B. Using Equal (1/N) Share Weights

With sectoral covariation 2.1 2.6 1.3 3.4
Without sectoral covariation 1.2 0.9 1.1 1.4

The entries for rows labeled “with sectoral covariation” are sample standard deviations of
∑
witxit (Panel A) and

N−1
∑
xit (Panel B). The entries labeled “without sectoral covariation” are computed as:

√
T−1

∑
t

∑
i h

2
it(xit − x̄i)2,

where hit = wit in panel A and hit = N−1 in panel B. The table is the analogous of Table 3 in Foerster, Sarte, and Watson
(2011) forn non-IP data.

Online Appendix - 82



Figure D.2: Share weight decomposition of quarterly IP index.
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The figure displays the share weight decomposition of quarterly IP index growth rates. Percentage points are at annual rates.
This figure corresponds to Figure 3 in Foerster, Sarte, and Watson (2011). The bold solid line corresponds to

∑
witxit

(i.e. the aggregate IP index). The bold dash-dotted line corresponds to
∑

(1/N)xit. The thin solid line corresponds to∑
(w̄i − (1/N))xit. The thin dotted line corresponds to

∑
(wit − w̄i)xit.
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Figure D.3: Share weight decomposition of annual GDP index.
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The figure displays the share weight decomposition of annual GDP index. The index is constructed using weights (wit) of
nominal GDP. This figure corresponds to Figure 3 in Foerster, Sarte, and Watson (2011). The bold solid line corresponds
to
∑
witxit (i.e. the aggregate real GDP index). The bold dash-dotted line corresponds to

∑
(1/N)xit. The thin solid line

corresponds to
∑

(w̄i − (1/N))xit. The thin dotted line corresponds to
∑

(wit − w̄i)xit.
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Figure D.4: Share weight decomposition of annual Manufacturing sectors in GDP indices.
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The figure displays the share weight decomposition of annual GDP index of Manufacturing sectors. The index is con-
structed using weights (wit) of nominal GDP. This figure corresponds to Figure 3 in Foerster, Sarte, and Watson (2011).
The bold solid line corresponds to

∑
witxit (i.e. the aggregate real GDP index for IP sectors). The bold dash-dotted line

corresponds to
∑

(1/N)xit. The thin solid line corresponds to
∑

(w̄i − (1/N))xit. The thin dotted line corresponds to∑
(wit − w̄i)xit.
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Figure D.5: Share weight decomposition of annual non-IP sectors in GDP indices.
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The figure displays the share weight decomposition of annual GDP index of non-IP sectors . The index is constructed using
weights (wit) of nominal GDP growth rates. This figure corresponds to Figure 3 in Foerster, Sarte, and Watson (2011).
The bold solid line corresponds to

∑
witxit (i.e. the aggregate real GDP index for non-IP sectors). The bold dash-dotted

line corresponds to
∑

(1/N)xit. The thin solid line corresponds to
∑

(w̄i − (1/N))xit. The thin dotted line corresponds
to
∑

(wit − w̄i)xit.
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Figure D.6: Standard deviations of quarterly growth rates of sectoral Industrial Production indices.
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(a) 1977.Q1-2011.Q4

0 20 40 60 80 100 120 140 160 180
0

2

4

6

8

10

12

14

16

P
er
ce
n
t

(b) 1977.Q1-1983.Q4
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(c) 1984.Q1-2007.Q4
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(d) 2008.Q1-2011.Q4

Each panel displays the histogram of the standard deviations of quarterly growth rates of sectoral IP indices. Percentage
points are at annual rates. The graphs correspond to Figure 2 in Foerster, Sarte, and Watson (2011).

Panel 25th Percentile Median 75th Percentile

(a) 1977.Q1-2011.Q4 10.77 14.19 19.71
(b) 1977.Q1-1983.Q4 10.60 15.92 25.29
(c) 1984.Q1-2007.Q4 8.32 11.48 16.71
(d) 2008.Q1-2011.Q4 14.40 18.91 25.65
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Figure D.7: Standard deviations of annual growth rates of non-IP sectoral GDP indices.
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(a) 1977-2011
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(b) 1977-1983
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(c) 1984-2007
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(d) 2008-2011

Each panel displays the histogram of the standard deviations of the annual growth rates of the 42 non-IP sectoral GDP
indices. The graphs correspond to Figure 2 in Foerster, Sarte, and Watson (2011).

Panel 25th Percentile Median 75th Percentile

(a) 1977-2011 3.92 4.91 6.39
(b) 1977-1983 3.65 4.89 7.05
(c) 1984-2007 3.22 4.31 6.19
(d) 2008-2011 3.22 5.47 8.39
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D.11.2 Tables and figures with PCA prior to aggregation

In this subsection we report the empirical results analogous to Section 7.2 obtained with an alternative estimation
and inference method, in which PCs are extracted from the HF panel prior to aggregation (see Section D.9). The
results are displayed in Figure D.8, Tables D.15, D.16 and D.17. By comparing with Figure 2, Tables 1, 2 and
3 we see that the empirical results are substantially unchanged, whether aggregation is performed prior or post
PCA on the HF data.

Figure D.8: Sample paths of the estimated factors, 1977 - 2011 (PCA first)
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(b) High Frequency-specific factor
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(c) Low Frequency-specific factor

Panel (a) displays the path of the estimated common factor. Panel (b) displays that of the HF-specific factor and Panel (c)
that of the LF-specific factor. The factors are estimated from the panels of 42 annual non-IP GDP sectoral series and 117
quarterly IP indices using a mixed frequency group factor model with kC = kH = kL = 1.
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Table D.15: Adjusted R2 and percentage values of BIC of the regressions with common and/or
frequency-specific factors from economic activity indices growth rates (PCA first)

R̄2: Quantiles

Factors 10% 25% 50% 75% 90% % BIC

Observables: Gross Domestic Product, 1977-2011

common -2.3 -0.4 11.1 28.5 43.0 38.1
common, LF-specific -0.6 10.2 25.4 35.1 60.8 28.6
LF-specific -2.9 -2.2 5.0 16.1 23.1 33.3

Observables: IP, 1977.Q1-2011.Q4

common 0.4 6.0 20.2 36.4 59.1 43.6
common, HF-specific 1.4 8.0 29.9 45.4 63.2 46.2
HF-specific -0.7 -0.1 2.3 8.2 19.3 10.3

The regressions in the first three lines involve the growth rates of the 42 non-IP sectors as dependent variables, while those
in the last three lines involve the growth rates of the 117 IP indices as dependent variables. The explanatory variables are
factors estimated from the same indices using a mixed frequency factor model with kC = kH = kL = 1. The sample
period for the estimation of both the factor model and the regressions is 1977-2011. For both the IP and the non-IP panels,
the sectoral growth rates are regressed on either the common factor only, or both the common and the frequency-specific
factors, or the frequency-specific factor only.
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Table D.17: Adj. R2 of aggregate IP and selected GDP indices growth rates on estimated factors (PCA
first)

Panel A Quarterly observations, 1977.Q1-2011.Q4

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(H) R̄2(C +H) BIC

Industrial Production 89.93 1.21 91.30 1.37 CH

Panel B Yearly observations, 1977-2011

(1) (2) (3) (3) - (1)
Sector R̄2(C) R̄2(L) R̄2(C + L)

GDP 61.28 8.97 75.01 13.73 CL
GDP - Manufacturing 82.67 -3.03 82.33 -0.34 C
GDP - Agriculture, forestry, fishing, and hunting 1.48 -2.35 -1.04 -2.52 C
GDP - Construction 44.97 11.38 60.52 15.55 CL
GDP - Wholesale trade 20.07 8.98 31.47 11.40 CL
GDP - Retail trade 30.29 -2.91 28.12 -2.17 C
GDP - Transportation and warehousing 62.95 -2.97 61.80 -1.15 C
GDP - Information 12.35 21.50 36.69 24.33 CL
GDP - Finance, insurance, real estate, rental, and leasing -1.34 21.65 21.56 22.90 L
GDP - Professional and business services 30.22 31.17 66.38 36.16 CL
GDP - Educational services, health care, and social assistance -1.09 16.48 16.45 17.53 L
GDP - Arts, entertainment, recreation, accommodation, and food serv. 52.50 -2.01 52.83 0.33 C
GDP - Government -2.32 21.09 19.03 21.36 L

In the table we report the adjusted R2, denoted R̄2, of the regression of growth rates of the aggregate IP index and selected
aggregated sectoral GDP non-IP output indices on the common factor (column R̄2(C)), the specific HF and LF factors
only (columns R̄2(H) and R̄2(L)), and the common and frequency-specific factors together (column (3)). The last column
displays the difference between the values in the third and first columns. The factors are estimated from the panel of 42
GDP non-IP sectors and 117 IP indices using a mixed frequency factor model with kC = kH = kL = 1. The sample
period for the estimation of both factor model and regressions is 1977-2011.

D.11.3 Supplementary tables and figures to Section 7.2

In Table D.18 we report the estimated number of pervasive factors k1 and k2, selected in each of the panels of
data considered in Section 7.2 according to the ICp1 and ICp2 information criteria of Bai and Ng (2002).

Online Appendix - 92



Table D.18: Estimated number of factors: results for ICp1 and ICp2 information criteria

XHF XH XL

IP data: 1977.Q1-2011.Q. Non-IP data: Gross Domestic Product, 1977-2011

ICp1 2 2 1
ICp2 1 2 1

The number of latent pervasive factors selected by the ICp1 and ICp2 information criteria is reported for different subpan-
els. Subpanels XHF and XH correspond to IP data sampled at quarterly and yearly frequency, respectively. Panels XL

correspond to non-IP data. We use kmax = 15 as maximum number of factors when computing ICp’s criteria. In the first
line the quarterly IP data are for sample period 1977.Q1-2011.Q4, and the annual non-IP data are GDP growth rates for the
sample period 1977-2011.

In Table D.19 we report the four eigenvalues of the sample variance-covariance matrix of the stacked PC’s
estimated in each subpanel of IP data (XH ) and non-IP data (XL). The two largest eigenvalues are equal to 1
plus the largest canonical correlations, as implied by Lemma D.2. We find an eigenvalue close to two, which
is consistent with the presence of one common factor in each of the two different mixed frequency dataset
considered. The asymptotic theory developed for the number of canonical correlations equal to one among the
PC’s extracted separately from the two panels, could be used to derive a test statistic for the number of common
factors among the two panels, based on the number of eigenvalues equal to 2 of the sample variance-covariance
matrix of the stacked PC’s.

Table D.19: Eigenvalues of the variance-covariance matrix of the stacked PC’s (Aggregation first)

1st eig. 2nd eig. 3rd eig. 4th eig.

IP data: 1977.Q1-2011.Q4. Non-IP data: Gross Domestic Product, 1977-2011

1.84 1.06 0.94 0.16

In this table we report the eigenvalues of the sample variance-covariance matrix of the stacked PC’s estimated in each
subpanel of IP (XH ) and non-IP data (XL). We extract the first 2 PC’s in each subgroup, and compute the variance-
covariance matrix of these 4 stacked PC’s.
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Figure D.9 provides an alternative representation of the estimates of the common, HF-specific and LF-specific
factors displayed in Figure 2, Panels (b) - (d), where the three factor paths are superposed. The values of the
three factors are computed for the two mixed frequency panels of 42 GDP sectors and 117 IP indices.

Figure D.9: Trajectories of the estimated common, HF-specific and LF-specific factors (Aggregation
first)

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12
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The Figure displays the time series of estimated values of the common factor (blue circles), the LF-specific factor (red
squares) and the HF-specific factor (green diamonds). For each year we represent the LF factor as 4 squares corresponding
to the 4 quarters, assuming the same value. The factors are estimated from the panel of real output growth rates of 42
GDP sectors and 117 Industrial Production indices, using a mixed frequency factor model with kC = kH = kL = 1. The
sample period for the estimation of the factor model is 1977.Q1-2011.Q4.
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In Table D.20 we report the empirical correlation matrix of the estimated factors, computed at yearly frequency.
In Table D.21 we display the sample correlations among the quarterly estimates of the common and HF-specific
factors and the yearly estimates of the LF-specific factor.

Table D.20: Correlation matrix of the estimated factors, computed at annual frequency. (Aggregation
first)

ˆ̄gCt ˆ̄gHt ˆ̄gLt

ˆ̄gCt 1.00
ˆ̄gHt 0.00 1.00
ˆ̄gLt 0.00 -0.25 1.00

In the table we display the sample correlation matrix of the stacked vector of estimated factors (ˆ̄gCt , ˆ̄g
H
t , ˆ̄g

L
t ). The factors

are estimated from the panel of 42 GDP sectors and 117 IP indices using a mixed frequency factor model with kC = kH =

kL = 1. The sample period for the estimation of both the factor model and the regressions is 1977.Q1-2011.Q4.

Table D.21: Correlation matrix of the estimated common, HF-specific and LF-specific factors: quar-
terly observations (Aggregation first)

ĝC1,t ĝC2,t ĝC3,t ĝC4,t ĝH1,t ĝH2,t ĝH3,t ĝH4,t ˆ̄gLt

ĝC1,t 1.00 0.75 0.41 0.20 0.12 -0.38 -0.53 -0.29 0.28
ĝC2,t 0.75 1.00 0.77 0.30 0.35 0.11 -0.41 -0.26 -0.05
ĝC3,t 0.41 0.77 1.00 0.66 0.40 0.23 -0.19 -0.03 -0.35
ĝC4,t 0.20 0.30 0.66 1.00 0.34 -0.03 0.11 0.43 -0.16

ĝH1,t 0.12 0.35 0.40 0.34 1.00 0.56 0.44 0.41 -0.01
ĝH2,t -0.38 0.11 0.23 -0.03 0.56 1.00 0.65 0.47 -0.27
ĝH3,t -0.53 -0.41 -0.19 0.11 0.44 0.65 1.00 0.79 -0.12
ĝH4,t -0.29 -0.26 -0.03 0.43 0.41 0.47 0.79 1.00 -0.06

ˆ̄gLt 0.28 -0.05 -0.35 -0.16 -0.01 -0.27 -0.12 -0.06 1.00

In the table we display the correlation matrix of the stacked vector of estimated factors
(ĝC1,t, ĝ

C
2,t, ĝ

C
3,t, ĝ

C
4,t, ĝ

H
1,t, ĝ

H
2,t, ĝ

H
3,t, ĝ

H
4,t, ˆ̄g

L
t ). The factors are estimated from the panel of 42 GDP sectors and 117

IP indices using a mixed frequency factor model with kC = kH = kL = 1. The sample period for the estimation of both
the factor model and the regressions is 1977-2011.
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Figure D.10 displays the sample autocorrelations functions for the estimated common, HF-specific and LF-
specific factors.

Figure D.10: Autocorrelation functions of the estimated common and specific factors. (Aggregation
first)
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(a) Common factor: autocorrelation function.
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(b) HF factor: autocorrelation function.
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(c) LF factor: autocorrelation function.

Panel (a) displays the sample autocorrelation function of the estimated values of the common factor at high frequency.
Panel (b) displays the sample autocorrelation function of the estimated values of the HF factor at high frequency. Panel
(c) displays the sample autocorrelation function of the estimated values of the LF factor at low frequency. The horizontal
lines are asymptotic 95% confidence bands. The factor values are estimated from the panel of 42 GDP sectors and 117
Industrial Production indices using a mixed frequency factor model with kC = kH = kL = 1. The sample period for the
estimation of the factor model is 1977.Q1-2011.Q4.
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The histograms in Figure D.11, Panels (a) and (b), represent the empirical distribution of the R̄2 corresponding
to the first and second lines of Table 1, respectively. Moreover, the histograms in Panels (c) and (d), represent
the empirical distribution of the R̄2 corresponding the fourth and fifth lines of Table 1.

Figure D.11: Adj. R2 of the regression of yearly sectoral GDP growth rates on estimated factors
(Aggregation first)
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(b) GDP sectors vs. common & LF factors
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(c) IP sectors vs. common factor
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(d) IP sectors vs. common & HF factors

In Panel (a) we show the histogram of the adjustedR2, denoted R̄2, of the regressions of the yearly growth rates of sectoral
GDP indices on the estimated common factor. In Panel (b) we show the histogram of the adjusted R2 of the regressions of
the same growth rates on the estimated common and LF-specific factors. In Panel (c) we show the histogram of the adjusted
R2, of the regressions of the quarterly growth rates of the IP indices on the estimated common factor. In Panel (d) we show
the histogram of the adjusted R2 of the regressions of the same growth rates on the estimated common and HF-specific
factors. The factors are estimated from the panel of 42 GDP sectors and 117 IP indices using a mixed frequency factor
model with kC = kH = kL = 1. The sample period for the estimation of both the factor model and the regressions is
1977-2011.
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In the following Table D.22 we list the top and bottom ten IP sectors in terms of R̄2 when regressed on the
common factor only, and both the common and HF-specific factors. We also report the top and bottom ten
IP sectors with the highest and lowest absolute increments in R̄2 when the HF-specific factor is added to the
common one. The factors are estimated from the panel of 42 GDP sectors and 117 Industrial Production indices
using a mixed frequency factor model with kC = kH = kL = 1. PCA is performed on the flow-sampled HF
data (PCA post aggregation). The sample period for the estimation of both the factor model and the regressions
is 1977-2011. Table D.23 provides the same results when PCA is perfomed on the quarterly HF data (PCA prior
to aggregation).

Tables D.24, D.25, D.26 display the entire lists of 42 non-IP sectors ranked by the three criteria considered in
Table 2, Panels A, B, and C, respectively. Specifically, Table D.24 displays the full list of non-IP sectors ranked
according to the value of their R̄2 when regressed on the common factor only, Table D.25 displays the full list of
non-IP sectors ranked according to the value of their R̄2 when regressed on the common and LF-specific factors,
Table D.26 displays the full list of non-IPsectors ranked according to the value of the increment in R̄2 when the
LF-specific factor is added to the common one.
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Table D.24: Adjusted R2 of the regression of yearly sectoral GDP growth on the common factor.
(Aggregation first)

Sector R̄2

Truck transportation 63.10
Accommodation 62.43
Construction 44.05
Other transportation and support activities 43.31
Administrative and support services 42.69
Other services, except government 42.53
Warehousing and storage 40.95
Air transportation 31.58
Retail trade 30.70
Amusements, gambling, and recreation industries 29.17
Government enterprises (federal) 28.91
Rail transportation 24.84
Performing arts, spectator sports, museums, and related activities 22.63
Publishing industries (includes software) 22.02
Computer systems design and related services 21.24
Food services and drinking places 20.59
Wholesale trade 20.35
Miscellaneous professional, scientific, and technical services 16.98
Waste management and remediation services 14.79
Social assistance 12.91
General government (federal) 11.97
Government enterprises (state & local) 11.10
Real estate 10.39
Legal services 10.19
Federal Reserve banks, credit intermediation, and related activities 9.74
Educational services 3.97
Rental and leasing services and lessors of intangible assets 2.81
Broadcasting and telecommunications 1.24
Ambulatory health care services 1.01
Farms 0.93
Hospitals and nursing and residential care facilities 0.64
Management of companies and enterprises -0.45
Funds, trusts, and other financial vehicles -1.23
Motion picture and sound recording industries -1.68
Pipeline transportation -1.74
Information and data processing services -1.84
Transit and ground passenger transportation -2.05
General government (state & local) -2.12
Forestry, fishing, and related activities -2.33
Water transportation -2.94
Securities, commodity contracts, and investments -2.99
Insurance carriers and related activities -3.03

In the table we display the adjusted R2, denoted R̄2, for the time series regressions of each of the 42 GDP sectors on
the estimated common factor. The factors are estimated from the panel of 42 GDP sectors and 117 Industrial Production
indices using a mixed frequency factor model with kC = kH = kL = 1. The sample period for the estimation of both
factor model and regressions is 1977.Q1-2011.Q4. The regressions in this table are restricted MIDAS regressions.
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Table D.25: Adjusted R2 of the regression of yearly sectoral GDP growth on the common and LF-
specific factors. (Aggregation first)

Sector R̄2

Miscellaneous professional, scientific, and technical services 66.67
Administrative and support services 62.63
Truck transportation 62.51
Accommodation 61.48
Construction 59.75
Warehousing and storage 52.53
”Government enterprises (STATES AND LOCAL)” 45.78
Other services, except government 41.75
Other transportation and support activities 41.71
”Government enterprises (FEDERAL)” 37.78
Legal services 34.51
Social assistance 32.82
Rental and leasing services and lessors of intangible assets 32.32
Wholesale trade 30.83
Performing arts, spectator sports, museums, and related activities 30.49
Federal Reserve banks, credit intermediation, and related activities 30.05
Air transportation 29.81
Retail trade 28.56
Real estate 28.53
Computer systems design and related services 27.07
Amusements, gambling, and recreation industries 27.02
Publishing industries (includes software) 23.85
Rail transportation 23.68
”General government (STATES AND LOCAL)” 22.78
Food services and drinking places 21.67
Motion picture and sound recording industries 21.10
Hospitals and nursing and residential care facilities 17.47
Broadcasting and telecommunications 14.46
Waste management and remediation services 14.24
Pipeline transportation 14.13
”General government (FEDERAL)” 11.11
Transit and ground passenger transportation 9.18
Ambulatory health care services 7.76
Management of companies and enterprises 7.52
Funds, trusts, and other financial vehicles 6.15
Information and data processing services 1.96
Educational services 1.35
Insurance carriers and related activities 0.36
Water transportation -0.64
Farms -1.87
Forestry, fishing, and related activities -5.31
Securities, commodity contracts, and investments -5.99

In the table we display the adjusted R2, denoted R̄2, for the time series regressions of each of the 42 GDP sectors on the
estimated common and LF-specific factors. The factors are estimated from the panel of 42 GDP sectors and 117 Industrial
Production indices using a mixed frequency factor model with kC = kH = kL = 1. The sample period for the estimation
of both factor model and regressions is 1977.Q1-2011.Q4. The regressions in this table are restricted MIDAS regressions.
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Table D.26: Change in adjusted R2 of the regression of yearly sectoral GDP growth on the common
and LF-specific factors vs. the regression on the common factor only. (Aggregation first)

Sector change in R̄2

Miscellaneous professional, scientific, and technical services 49.69
Government enterprises (STATES AND LOCAL) 34.69
Rental and leasing services and lessors of intangible assets 29.52
General government (STATES AND LOCAL) 24.90
Legal services 24.32
Motion picture and sound recording industries 22.77
Federal Reserve banks, credit intermediation, and related activities 20.31
Administrative and support services 19.95
Social assistance 19.91
Real estate 18.14
Hospitals and nursing and residential care facilities 16.84
Pipeline transportation 15.87
Construction 15.70
Broadcasting and telecommunications 13.23
Warehousing and storage 11.58
Transit and ground passenger transportation 11.23
Wholesale trade 10.48
Government enterprises (federal) 8.87
Management of companies and enterprises 7.98
Performing arts, spectator sports, museums, and related activities 7.87
Funds, trusts, and other financial vehicles 7.39
Ambulatory health care services 6.76
Computer systems design and related services 5.83
Information and data processing services 3.80
Insurance carriers and related activities 3.39
Water transportation 2.30
Publishing industries (includes software) 1.83
Food services and drinking places 1.07
Waste management and remediation services -0.54
Truck transportation -0.60
Other services, except government -0.78
General government (federal) -0.86
Accommodation -0.96
Rail transportation -1.16
Other transportation and support activities -1.59
Air transportation -1.77
Retail trade -2.15
Amusements, gambling, and recreation industries -2.15
Educational services -2.62
Farms -2.80
Forestry, fishing, and related activities -2.98
Securities, commodity contracts, and investments -3.00

In the table we display the difference in the adjusted R2 (R̄2) from the regressions of each industrial production index
growth on the common and LF-specific estimated factors, and on the HF factor only. The factors are estimated from the
panel of 42 GDP sectors and 117 Industrial Production indices using a mixed frequency factor model with kC = kH =
kL = 1. The sample period for the estimation of both factor model and regressions is 1977.Q1-2011.Q4. The regressions
in this table are restricted MIDAS regressions.
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Figure D.12 displays the trajectories of the fitted values of some of the regressions in Table 3, i.e. the regressions
of aggregated indexes on the estimated common factors only, and on the common and frequency-specific factors
together. As already remarked for Table 3, adding the frequency-specific factor in the regressions improves the
fit for some non-IP service series such as the Professional and Business Services Index (panel (d) in Figure
D.12).

Figure D.12: Regression of LF and HF indices on estimated factors. (Aggregation first)
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(a) HF Index: Industrial Production Index growth.
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(b) LF Index: Aggregate GDP Index growth.
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(c) LF Index: GDP-Construction Index growth.
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(d) LF Index: Prof. and Busn. Serv. Index growth.

Each panel displays the time series of the growth rate of an observed index (solid blue line) and its fitted value obtained
from a regression on the common factor (dotted red line). Fitted values from a regression on multiple factors (dashed
black line) are also displayed. In the first panel we regress the IP index on both the common and HF-specific factors, in
the second panel we regress the aggregate GDP Index (LF) on ˆ̄gCt , ˆ̄gHt and ˆ̄gLt . In the third and fourth panels we regress
the growth rates of the LF Construction Index and of Professional and Business Services Index, respectively, on both the
common and LF-specific factors. The indices considered in the first, second and fourth panels are aggregates of the indices
used to estimate the factors. The factors are estimated from the panel of 42 GDP sectors and 117 Industrial Production
indices using a mixed frequency factor model with kC = kH = kL = 1. The sample period for the estimation of both the
factor model and the regressions is 1977.Q1-2011.Q4.
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In Table D.27 we report the results of regressions of aggregated indices on the estimated factors. In particular,
we regress the output of each aggregate index either on the estimated common factor only, the LF-specific factor
only, the HF-specific factor only, and all the three estimated factors together. We report the adjusted R2s of
these four types of regressions, and the increment in the adjusted R2 when the two frequency-specific factors
are added as regressors to the common factor. This table completes the information in Table 3 of the paper.

Table D.27: Adj. R2 of selected GDP and IP indices growth rates on the estimated factors

Yearly observations, 1977-2011

(1) (2) (3) (4) (4) - (1)
Sector R̄2(C) R̄2(L) R̄2(H) R̄2(C + L+H)

LF observations
GDP 60.54 8.59 -2.04 73.39 12.85
GDP - Manufacturing 81.88 -3.03 0.22 82.90 1.02
GDP - Agriculture, forestry, fishing, and hunting 1.43 -2.52 -0.85 -2.16 -3.59
GDP - Construction 44.05 11.22 -2.84 58.70 14.64
GDP - Wholesale trade 20.35 7.90 -2.94 29.77 9.41
GDP - Retail trade 30.70 -2.86 2.67 33.71 3.00
GDP - Transportation and warehousing 62.14 -2.95 0.19 61.95 -0.19
GDP - Information 12.14 22.28 -3.03 36.53 24.39
GDP - Finance, insurance, real estate, rental, and leasing -1.42 21.22 -2.19 18.58 20.00
GDP - Professional and business services 30.02 30.21 -1.98 64.52 34.50
GDP - Educational services, health care, and social assistance -1.38 18.38 -0.60 16.25 17.63
GDP - Arts, entert., recreat., accommodation, and food serv. 53.51 -2.23 -0.50 57.00 3.49
GDP - Government -2.12 22.37 -2.95 18.96 21.08

In the table we display the adjusted R2, denoted R̄2, of the regression of growth rates of selected HF and LF indices
on the common factor (column R̄2(C)), the specific HF and LF factors (columns R̄2(L) and R̄2(H)) and on these
three factors together (column (4)). The last column displays the difference between the values in the fourth and the
first columns, i.e. the increment in the adjustedR2 when both specific factors are added as regressors to the common factor.

D.11.4 Supplementary tables for subsample analysis.

Our sample covers what is known as the Great Moderation, which refers to a reduction in the volatility of
business cycle fluctuations starting in the mid-1980s. In this section we consider different subsamples. We
start by selecting the number of pervasive factors in each subpanel, using the ICp2 information criteria, and
report the results in Table D.28. In Table D.29 we report the canonical correlation analysis common factor tests.
We consider two subsample configurations: 1984.Q1-2007.Q4 and 1984.Q1-2011.Q4. The former is the Great
Moderation sample considered by Foerster, Sarte, and Watson (2011), whereas the second is an augmented
subsample including the Great Depression. In light of the results in Tables D.28 and D.29 we select a model
with kC = kH = kL = 1, for both subsamples. The factors for both datasets are obtained using the estimation
procedure described in Section D.9 (performing PCA on the flow-sampled HF data).10

10For both subsamples 1984.Q1-2007.Q4 and 1984.Q1-2011.Q4, when we selecting a model with k1 = k2 = 1 pervasive
factor in each subpanel, we do not reject the null hypotheses of 1 common factor. On the other hand, when we select
k1 = k2 = 2 we reject the null of both 1 and 2 common factors for the subsample 1984.Q1-2011.Q4, and we cannot reject
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Table D.28: Estimated number of factors for different subsamples

XHF XH XL

IP data: 1984.Q1-2007.Q4. Non-IP data: Gross Domestic Product, 1984-2007

ICp2 1 2 1

IP data: 1984.Q1-2011.Q4. Non-IP data: Gross Domestic Product, 1984-2011

ICp2 1 2 1

The number of latent pervasive factors selected by the ICp2 information criteria is reported for different subpanels and
different sample periods. Subpanels XHF and XH correspond to IP data sampled at quarterly and yearly frequency,
respectively. Panel XL corresponds to non-IP data. We use kmax = 15 as maximum number of factors when computing
ICp2.

Table D.29: Canonical correlations and test statistics for common factors (Aggregation first)

ρ̂1 ρ̂2 ξ̃(2) ξ̃(1)

IP data: 1984.Q1-2007.Q4. Non-IP data: Gross Domestic Product, 1984-2007

0.58 - - -1.48
0.70 0.33 -1.50 -2.55

IP data: 1984.Q1-2011.Q4. Non-IP data: Gross Domestic Product, 1984-2011

0.76 - - -0.92
0.81 0.13 -4.01 -2.81

For each subsample, the first line reports the canonical correlation of the first PCs computed in each subpanel of IP and
non-IP data (i.e. when we select k1 = k2 = 1), and the values of the test statistic ξ̃(r), for the null hypothesis of r = 1
common factors. The second line reports the canonical correlation of the first two PCs computed in each subpanel of IP
and non-IP data (i.e. when we select k1 = k2 = 2), and the values of the test statistic ξ̃(r), for the null hypotheses of
r = 1, 2 common factors.

In Table D.30 we report the results of regressions of aggregated indices on the estimated factors for the two
subsamples. This allows us to understand if, and to what extent, the most important sectors of the US economy
comoved over the different subsamples. Again, we regress the output of each aggregate index either on the
estimated common factor only, or on the frequency-specific factor, or both, and concentrate our attention on the
adjusted R2s of these regressions. The results in Table D.30 indicate that in general there is a deterioration of
the overall fit of approximate factor models during the Great Moderation, i.e. during the sample starting in 1984
and ending 2007 – a finding also reported by Foerster, Sarte, and Watson (2011) – and that the common factor
plays a lesser role during the Great Moderation. According to the results in Panel A, the common factor only
explains roughly 72 % of the variation across IP sectors, but interestingly when the financial crisis is added to
the Great Moderation subsample, we see again a pattern closer to the full sample results reported in Table 3 of
the paper. This also transpires from Panels B and C, when examining the total GDP variations projected on the

the null of 2 common factors for the subsample 1984.Q1-2007.Q4. We impute these instabilities to the small time-series
dimensions of the subsamples.
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common factor. During the Great Moderation the common factor only explains around 30 %, which goes to 56
% when we add the Great Depression. The other findings, i.e. the exposure of the various subindices, appear to
be similar to those in the full sample.
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Table D.30: Adj. R2 of aggregate IP and selected GDP indices growth rates on estimated factors
(Aggregation first)

(1) (2) (3) (3) - (1)
R̄2(C) R̄2(H) R̄2(C +H)

Panel A Quarterly observations, aggregate IP index

1984.Q1-2007.Q4 72.48 10.58 80.02 7.54
1984.Q1-2011.Q4 80.11 16.83 88.87 8.76

(1) (2) (3) (3) - (1)
R̄2(C) R̄2(L) R̄2(C + L)

Panel B Yearly observations, 1984-2007

GDP 29.22 39.24 76.71 47.49
GDP - Manufacturing 70.69 -3.85 71.18 0.50
GDP - Agriculture, forestry, fishing, and hunting 0.81 -0.87 0.51 -0.30
GDP - Construction 13.02 50.30 70.39 57.37
GDP - Wholesale trade -4.40 21.36 18.09 22.49
GDP - Retail trade -0.44 58.14 62.65 63.09
GDP - Transportation and warehousing 41.43 11.16 52.02 10.59
GDP - Information -4.37 -4.10 -8.83 -4.46
GDP - Finance, insurance, real estate, rental, and leasing -3.78 -0.60 -4.78 -1.00
GDP - Professional and business services 4.89 56.09 67.06 62.18
GDP - Educational serv., health care, and social assist. -3.81 3.31 -0.20 3.61
GDP - Arts, entert., recreat., accomm., and food serv. 13.66 37.32 57.01 43.35
GDP - Government 0.74 14.51 14.83 14.09

Panel C Yearly observations, 1984-2011

GDP 56.33 14.88 77.87 21.55
GDP - Manufacturing 83.78 -3.85 83.37 -0.41
GDP - Agriculture, forestry, fishing, and hunting -3.64 -2.65 -6.59 -2.95
GDP - Construction 40.54 21.76 68.61 28.07
GDP - Wholesale trade 23.62 10.48 37.71 14.09
GDP - Retail trade 20.70 6.76 30.39 9.69
GDP - Transportation and warehousing 65.17 1.10 67.14 1.97
GDP - Information 6.20 9.23 17.35 11.14
GDP - Finance, insurance, real estate, rental, and leasing -1.95 5.04 3.68 5.64
GDP - Professional and business services 27.59 30.75 64.39 36.80
GDP - Educational serv., health care, and social assist. -0.73 -0.90 -2.00 -1.27
GDP - Arts, entert., recreat., accomm., and food serv. 56.94 1.56 62.97 6.03
GDP - Government 0.50 18.75 19.03 18.53

In the table we report the adjusted R2, denoted R̄2, of the regressions of growth rates of the aggregate IP index and
selected aggregated sectoral GDP non-IP output indices on the common factor (column R̄2(C)), the specific HF and LF
factors only (columns R̄2(H) and R̄2(L)), and the common and frequency-specific factor together (column (3)). The last
column displays the difference between the values in the third and first columns. The factors are estimated from the panel
of 42 GDP non-IP sectors and 117 IP indices using a mixed frequency factor model with kC = kH = kL = 1. The sample
periods for the estimation of both factor model and regressions are 1984-2007 (Great Moderation), and 1984-2011.
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E Monte Carlo experiments
Appendix E describes the Monte Carlo simulation study used to assess the small sample properties of the test
statistics proposed in Theorems 1 and 2, and those of the sequential testing procedure for the selection of kC

introduced in Proposition 2. Our selection procedure is also compared with the one based on penalized informa-
tion criteria for group-factor models proposed in Chen (2012), and the three-steps procedure of Wang (2012).
This appendix is composed of seven parts.
Section E.1 defines the model design used for the simulations. Section E.2 gives the values of simulation design
parameters and the sample sizes. Section E.3 describes the content of the tables summarizing the results of MC
simulations, and how they have been obtained. Section E.4 includes a discussion of all simulation results. Sec-
tion E.5 displays the tables of results relative to size and power properties of the test for the number of common
factors kC based on the test statistics of Theorems 1 and 2. Section E.6 displays the tables of results comparing
the performance of the sequential testing procedure for the selection of kC introduced in Proposition 2 with al-
ternative procedures adapted from earlier literature. These results are summarized also in Section 6 of the main
body of the paper. Finally, in Section E.7 we display and discuss the quantiles of the cross-sectional distribution
of R2 and adjusted R2 for regressions of simulated observables on factors when the number of common factors
is either correctly specified, or overestimated, for a DGP in which specific factors at high and low frequency are
highly correlated.

E.1 Simulation design model
We consider simulation designs characterized by different numbers of common (kC) and group-specific (kH , kL)
factors in different data generating processes (DGPs). We assume that kH = kL. The number of Monte Carlo
(MC) simulations for each design is 4000. In each MC experiment, mixed frequency panels of observations are
generated from the high frequency DGP defined in equation (5.1):

xHm,t = ΛHCg
C
m,t + ΛHg

H
m,t + eHm,t,

xL∗m,t = ΛLCg
C
m,t + ΛLg

L
m,t + eLm,t,

where m = 1, ...,M and t = 1, ..., T . Loading matrices are defined as ΛHC = [λHC,1, ..., λHC,NH ]′, ΛH =
[λH,1, ..., λH,NH ]′, ΛLC = [λLC,1, ..., λLC,NL ]′, ΛL = [λL,1, ..., λL,NL ]′. Vectors λHC,i and λH,i, have di-
mensions kC and kH , respectively, for i = 1, ..., NH . Vectors λLC,j and λL,j , have dimensions kC and kL,
respectively, for j = 1, ..., NL. We consider the case of flow-sampled low frequency observable variables:

xLt =
∑M

m=1 x
L∗
m,t.

Therefore xHm,t and xLt constitute the panels of mixed-frequency observables. Subsections E.1.1, E.1.2, and
E.1.3 describe the DGPs for the latent factors, idiosyncratic innovations, and loadings, respectively. These
designs extend the ones in Bates, Plagborg-Moller, Stock, and Watson (2013). Table E.1 in Section E.2 displays
the different values of kC , kH , kL, while Table E.2 displays the values of NH , NL, and T .

E.1.1 Common and group-specific factors

The vectors of latent factors gCm,t, g
H
m,t, and gLm,t have dimensions kC , kH , and kL, respectively. We define the

new (kC + kH + kL)-dimensional vector gm,t = [gC′m,t, g
H′
m,t, g

L′
m,t]
′, and assume the following high-frequency

autoregressive dynamics as DGP:

gm,t = aF gm−1,t +
√
ς ηm,t, (E.1)
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where the scalar aF is an AR(1) coefficient common to all factors and ς = (1− a2
F )/(M2κ), with

κ = 1− 2
M2

∑M−1
m=1 m(1− aM−mF ). The innovations ηm,t =

[
ηC′m,t, η

H′
m,t, η

L′
m,t

]′ are such that:

ηm,t ∼ i.i.N(0,Ση), Ση =

 IkC 0 0
0 IkH Φ
0 Φ′ IkL

 , (E.2)

where Φ = φIkH . The scalar parameter φ ∈ (−1, 1) generates correlation between the first HF-specific factor
and the first LF-specific factor, the second HF-specific factor and the second LF-specific, and so on. The term√
ς in equation (E.1) implies that the flow-sampled factor vector ḡt :=

∑M
m=1 gm,t satisfies the normalization in

equation (2.2). This can be shown by noting that we have:

M2κ = M2

(
1− 2

M2

M−1∑
m=1

m(1− aM−mF )

)
= M + 2

M−1∑
m=1

(M −m)amF ,

and from (E.1)-(E.2):

V (gm,t) =
1

M2κ

 IkC 0 0
0 IkH Φ
0 Φ′ IkL

 .
Then, we get:

V (ḡt) =
M∑
m=1

V (gm,t) +
M∑
m=1

M∑
n=1,n6=m

Cov(gm,t, gn,t) = MV (gm,t) +
M∑
m=1

M∑
n=1,n6=m

a
|m−n|
F V (gm,t)

=

(
M + 2

M−1∑
m=1

(M −m)amF

)
V (gm,t) =

 IkC 0 0
0 IkH Φ
0 Φ′ IkL

 ,
which yields equation (2.2) written for the flow-sampled factor values.
The initial values of the factors are drawn from their stationary distributions. Table E.1 in Section E.2 displays
the different values of parameters aF and φ used in each design.

E.1.2 Idiosyncratic innovations

The idiosyncratic innovations vectors eHm,t and eLm,t have dimensions NH , and NL, respectively. We define the
new (NH +NL)-dimensional vector em,t = [eH′m,t, e

L′
m,t]
′, and assume the following DGP for the innovations:

em,t = aeem−1,t + vm,t, (E.3)

where the scalar ae is a common AR(1) coefficient for the innovations. The innovations vm,t are such that:

vm,t ∼ i.i.N(0, (1− a2
e)Σe), Σe = {β|i−j|}ij , i, j = 1, ..., NH +NL .

The scalar β induces cross-sectional dependence among the idiosyncratic innovations, as in Bates, Plagborg-
Moller, Stock, and Watson (2013). The initial values of the idiosyncratic innovations are drawn from their
stationary distributions. We consider different values of parameter β as reported in Table E.2, and keep ae = 0
for all simulation designs.
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E.1.3 Factor loadings

The simulation designs for the factor loadings adapt the designs of Bates, Plagborg-Moller, Stock, and Watson
(2013) to our set-up with common and frequency-specific factors. The rows of the loading matrices ΛHC ,
ΛLC , ΛH , and ΛL are simulated from Gaussian distributions with parameters chosen to match the R2s for
the regressions of xHim,t and xLim,t on the factors observed in the empirical analysis. More specifically, for each
i = 1, ..., NH , let R2,Hi

all denote a measure which is akin to the population R2 of the regression of xHim,t on all
kC common and kH specific factors and is defined below. Let also R2,Hi

C denote the same measure for the
regression of xHim,t on the kC common factors only. For each i we draw a value of R2,Hi

all uniformly from the
interval [0.1, R2

max], where R2
max is a parameter in (0.1, 1). We also draw a value of R2,Hi

C uniformly from the
interval [0.2 ·R2,Hi

all , 0.8 ·R2,Hi
all ]. Analogously, for each j = 1, ..., NL, we denote withR2,Lj

all a measure which is
akin to the population R2 of the regression of xLjm,t on all kC common and kL specific factors as defined below.
Let also R2,Lj

C denote the same measure for the population R2 of the regression of xLjm,t on the kC common
factors only. For each j, we draw a value of R2,Lj

all uniformly from the interval [0.1, R2
max], and a value of R2,Lj

C

uniformly from the interval [0.2 · R2,Lj
all , 0.8 · R2,Lj

all ]. In every MC simulation, for each i = 1, ..., NH , and
j = 1, ..., NL, the loadings are drawn from the following independent Gaussian distributions:

λHC,i ∼ i.i.N
(

0, λ∗ 2
1,i · IkC

)
,

λH,i ∼ i.i.N
(

0, λ∗ 2
2,i · IkH

)
,

λLC,j ∼ i.i.N
(

0, λ∗ 2
3,j · IkC

)
,

λL,j ∼ i.i.N
(

0, λ∗ 2
4,j · IkL

)
, (E.4)

where the scalars λ∗1,i ≡ λ∗1,i(R
2,Hi
all , R2,Hi

C ), and λ∗2,i ≡ λ∗2,i(R
2,Hi
all , R2,Hi

C ) are chosen such that:

E
[
(λ′HC,ig

C
m,t + λ′H,ig

H
m,t)

2 | λ∗1,i, λ∗2,i
]

E
[
(xHim,t)

2 | λ∗1,i, λ∗2,i
] = R2,Hi

all

E
[
(λ′HC,ig

C
m,t)

2 | λ∗1,i
]

E
[
(xHim,t)

2 | λ∗1,i, λ∗2,i
] = R2,Hi

C ,

for i = 1, ..., NH , and the scalars λ∗3,j ≡ λ∗3,j(R
2,Lj
all , R

2,Lj
C ), and λ∗4,j ≡ λ∗4,j(R

2,Lj
all , R

2,Lj
C ) are chosen such

that:

E

[(
λ′LC,j

∑M
m=1 g

C
m,t + λ′L,j

∑M
m=1 g

L
m,t

)2
| λ∗3,j , λ∗4,j

]
E
[
(xLjt )2 | λ∗3,j , λ∗4,j

] = R2,Lj
all ,

E

[(
λ′LC,j

∑M
m=1 g

C
m,t

)2
| λ∗3,j

]
E
[
(xLjt )2 | λ∗3,j

] = R2,Lj
C ,

for j = 1, ..., NL. Hence, R2,Hi
all is the ratio of factor-explained variance to total variance of the HF data,

accounting for randomness in factors, loadings and errors, and similarly for the other R2 measures. From (E.1)-
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(E.4) we have: 
λ∗ 2

1,i =
1

kC
·

R2,Hi
C

1−R2,Hi
all

·

(
M + 2

M−1∑
m=1

(M −m)amF

)

λ∗ 2
3,j =

1

kC
R2,Lj
C

1−R2,Lj
all

·

(
M + 2

M−1∑
m=1

(M −m)ame

)
,

if kC 6= 0

λ∗ 2
2,i =

1

kH
·
R2,Hi
all −R

2,Hi
C

1−R2,Hi
all

·

(
M + 2

M−1∑
m=1

(M −m)amF

)
, if kH 6= 0

λ∗ 2
4,j =

1

kL
·
R2,Lj
all −R

2,Lj
C

1−R2,Lj
all

·

(
M + 2

M−1∑
m=1

(M −m)ame

)
, if kL 6= 0

and:

λ∗ 2
1,i = λ∗ 2

3,j = 0, if kC = 0,

λ∗ 2
2,i = 0, if kH = 0,

λ∗ 2
4,j = 0, if kL = 0,

for i = 1, ..., NH , j = 1, ..., NL. The draws of innovations in factors and errors, the loadings and the R2

measures are all mutually independent.

E.2 Simulation design parameters and sample sizes
Table E.1 displays the values of the parameters kC , kH , kL, β, aF , and φ associated to each simulation design:

Table E.1: Parameters kC , kH , kL, β, aF , and φ, for each simulation design

Design # / Parameter kC kH = kL β aF φ
Design 1 1 1 0 0 0
Design 2 2 0 0 0 0
Design 3 2 1 0 0 0
Design 4 1 1 0.2 0 0
Design 5 1 1 0 0.6 0
Design 6 1 1 0 0 0.7
Design 7 1 1 0 0 0.95
Design 8 1 5 0 0 0
Design 9 1 5 0 0 0.5
Design 10 1 5 0 0 0.7
Design 11 1 5 0 0 0.95

In this appendix we report results fixing ae = 0, R2
max = 0.8, and the number of HF sub-periods M = 4 for

all designs. Results for R2 = 0.6 and 0.95, M = 1, 12, 21 are available upon request, and produce results
qualitatively similar to the one presented here. For each design we consider the following sample sizes:
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Table E.2: Sample sizes considered in each simulation design

NH NL T
50 50 35
100 50 35
100 100 35
100 100 50
200 100 50
200 200 50
200 200 100
500 500 100
500 500 200
500 500 300
800 800 500

1000 1000 600

Design 5, corresponding to the case kC = kH = kL = 1, with [NH , NL, T ] = [ 100, 50, 35 ], φ = 0.0,
aF = 0.6, and M = 4, is the most similar to the setting of the empirical application in terms of sample sizes
and parameter values. Tables E.3 and E.4 show that the values of the parameter R2

max = 0.8, 0.6 produce cross-
sectional distributions of adjusted-R2s for the regressions of observables on the factors in line with those found
in the empirical application of the paper (see Table 1).

Table E.3: Sample averages over 2000 MC simulations of the quantiles of adjusted R2 of regressions
on true and estimated factors, with R2

max = 0.8, NH = 100, NL = 50, T = 35, M = 4, aF = 0.6,
β = 0, ae = 0.0, φ = 0.0 .

Panel A: R2
max = 0.8, true factors

R̄2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: LF variables

common -2.4 0.1 9.4 29.1 52.0
common, LF-spec. 0.9 11.4 31.8 56.7 74.5
LF-spec. -2.4 0.1 9.4 28.6 51.3

Observables: HF variables

common -0.3 1.7 9.8 28.3 50.8
common, HF-spec. 4.0 13.1 32.0 56.2 74.1
HF-spec. -0.3 1.7 9.7 28.0 50.6

Panel B: R2
max = 0.8, estimated factors

R̄2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: LF variables

common -2.4 0.0 9.3 28.8 51.5
common, LF-spec. 1.5 12.6 33.5 57.7 74.3
LF-spec. -2.4 0.2 9.8 29.4 51.3

Observables: HF variables

common -0.3 1.9 10.4 29.2 51.7
common, HF-spec. 4.5 14.1 33.6 57.4 74.2
HF-spec. -0.3 1.7 9.7 28.1 50.0

In each line we report the sample averages, computed over 2000 MC simulations, of the quantiles of adj. R2 of regressions
on true and estimated factors. In both Panels A and B, the regressions in the first three lines involve the growth rates of
the 50 LF observables as dependent variables, while those in the last three lines involve the growth rates of the 100 HF
observables as dependent variables. In Panel A the explanatory variables are the true simulated factors. In Panel B the
explanatory variables are the estimated factors, assuming that the true numbers of factors in the DGP (kC = kH = kL = 1)
are known.
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Table E.4: Sample averages over 2000 MC simulations of the quantiles of adj. R2 of regressions on
true and estimated factors, with R2

max = 0.6, NH = 100, NL = 50, T = 35, M = 4, aF = 0.6, β = 0,
ae = 0.0, φ = 0.0 .

Panel A: R2
max = 0.6, true factors

R̄2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: LF variables

common -2.6 -0.6 6.8 22.6 41.8
common, LF-spec. -0.8 7.4 23.4 41.1 61.8
LF-spec. -2.6 -0.6 6.7 22.3 41.5

Observables: HF variables

common -0.4 1.1 7.2 21.3 40.0
common, HF-spec. 2.7 9.5 23.5 43.2 60.4
HF-spec. -0.4 1.1 7.2 21.3 39.9

Panel B: R2
max = 0.6, estimated factors

R̄2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: LF variables

common -2.6 -0.6 6.7 22.3 41.2
common, LF-spec. -0.2 8.6 25.3 45.7 62.3
LF-spec. -2.5 -0.4 7.4 23.5 42.4

Observables: HF variables

common -0.4 1.3 7.8 22.5 41.2
common, HF-spec. 3.1 10.5 25.2 44.8 61.2
HF-spec. -0.4 1.2 7.5 21.7 40.0

In each line we report the sample averages, computed over 2000 MC simulations, of the quantiles of adj. R2 of regressions
on true and estimated factors. In both Panels A and B, the regressions in the first three lines involve the growth rates of
the 50 LF observables as dependent variables, while those in the last three lines involve the growth rates of the 100 HF
observables as dependent variables. In Panel A the explanatory variables are the true simulated factors. In Panel B the
explanatory variables are the estimated factors, assuming that the true numbers of factors in the DGP (kC = kH = kL = 1)
are known.

E.3 Description of content of tables of results
Size and power properties, Section E.5 (p. 120 - 130)

The simulation designs described above allow to study the small sample size and power properties of the feasible
test statistic ξ̃(kC) in equation (4.6) in Theorem 2, and the size of the infeasible test statistics ξ̂(kC) of Theorem
1. The upper panel in each table corresponds to cases in which the feasible and infeasible statistics are computed
from factors estimated by PCA from HF data directly, and then flow-sampled in order to compute the test
statistics. The lower panel in each table corresponds to cases in which HF observables are first flow-sampled,
and then factors are estimated by PCA on this flow-sampled panel of HF data before computing the test statistics.
We refer to Section D.9 for details on the practical implementation. Data are simulated under the DGP with
parameters listed in the title of the corresponding page. Each of the tables on p. 120 - 130 displays in the first
three columns the values of NH , NL and T . Moreover:

• columns 4 - 6 display the empirical size of the infeasible test statistic ξ̂(kC) defined in Theorem 1, and
computed under the null hypothesis of a number of common factors kC equal to the one specified in the
title of the corresponding page;

• columns 7 - 9 display the empirical size of the feasible test statistic ξ̃(kC) defined in Theorem 2, and
computed under the null hypothesis of a number of common factors kC equal to the one specified in the
title of the corresponding page;

• columns 10 - 12 display the empirical power of the feasible test statistic ξ̃(kC) defined in Theorem 2. The
number of common factors in the DGP is kC and is specified in the title of the corresponding page. The
empirical power is computed as the empirical frequency of rejection of the test of the null hypothesis of
kC + 1 common factors, against the alternative of a number strictly smaller than kC + 1. 11

11For Design 2 the power has not been computed because k1 = k2 = kC = 2 and thus the null hypothesis of kC +1 = 3
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The feasible statistic is computed as in (4.6), i.e. assuming conditionally heteroschedastic and serially as well
as cross-sectionally independent errors. Design 4 with β = 0.2 allows us to investigate the robustness of the
statistic computed as in (4.6) to small levels of cross-sectional correlation. In all tests we consider nominal sizes
of 1%, 5%, 10%. All empirical size and power are computed as the empirical rejection frequencies of the tests
obtained over 4000 MC simulations from the same DGP. The null of each test is rejected when the value of the
test statistic computed on simulated data is strictly smaller than the 1%, 5%, 10% quantiles of the asymptotic
distribution of the test statistic, which is a standard Gaussian.
In each simulation we draw new random samples of the factors, the loadings and the idiosyncratic innovations. In
unreported experiments we fix the same values for the factors and the loadings in all the 4000 MC simulations,
and draw new random samples only for the idiosyncratic innovations. Also in this case, we obtain results
analogous to the ones presented in this Online Appendix.

Selection of number of factors, Section E.6 (p. 131 - 141)

MC simulations are used to evaluate the accuracy of the estimators for the number of common factors kC

provided by i) our consistent sequential testing procedure defined in Proposition 2, ii) the selection procedure
based on the penalized information criterion of Theorem 3.7 in Chen (2012), and iii) the three-steps selection
procedure proposed by Wang (2012).
The estimators are evaluated by comparing the average estimated number of common (kC), high-frequency-
specific (kH ), and low-frequency-specific (kL) factors, computed across the 4000 simulations for each DGP
described in the title of the corresponding page. For all the competing estimators we consider both the case in
which the true numbers of pervasive factors k1 = kC + kH and k2 = kC + kL in the two panels are known, and
only kC needs to be estimated (lower panel in each table), and also the case in which k1 and k2 are estimated
(upper panel in each table). Each of the tables on p. 131 - 141 displays in the first three columns the values of
NH , NL and T . Moreover:

• columns 4-6 display the average number of estimated factors for our sequential testing procedure of
Proposition 2. The feasible statistics in the sequential testing procedure are computed from factors esti-
mated by PCA from HF data directly, and then flow-sampled in order to compute the test statistics. These
columns are labelled “AGGR (2016), HF data: PCA first”;

• columns 7-9 display the average number of estimated factors for our sequential testing procedure of
Proposition 2 for the number of common factors. The feasible statistics in the sequential testing procedure
are computed from factors estimated by PCA on flow-sampled HF data. These columns are labelled
“AGGR (2016), HF data: flow samp. first”;

• columns 10-12 display the average number of estimated factors by the selection procedure based on the
information criterion of Theorem 3.7 in Chen (2012). These columns are labelled “CHEN (2012)”;

• columns 13-15 display the average number of estimated factors by the following three-steps procedure
to determine kC : (1) estimate the number of pervasive factors in each of the two panels separately, and
denote them as k̂1 and k̂2, (2) estimate the number R of pervasive factors in the stacked panel of HF
(flow sampled) and LF data12, and denote it as R̂, (3) determine the number of common factors kC as
k̂1 + k̂2 − R̂.13 This procedure is a special case of the one suggested by Wang (2012). These last three
columns are labeled “WANG (2012)”.

common factors cannot be considered in that setting.
12Note that R = kC + kH + kL.
13Note that k1 + k2 −R = (kC + kH) + (kC + kL)− (kC + kH + kL) = kC .
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The critical values zαN,T for our sequential testing procedure - AGGR (2016) - are determined by assigning the
values γ = 0.1, and c = 0.95 to the functional form zαN,T = −c(N

√
T )γ given in equation (4.7). This choice

of the functional form satisfies the conditions (i) and (ii) in Proposition 2. Moreover, the values of c and γ imply
that that zαN,T = −1.64 ∼ z0.05 when N = min(N1, N2) = 40, and T = 35, which are analogous to the
smallest cross-sectional and time series dimensions in our empirical application. This choice of the functional
form for zαN,T , and the parameters γ and c proved to work well in all our MC simulation experiments.
The estimation of k1 and k2, which is a necessary first step in all the three procedures described above, is based
on the information criteria ICp2 or ICp3 of Bai and Ng (2002), and thoroughly discussed in Section E.4.2.

E.4 Discussion of results
E.4.1 Size and power properties

We are interested in verifying whether the Gaussian asymptotic distribution provides a good small sample ap-
proximation for the left tail of the re-centered and re-scaled infeasible statistic ξ̂(kC), and the feasible ξ̃(kC). We
compute the empirical size of the test for the null hypothesis of kC common factors corresponding to nominal
sizes of 1%, 5% and 10%. We also report the empirical power of the feasible statistic for the null hypothe-
sis of kC + 1 common factors, when the true number of common factors is kC , for the same nominal sizes.
Following the discussion in Section 5 and Subsection D.9, we consider both (1) factors estimated via PCA
applied to HF data, and then flow sampled in order to compute the test statistic, and (2) factors estimated on
flow sampled HF data. For case (1) the variance of the flow sampled HF innovations residuals, denoted by
γ1,ii = V (ēHit ) = MV (eHim,t), is estimated from the HF residuals ε̂1,i,m,t obtained from the regressions of the

HF data on the estimated common and HF factors. The estimator is: γ̃1,ii =
1

T

M∑
m=1

T∑
t=1

ε̂2
1,i,m,t . For sample

sizes (T ≤ 200) this estimator improved by an amount of 0.01 - 0.08 all the empirical sizes with respect to an
estimator using the residuals from regressions of flow sampled HF data on flow sampled factors.

Infeasible statistic: size

The tables in Section E.5 show that the asymptotic Gaussian distribution provides a very good approximation
for the left tail of the infeasible test statistic ξ̂(kC) under the null, even for sample sizes as small as NH =
NL = 50, and T = 35. For the vast majority of sample sizes, and simulation designs, the size distortions for
aforementioned case (1) are in the order of 1% to maximum 3%. Analogous results hold for case (2) PCA is
performed on flow sampled HF data, with the exception of Designs 2 and 3, where the number of common
factors is kC = 2 (see discussion below). For instance, in the baseline Design 1 in which kC = kH = kL = 1
and all factors and idiosyncratic innovations are i.i.d. in cross-section and over time, the maximum size distortion
is 0.02 and is observed only when T ≤ 50. The same results hold for DGPs with the same number of factors
as in Design 1, but featuring a moderate level of cross-sectional correlation among the idiosyncratic innovations
as measured by the coefficient β = 0.2 in Design 4, or a moderately high level of correlation (φ = 0.7) among
the specific factors in the two panels for Design 6. Analogous results hold also when the factors feature an
autocorrelation coefficient similar to the one in the empirical analysis, that is aF = 0.6. This can be seen in the
tables for Design 5, where the only notable difference compared to the baseline case aF = 0 is an increase in
the empirical size of a maximum of 0.05 for the smaller sample sizes.
For Design 2 (resp. Design 3) in which kC = 2 and kH = kL = 0 (resp. kH = kL = 1), for sample sizes
as small as T ≤ 50 and max(NH , NL) ≤ 200, the size distortions increase to a maximum of 6% (resp. 10%),
which occurs when PCA is performed post aggregation. This result is due to the fact that, by construction,
the signal-to-noise ratio for each of the two common factors in these designs is halved compared to those with
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kC = 1. In unreported simulation results, available upon request, we increased the signal-to-noise ratio of the
common factors and - as expected - we noticed a reduction in all size distortions, for all designs and sample
sizes. This reduction is more pronounced for smaller sample sizes, and is discussed below also for the feasible
statistics. We finally note that in the two designs with kC = 2 performing PCA on HF data has the effect of
approximately halving the size distortions, compared to the case in which PCA is performed on flow-sampled
HF data.
Moreover, we note that the infeasible test seems to be undersized for sample sizes as small as T ≤ 200 only
when the number of specific factors is high in both panels. As shown by the values close to 0 for the empirical
sizes of the infeasible statistic for Designs 8 - 11, where kH = kL = 5, this effect is independent of the level of
the correlation among the specific factors. Importantly, this fact does not affect significantly the performance of
the sequential procedure for the selection of the number of common factors (see Section E.4.2).
The size distortions disappear in all simulation designs for large values of NH , NL, and T , which corroborates
our asymptotic theory of Theorem 1. In Particular, for all the Designs 1 - 7, that is when kC = 1 or 2, and
kH = kL = 1 or 0, the size distortions of all feasible statistics are not larger than 0.01 when T ≥ 200.

Feasible statistics: size and power

Turning to the feasible statistic ξ̃(kC), we note that the size distortions are larger than those of the feasible
statistic, when max(NH , NL) ≤ 200, and T ≤ 50. As the feasible and infeasible statistics use the same
estimates of the canonical correlation ρ̂`, the increase in the size distortion is due to the fact that the matrix
ΣU appearing in both the bias and the variance of the test statistics is replaced by its estimator Σ̂U defined in
Theorem 2, and matrix Σ̃cc is replaced by Ikc . Nevertheless, as the sample sizes increase all size distortions
vanish, consistently with the asymptotic theory developed in Theorem 2. For instance, in the baseline Design 1
we note that when PCA is performed on HF data first, the size distortions increase by a maximum of 0.08 when
T ≤ 50, and by a maximum of 0.02 when T ≤ 300. The same holds for Designs 4 and 6 where cross-sectional
correlation among residuals and autocorrelation in the factors are introduced. As it was the case for the infeasible
statistic, performing PCA prior to aggregation yields smaller size distortions than the approach performing PCA
post aggregation, by amounts in the range of 0.01 - 0.10, when T ≤ 50.
Designs 2 and 3, where kC = 2, and kH = kL = 0 or 1, feature the largest size distortions among all the
designs when T ≤ 200, and max(NH , NL) ≤ 200 for the same reason discussed above for the infeasible
statistic. In these two designs, performing PCA first instead of PCA on the flow sampled HF data, drastically
reduces the size distortion: for sample sizes with T ≤ 100, for instance, the size distortions are halved. As
expected, when the signal-to-noise ratio of the common factors is increased, the size distortions monotonically
improve for all sample sizes, and especially for the very small ones. More specifically, in unreported simulation
results, available upon request, we increased the signal-to-noise of all factors by simulating R2,Hi

all and R2,Lj
all

uniformly in the interval [0.1, 0.95], instead of simulating from our baseline interval [0.1, 0.8]. Moreover we
also increased the signal-to-noise of common factors only, simulating R2,Hi

C and R2,Lj
C uniformly in the inter-

vals [0.5R2,Hi
all , 0.90R2,Hi

all ] and [0.5R2,Lj
all , 0.90R2,Lj

all ], respectively. This last case generated the most evident
improvements in all empirical sizes, and especially for the designs in which kC = 2.
The power of the feasible test statistic is always equal, or very close to 1, for all designs with the exception of
the cases in which min(NH , NL) ≤ 50, and T = 35. This is a remarkable result as our simulation designs
include cases in which the specific factors in the different panels are highly correlated. In Design 7, for instance,
the correlation coefficient among the specific factors in the two panels is φ = 0.95. This value is the same for
the correlations among the 5 specific factors in each of the two panels in Design 12, and implies that in both
these designs the specific factors could be confounded with at least 1 additional common factor. This explains
the lower power e.g. in Design 7 for the smallest sample sizes. It is also important to note that in the case of
many specific factors as in Designs 8-11, where kH = kL = 5 and kC = 1, the test is less undersized when
performed using the feasible statistic than it is with the infeasible statistics.
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Finally, in unreported simulation results, we note that the above results are almost exactly the same when M
increases from 4 to 12, and to 21. Conversely, we find a slight increase in size distortions when M = 1.

E.4.2 Estimation of the number of factors

We are interested in comparing the following three procedures to determine the number of common factors
kC : (i) our consistent sequential testing procedure defined in Proposition 2, which is based on the feasible
test statistics of Theorem 2, and uses the critical values as described in Section E.3, (ii) the selection procedure
based on the penalized information criterion of Theorem 3.7 in Chen (2012), and (iii) the three-steps selection
procedure proposed by Wang (2012).
The estimators are evaluated by comparing the average, computed across the 4000 MC simulations, estimated
number of common, high-frequency-specific, and low-frequency-specific factors. For all the estimators of
kC , kH , kL we consider the case in which the true numbers of pervasive factors k1 = kC +kH and k2 = kC +kL

in the two panels are known, and only kC needs to be estimated, and also the case in which k1 and k2 are esti-
mated using the ICp information criteria proposed by Bai and Ng (2002). More specifically, we present estima-
tion results for k1 and k2 where we used the ICp2 criterion for all designs in which kH = kL = 0 or 1, and the
ICp3 criterion when kH = kL = 5. The same criteria are used to estimate the number of pervasive factors in the
stacked panel of HF (flow-sampled) and LF data in the second step of the procedure suggested by Wang (2012).
In line with the results of Bai and Ng (2002), we noted that for small sample sizes (T ≤ 50, and especially for
T = 35) and in the case of many pervasive factors in the LF panel (that is k2 ≥ 5) the ICp2 criterion tends to
severely underestimate the values of k2, while the ICp3 produces better estimates. Underestimating k2 affects
considerably the estimates of kC for all the three procedures considered. In unreported results available upon
request we have estimated k1, k2, and also R (that is the number of pervasive factors in the panel formed by
stacking together both the flow-sampled HF data, and the LF data), using the ER and GR ratios of Ahn and
Horenstein (2013), and noted that they perform similarly or worse than the ICp2 criterion. 14 The first thing to
note is that for all the simulation designs considered, the results for the estimation of the number of factors are
very similar both in the cases in which k1 and k2 are known (lower panels in all the tables in Section E.6), and
when they are estimated as we have just described (upper panels in same tables).
We also remark that across all our designs, performing PCA first on HF data instead of performing PCA on the
flow-sampled HF data, produces consistently better estimation of the number of factors for all the sample sizes
in which T ≥ 50. The same holds true also for sample sizes as small as T = 35, with the exception of Designs
7 - 11 when N = min(NH , NL) = 50. For the same small value of T , as soon as N > 50, PCA on HF data
is always preferred to PCA on flow-sampled HF data, with the exception of Design 11, where this happens only
for T > 100.
In all the designs with kC = 1 common factor, and kH = kL = 1, zero or moderate values for the correlation
of specific factors - that is when φ = 0 (Designs 1, 4, and 5) or 0.7 (Design 7) - the average estimated number
of common factors obtained with our procedure ranges between 0.90 and 1, that is below but close to the true
value kC = 1. Analogous results hold for the designs in which kC = 2 (Designs 2 and 3), where the estimated
number of common factors is always below 2. These results confirm both the ones on the very good empirical
power of the test statistics, and are also compatible with the fact that the statistic is slightly oversized in (very)
small samples, for these designs.
As predicted by the consistency result for our sequential testing procedure in Proposition 2, and by the empirical
size and power properties of the feasible statistics, the average estimated number of common factors for our
selection procedure approaches quickly the true value kC as the sample sizes increase in all our designs. This is
true also for the most challenging Designs 7 and 12, in which the specific factors in the different panels feature
an extremely high value of correlation, that is φ = 0.95.

14Alternative estimators, such as the one proposed by Onatski (2010), could also be considered.
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In cases with a small number, say 1 or 3, of uncorrelated specific factors (that is when φ = 0), the penalized
information criterion proposed in Chen (2012) yields the correct number of factors in almost all Monte Carlo
simulations for any sample size, confirming the results in Chen (2012). To save space only the tables of results
for the case kC = 1 (or 2) and kH = kL = 1 have been reported, and correspond to Designs 1 - 5. On the other
hand, the tables for the case kH = kL = 3 are available upon request, and are analogous to the ones for the
case kH = kL = 1. For the same DGPs our selection procedure has comparable performance as that in Chen
(2012), and it is less accurate than Chen (2012)’s one only for sample sizes as small as max(NH , NL) ≤ 200,
and T ≤ 50, where the average estimated number of common factors ranges between 0.85 and 1 if kC = 1. In
particular, for the baseline Design 1 in which kC = kH = kL = 1, and all factors and idiosyncratic errors are
uncorrelated both in cross-section and over time, the average estimated value of kC is between 0.89 and 0.94
when T ≤ 50. The same holds for a moderate value of cross-sectional correlation among residuals as in Design
4. When aF = 0.6, kC = kH = kL = 1, and for small sample sizes, we note a moderate deterioration of the
performance of our sequential testing procedure compared to the case aF = 0.0, that is when we compare the
results in Designs 1 and 5, respectively. In this case our procedure tends to slightly underestimate the number
of common factors as expected from the increase of the empirical size discussed in Section E.4.1, with the
minimum average estimated value for kC equal to 0.84 only when T ≤ 35.
The procedure of Chen (2012) tends to overestimate the number of common factors when the correlation φ
among the specific factors increases from 0 (see Designs 1 and 8 for the cases kC = 1 and kH = kL = 5,
respectively) to 0.5 (Design 9 for the cases kC = 1 and kH = kL = 5 only15), 0.7 (Designs 6 and 10, for
the cases kC = 1 and kH = kL = 5, respectively) and 0.95 (Designs 7 and 11, for the cases kC = 1 and
kH = kL = 5, respectively). This deterioration in the performance is much less dramatic for our sequential
testing procedure. As expected from our results on the empirical power in the previous section, in Designs 8 -
11 we also observe a monotonic decrease in the precision across all the estimators when the number of specific
factors becomes relatively large, namely kH = kL = 5. In this case all the three procedures considered tend
to overestimate the true number of common factors, namely kC = 1. Nevertheless, in all Designs 8 -11 when
T ≤ 50 our procedure consistently outperforms Chen (2012). Importantly, this result holds true also when
the specific factors in the two panels are not correlated, as in Design 8 where φ = 0. For larger values of the
correlation coefficient φ, the better performance of our procedure is even more evident also in larger sample sizes
(see Designs 9 - 11). It is noteworthy that as φ increases the deterioration for our sequential procedure is much
less dramatic than in Chen (2012), suggesting that it is preferable in these more general cases. Furthermore, our
sequential testing procedure also exhibits a faster improvement in performance as the sample size increases.
Finally, the consistent three-steps selection procedure of Wang (2012) performs similarly, or worse than the one
of Chen (2012) in DGPs with a small number of uncorrelated specific factors. More specifically, when kC = 1
as in Designs 1, and 4 - 11, Wang (2012) procedure tends to overestimate the true value of kC for sample sizes
as small as T ≤ 50. Moreover, as either the number of specific factors increases (Design 8), or φ increases from
0 to 0.7 (see Designs 6 and 10) or 0.95 (see Designs 7 and 11) the procedure overestimates kC also for sample
sizes as large as N = 500 and T = 100 (Design 6), or N = 800 and T = 500 (Designs 10 and 11), and clearly
becomes the worse among the three considered.

15Due to space limitations the results for the case φ = 0.5, when kC = kL = kH = 1 have not been reported, but are
available upon request.
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E.5 Tables: Size and Power

DESIGN 1 : kC = 1, kH = kL = 1, β = 0.0, aF = 0.0, φ = 0.0, ae = 0.0, R2
max = 0.8

SIZE POWER
Infeasible Feasible Feasible

Nominal size Nominal size
NH NL T 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

HF data: PCA first, then flow sample the factors
50 50 35 0.02 0.05 0.08 0.03 0.08 0.14 0.93 0.98 0.99

100 50 35 0.03 0.06 0.10 0.04 0.12 0.18 0.95 0.98 0.99
100 100 35 0.02 0.05 0.09 0.04 0.10 0.15 1.00 1.00 1.00
100 100 50 0.02 0.05 0.09 0.03 0.08 0.14 1.00 1.00 1.00
200 100 50 0.02 0.06 0.10 0.04 0.11 0.18 1.00 1.00 1.00
200 200 50 0.02 0.05 0.09 0.03 0.09 0.15 1.00 1.00 1.00
200 200 100 0.01 0.05 0.09 0.02 0.07 0.12 1.00 1.00 1.00
500 500 100 0.01 0.05 0.08 0.02 0.07 0.13 1.00 1.00 1.00
500 500 200 0.01 0.05 0.09 0.02 0.06 0.12 1.00 1.00 1.00
500 500 300 0.01 0.05 0.09 0.02 0.06 0.12 1.00 1.00 1.00
800 800 500 0.01 0.05 0.09 0.01 0.05 0.10 1.00 1.00 1.00

1000 1000 600 0.01 0.05 0.10 0.01 0.06 0.11 1.00 1.00 1.00

HF data: flow sample first, then PCA
50 50 35 0.03 0.06 0.10 0.06 0.15 0.23 0.94 0.98 0.99

100 50 35 0.03 0.07 0.11 0.07 0.17 0.25 0.95 0.98 0.99
100 100 35 0.03 0.07 0.11 0.08 0.18 0.26 1.00 1.00 1.00
100 100 50 0.02 0.06 0.10 0.05 0.13 0.22 1.00 1.00 1.00
200 100 50 0.03 0.07 0.12 0.06 0.15 0.24 1.00 1.00 1.00
200 200 50 0.03 0.07 0.11 0.06 0.15 0.23 1.00 1.00 1.00
200 200 100 0.02 0.06 0.10 0.03 0.10 0.17 1.00 1.00 1.00
500 500 100 0.02 0.06 0.10 0.04 0.11 0.18 1.00 1.00 1.00
500 500 200 0.01 0.06 0.10 0.02 0.08 0.15 1.00 1.00 1.00
500 500 300 0.02 0.05 0.10 0.02 0.08 0.14 1.00 1.00 1.00
800 800 500 0.01 0.05 0.09 0.02 0.06 0.12 1.00 1.00 1.00

1000 1000 600 0.01 0.06 0.10 0.01 0.07 0.12 1.00 1.00 1.00
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DESIGN 2 : kC = 2, kH = kL = 0, β = 0.0, aF = 0.0, φ = 0.0, ae = 0.0, R2
max = 0.8

SIZE POWER
Infeasible Feasible Feasible

Nominal size Nominal size
NH NL T 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

HF data: PCA first, then flow sample the factors
50 50 35 0.03 0.07 0.11 0.03 0.10 0.17 - - -

100 50 35 0.03 0.07 0.12 0.05 0.15 0.23 - - -
100 100 35 0.03 0.08 0.12 0.06 0.15 0.23 - - -
100 100 50 0.02 0.06 0.10 0.03 0.10 0.17 - - -
200 100 50 0.03 0.07 0.11 0.05 0.14 0.22 - - -
200 200 50 0.02 0.07 0.10 0.05 0.13 0.20 - - -
200 200 100 0.01 0.05 0.10 0.02 0.08 0.14 - - -
500 500 100 0.01 0.05 0.10 0.03 0.09 0.16 - - -
500 500 200 0.01 0.05 0.09 0.02 0.07 0.12 - - -
500 500 300 0.01 0.05 0.09 0.01 0.06 0.11 - - -
800 800 500 0.01 0.05 0.09 0.02 0.06 0.12 - - -

1000 1000 600 0.01 0.05 0.10 0.02 0.06 0.12 - - -

HF data: flow sample first, then PCA
50 50 35 0.04 0.09 0.15 0.10 0.23 0.34 - - -

100 50 35 0.04 0.09 0.14 0.10 0.24 0.34 - - -
100 100 35 0.05 0.10 0.16 0.15 0.30 0.41 - - -
100 100 50 0.03 0.08 0.12 0.08 0.20 0.30 - - -
200 100 50 0.03 0.08 0.13 0.09 0.21 0.32 - - -
200 200 50 0.03 0.08 0.13 0.11 0.23 0.33 - - -
200 200 100 0.02 0.06 0.11 0.04 0.13 0.22 - - -
500 500 100 0.02 0.07 0.12 0.05 0.15 0.25 - - -
500 500 200 0.01 0.05 0.10 0.03 0.10 0.17 - - -
500 500 300 0.01 0.06 0.10 0.02 0.09 0.14 - - -
800 800 500 0.01 0.05 0.10 0.02 0.08 0.15 - - -

1000 1000 600 0.01 0.05 0.10 0.02 0.08 0.14 - - -
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DESIGN 3 : kC = 2, kH = kL = 1, β = 0.0, aF = 0.0, φ = 0.0, ae = 0.0, R2
max = 0.8

SIZE POWER
Infeasible Feasible Feasible

Nominal size Nominal size
NH NL T 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

HF data: PCA first, then flow sample the factors
50 50 35 0.03 0.07 0.10 0.09 0.22 0.32 0.91 0.96 0.98

100 50 35 0.06 0.11 0.15 0.18 0.32 0.42 0.94 0.98 0.99
100 100 35 0.03 0.07 0.12 0.13 0.27 0.38 1.00 1.00 1.00
100 100 50 0.02 0.06 0.10 0.07 0.18 0.28 1.00 1.00 1.00
200 100 50 0.03 0.08 0.13 0.11 0.26 0.37 1.00 1.00 1.00
200 200 50 0.03 0.07 0.11 0.09 0.22 0.31 1.00 1.00 1.00
200 200 100 0.01 0.05 0.09 0.04 0.11 0.19 1.00 1.00 1.00
500 500 100 0.02 0.06 0.10 0.05 0.14 0.23 1.00 1.00 1.00
500 500 200 0.01 0.04 0.09 0.02 0.09 0.17 1.00 1.00 1.00
500 500 300 0.01 0.05 0.09 0.02 0.08 0.14 1.00 1.00 1.00
800 800 500 0.01 0.04 0.09 0.02 0.07 0.14 1.00 1.00 1.00

1000 1000 600 0.01 0.04 0.08 0.02 0.06 0.12 1.00 1.00 1.00

HF data: flow sample first, then PCA
50 50 35 0.08 0.14 0.19 0.29 0.48 0.59 0.93 0.97 0.99

100 50 35 0.08 0.14 0.20 0.30 0.49 0.60 0.94 0.98 0.99
100 100 35 0.07 0.14 0.20 0.35 0.55 0.65 1.00 1.00 1.00
100 100 50 0.04 0.10 0.16 0.21 0.41 0.53 1.00 1.00 1.00
200 100 50 0.05 0.11 0.17 0.22 0.41 0.52 1.00 1.00 1.00
200 200 50 0.05 0.13 0.18 0.26 0.44 0.55 1.00 1.00 1.00
200 200 100 0.03 0.07 0.12 0.09 0.23 0.34 1.00 1.00 1.00
500 500 100 0.03 0.09 0.14 0.12 0.27 0.38 1.00 1.00 1.00
500 500 200 0.02 0.07 0.12 0.05 0.17 0.26 1.00 1.00 1.00
500 500 300 0.01 0.06 0.11 0.04 0.13 0.20 1.00 1.00 1.00
800 800 500 0.01 0.05 0.11 0.03 0.10 0.18 1.00 1.00 1.00

1000 1000 600 0.01 0.05 0.10 0.03 0.09 0.16 1.00 1.00 1.00
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DESIGN 4 : kC = 1, kH = kL = 1, β = 0.2, aF = 0.0, φ = 0.0, ae = 0.0, R2
max = 0.8

SIZE POWER
Infeasible Feasible Feasible

Nominal size Nominal size
NH NL T 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

HF data: PCA first, then flow sample the factors
50 50 35 0.02 0.05 0.08 0.03 0.09 0.14 0.93 0.98 0.99

100 50 35 0.03 0.06 0.10 0.04 0.11 0.17 0.94 0.98 0.99
100 100 35 0.02 0.05 0.09 0.04 0.10 0.17 1.00 1.00 1.00
100 100 50 0.02 0.05 0.08 0.03 0.08 0.14 1.00 1.00 1.00
200 100 50 0.02 0.06 0.10 0.04 0.11 0.17 1.00 1.00 1.00
200 200 50 0.02 0.06 0.09 0.03 0.09 0.15 1.00 1.00 1.00
200 200 100 0.02 0.05 0.09 0.02 0.07 0.13 1.00 1.00 1.00
500 500 100 0.02 0.05 0.09 0.03 0.07 0.13 1.00 1.00 1.00
500 500 200 0.02 0.05 0.10 0.02 0.07 0.12 1.00 1.00 1.00
500 500 300 0.01 0.04 0.09 0.01 0.06 0.11 1.00 1.00 1.00
800 800 500 0.01 0.05 0.10 0.01 0.06 0.11 1.00 1.00 1.00

1000 1000 600 0.01 0.05 0.09 0.01 0.06 0.11 1.00 1.00 1.00

HF data: flow sample first, then PCA
50 50 35 0.03 0.07 0.10 0.07 0.16 0.23 0.94 0.98 0.99

100 50 35 0.03 0.07 0.11 0.07 0.16 0.25 0.95 0.98 0.99
100 100 35 0.03 0.07 0.11 0.09 0.19 0.28 1.00 1.00 1.00
100 100 50 0.02 0.06 0.10 0.05 0.14 0.21 1.00 1.00 1.00
200 100 50 0.03 0.07 0.11 0.06 0.15 0.22 1.00 1.00 1.00
200 200 50 0.03 0.06 0.11 0.07 0.16 0.23 1.00 1.00 1.00
200 200 100 0.02 0.06 0.10 0.03 0.10 0.18 1.00 1.00 1.00
500 500 100 0.02 0.06 0.10 0.04 0.11 0.18 1.00 1.00 1.00
500 500 200 0.02 0.06 0.11 0.03 0.09 0.15 1.00 1.00 1.00
500 500 300 0.01 0.05 0.10 0.02 0.07 0.13 1.00 1.00 1.00
800 800 500 0.01 0.05 0.10 0.02 0.07 0.13 1.00 1.00 1.00

1000 1000 600 0.01 0.06 0.10 0.02 0.07 0.13 1.00 1.00 1.00
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DESIGN 5 : kC = 1, kH = kL = 1, β = 0.0, aF = 0.6, φ = 0.0, ae = 0.0, R2
max = 0.8

SIZE POWER
Infeasible Feasible Feasible

Nominal size Nominal size
NH NL T 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

HF data: PCA first, then flow sample the factors
50 50 35 0.04 0.09 0.13 0.05 0.13 0.20 0.95 0.98 0.99

100 50 35 0.04 0.09 0.13 0.07 0.15 0.23 0.95 0.98 0.99
100 100 35 0.04 0.08 0.13 0.06 0.14 0.20 1.00 1.00 1.00
100 100 50 0.03 0.07 0.12 0.03 0.11 0.19 1.00 1.00 1.00
200 100 50 0.04 0.08 0.13 0.05 0.14 0.21 1.00 1.00 1.00
200 200 50 0.03 0.07 0.12 0.04 0.11 0.19 1.00 1.00 1.00
200 200 100 0.02 0.06 0.11 0.03 0.08 0.15 1.00 1.00 1.00
500 500 100 0.02 0.06 0.11 0.03 0.09 0.15 1.00 1.00 1.00
500 500 200 0.01 0.06 0.10 0.01 0.07 0.13 1.00 1.00 1.00
500 500 300 0.01 0.05 0.10 0.01 0.06 0.11 1.00 1.00 1.00
800 800 500 0.01 0.05 0.09 0.01 0.06 0.11 1.00 1.00 1.00

1000 1000 600 0.01 0.05 0.10 0.02 0.06 0.12 1.00 1.00 1.00

HF data: flow sample first, then PCA
50 50 35 0.04 0.09 0.12 0.06 0.15 0.22 0.95 0.98 0.99

100 50 35 0.04 0.09 0.13 0.07 0.16 0.24 0.95 0.98 0.99
100 100 35 0.04 0.08 0.12 0.07 0.16 0.23 1.00 1.00 1.00
100 100 50 0.03 0.07 0.12 0.04 0.13 0.20 1.00 1.00 1.00
200 100 50 0.04 0.08 0.12 0.06 0.15 0.22 1.00 1.00 1.00
200 200 50 0.03 0.07 0.12 0.05 0.13 0.20 1.00 1.00 1.00
200 200 100 0.02 0.06 0.11 0.03 0.09 0.16 1.00 1.00 1.00
500 500 100 0.02 0.06 0.11 0.03 0.10 0.17 1.00 1.00 1.00
500 500 200 0.01 0.05 0.10 0.02 0.08 0.14 1.00 1.00 1.00
500 500 300 0.01 0.05 0.10 0.02 0.07 0.12 1.00 1.00 1.00
800 800 500 0.01 0.05 0.09 0.01 0.06 0.11 1.00 1.00 1.00

1000 1000 600 0.01 0.05 0.10 0.01 0.06 0.12 1.00 1.00 1.00
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DESIGN 6 : kC = 1, kH = kL = 1, β = 0.0, aF = 0.0, φ = 0.70, ae = 0.0, R2
max = 0.8

SIZE POWER
Infeasible Feasible Feasible

Nominal size Nominal size
NH NL T 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

HF data: PCA first, then flow sample the factors
50 50 35 0.02 0.04 0.07 0.03 0.08 0.13 1.00 1.00 1.00

100 50 35 0.03 0.06 0.09 0.04 0.11 0.18 1.00 1.00 1.00
100 100 35 0.02 0.05 0.09 0.04 0.10 0.17 1.00 1.00 1.00
100 100 50 0.02 0.05 0.08 0.02 0.08 0.14 1.00 1.00 1.00
200 100 50 0.02 0.06 0.10 0.04 0.11 0.17 1.00 1.00 1.00
200 200 50 0.02 0.05 0.08 0.03 0.09 0.15 1.00 1.00 1.00
200 200 100 0.01 0.05 0.09 0.02 0.07 0.12 1.00 1.00 1.00
500 500 100 0.02 0.06 0.09 0.02 0.08 0.14 1.00 1.00 1.00
500 500 200 0.02 0.05 0.09 0.02 0.06 0.11 1.00 1.00 1.00
500 500 300 0.01 0.04 0.08 0.01 0.05 0.11 1.00 1.00 1.00
800 800 500 0.01 0.05 0.09 0.01 0.05 0.11 1.00 1.00 1.00

1000 1000 600 0.01 0.04 0.09 0.01 0.05 0.10 1.00 1.00 1.00

HF data: flow sample first, then PCA
50 50 35 0.03 0.06 0.09 0.07 0.15 0.23 1.00 1.00 1.00

100 50 35 0.03 0.07 0.10 0.07 0.16 0.25 1.00 1.00 1.00
100 100 35 0.03 0.07 0.10 0.08 0.19 0.27 1.00 1.00 1.00
100 100 50 0.02 0.06 0.10 0.05 0.14 0.23 1.00 1.00 1.00
200 100 50 0.03 0.07 0.10 0.06 0.14 0.22 1.00 1.00 1.00
200 200 50 0.03 0.06 0.10 0.06 0.15 0.23 1.00 1.00 1.00
200 200 100 0.02 0.06 0.10 0.04 0.10 0.17 1.00 1.00 1.00
500 500 100 0.02 0.07 0.11 0.04 0.12 0.19 1.00 1.00 1.00
500 500 200 0.02 0.05 0.09 0.03 0.08 0.14 1.00 1.00 1.00
500 500 300 0.01 0.05 0.09 0.02 0.07 0.13 1.00 1.00 1.00
800 800 500 0.01 0.05 0.10 0.02 0.07 0.12 1.00 1.00 1.00

1000 1000 600 0.01 0.05 0.09 0.02 0.06 0.12 1.00 1.00 1.00
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DESIGN 7 : kC = 1, kH = kL = 1, β = 0.0, aF = 0.0, φ = 0.95, ae = 0.0, R2
max = 0.8

SIZE POWER
Infeasible Feasible Feasible

Nominal size Nominal size
NH NL T 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

HF data: PCA first, then flow sample the factors
50 50 35 0.01 0.02 0.03 0.04 0.10 0.15 0.53 0.72 0.81

100 50 35 0.00 0.02 0.04 0.06 0.12 0.18 0.75 0.87 0.92
100 100 35 0.01 0.03 0.05 0.05 0.11 0.18 0.93 0.98 0.98
100 100 50 0.01 0.03 0.06 0.03 0.09 0.14 0.98 0.99 1.00
200 100 50 0.02 0.05 0.07 0.04 0.11 0.16 1.00 1.00 1.00
200 200 50 0.01 0.04 0.08 0.03 0.09 0.15 1.00 1.00 1.00
200 200 100 0.01 0.04 0.08 0.02 0.07 0.12 1.00 1.00 1.00
500 500 100 0.02 0.05 0.09 0.03 0.08 0.13 1.00 1.00 1.00
500 500 200 0.01 0.05 0.09 0.02 0.07 0.12 1.00 1.00 1.00
500 500 300 0.01 0.05 0.08 0.01 0.06 0.10 1.00 1.00 1.00
800 800 500 0.01 0.05 0.10 0.01 0.07 0.12 1.00 1.00 1.00

1000 1000 600 0.01 0.05 0.09 0.01 0.05 0.11 1.00 1.00 1.00

HF data: flow sample first, then PCA
50 50 35 0.01 0.02 0.04 0.08 0.17 0.24 0.68 0.84 0.90

100 50 35 0.01 0.03 0.05 0.08 0.17 0.24 0.81 0.91 0.95
100 100 35 0.01 0.04 0.07 0.09 0.19 0.27 0.97 0.99 0.99
100 100 50 0.02 0.04 0.07 0.06 0.14 0.22 0.99 1.00 1.00
200 100 50 0.02 0.05 0.09 0.06 0.14 0.21 1.00 1.00 1.00
200 200 50 0.02 0.06 0.10 0.06 0.15 0.23 1.00 1.00 1.00
200 200 100 0.01 0.05 0.09 0.03 0.10 0.17 1.00 1.00 1.00
500 500 100 0.02 0.06 0.10 0.04 0.12 0.19 1.00 1.00 1.00
500 500 200 0.02 0.06 0.10 0.03 0.09 0.15 1.00 1.00 1.00
500 500 300 0.01 0.05 0.09 0.02 0.07 0.13 1.00 1.00 1.00
800 800 500 0.01 0.06 0.11 0.02 0.08 0.14 1.00 1.00 1.00

1000 1000 600 0.01 0.05 0.10 0.02 0.06 0.13 1.00 1.00 1.00
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DESIGN 8 : kC = 1, kH = kL = 5, β = 0.0, aF = 0.0, φ = 0.00, ae = 0.0, R2
max = 0.8

SIZE POWER
Infeasible Feasible Feasible

Nominal size Nominal size
NH NL T 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

HF data: PCA first, then flow sample the factors
50 50 35 0.00 0.00 0.01 0.00 0.01 0.03 0.27 0.56 0.72

100 50 35 0.00 0.00 0.01 0.01 0.04 0.08 0.75 0.92 0.97
100 100 35 0.00 0.01 0.01 0.01 0.03 0.05 1.00 1.00 1.00
100 100 50 0.00 0.01 0.02 0.01 0.04 0.06 1.00 1.00 1.00
200 100 50 0.00 0.01 0.02 0.02 0.04 0.08 1.00 1.00 1.00
200 200 50 0.00 0.01 0.02 0.01 0.03 0.06 1.00 1.00 1.00
200 200 100 0.00 0.01 0.03 0.01 0.04 0.07 1.00 1.00 1.00
500 500 100 0.01 0.02 0.03 0.01 0.04 0.07 1.00 1.00 1.00
500 500 200 0.01 0.02 0.05 0.01 0.04 0.08 1.00 1.00 1.00
500 500 300 0.00 0.02 0.05 0.01 0.04 0.08 1.00 1.00 1.00
800 800 500 0.01 0.03 0.06 0.01 0.05 0.09 1.00 1.00 1.00

1000 1000 600 0.01 0.03 0.06 0.01 0.04 0.09 1.00 1.00 1.00

HF data: flow sample first, then PCA
50 50 35 0.00 0.01 0.01 0.02 0.09 0.14 0.60 0.85 0.93

100 50 35 0.00 0.01 0.02 0.04 0.11 0.17 0.86 0.97 0.99
100 100 35 0.00 0.01 0.02 0.05 0.12 0.16 1.00 1.00 1.00
100 100 50 0.00 0.01 0.03 0.04 0.10 0.16 1.00 1.00 1.00
200 100 50 0.00 0.02 0.03 0.03 0.09 0.14 1.00 1.00 1.00
200 200 50 0.00 0.01 0.03 0.03 0.09 0.15 1.00 1.00 1.00
200 200 100 0.00 0.02 0.03 0.02 0.08 0.13 1.00 1.00 1.00
500 500 100 0.01 0.02 0.04 0.02 0.07 0.12 1.00 1.00 1.00
500 500 200 0.01 0.03 0.05 0.02 0.07 0.13 1.00 1.00 1.00
500 500 300 0.00 0.03 0.06 0.01 0.06 0.12 1.00 1.00 1.00
800 800 500 0.01 0.03 0.06 0.02 0.06 0.11 1.00 1.00 1.00

1000 1000 600 0.01 0.03 0.06 0.01 0.06 0.11 1.00 1.00 1.00
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DESIGN 9 : kC = 1, kH = kL = 5, β = 0.0, aF = 0.0, φ = 0.5, ae = 0.0, R2
max = 0.8

SIZE POWER
Infeasible Feasible Feasible

Nominal size Nominal size
NH NL T 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

HF data: PCA first, then flow sample the factors
50 50 35 0.00 0.00 0.01 0.00 0.01 0.03 0.14 0.36 0.51

100 50 35 0.00 0.01 0.01 0.01 0.04 0.07 0.55 0.80 0.89
100 100 35 0.00 0.00 0.01 0.01 0.02 0.04 0.96 0.98 0.99
100 100 50 0.00 0.01 0.01 0.01 0.03 0.05 0.99 1.00 1.00
200 100 50 0.00 0.01 0.02 0.01 0.04 0.08 1.00 1.00 1.00
200 200 50 0.00 0.01 0.02 0.01 0.04 0.06 1.00 1.00 1.00
200 200 100 0.00 0.01 0.03 0.01 0.03 0.06 1.00 1.00 1.00
500 500 100 0.00 0.02 0.03 0.01 0.04 0.07 1.00 1.00 1.00
500 500 200 0.00 0.02 0.04 0.01 0.03 0.07 1.00 1.00 1.00
500 500 300 0.01 0.02 0.05 0.01 0.04 0.08 1.00 1.00 1.00
800 800 500 0.00 0.03 0.05 0.01 0.04 0.08 1.00 1.00 1.00

1000 1000 600 0.01 0.03 0.06 0.01 0.04 0.09 1.00 1.00 1.00

HF data: flow sample first, then PCA
50 50 35 0.00 0.01 0.01 0.02 0.07 0.12 0.43 0.73 0.84

100 50 35 0.00 0.01 0.01 0.04 0.10 0.14 0.77 0.92 0.96
100 100 35 0.00 0.01 0.02 0.04 0.10 0.15 0.99 1.00 1.00
100 100 50 0.00 0.01 0.02 0.03 0.09 0.15 1.00 1.00 1.00
200 100 50 0.00 0.01 0.02 0.03 0.09 0.15 1.00 1.00 1.00
200 200 50 0.00 0.01 0.03 0.04 0.09 0.15 1.00 1.00 1.00
200 200 100 0.00 0.02 0.03 0.02 0.07 0.13 1.00 1.00 1.00
500 500 100 0.00 0.02 0.04 0.03 0.08 0.13 1.00 1.00 1.00
500 500 200 0.01 0.02 0.04 0.01 0.06 0.11 1.00 1.00 1.00
500 500 300 0.01 0.03 0.05 0.02 0.06 0.11 1.00 1.00 1.00
800 800 500 0.01 0.03 0.06 0.01 0.06 0.11 1.00 1.00 1.00

1000 1000 600 0.01 0.03 0.06 0.01 0.06 0.11 1.00 1.00 1.00
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DESIGN 10 : kC = 1, kH = kL = 5, β = 0.0, aF = 0.0, φ = 0.7, ae = 0.0, R2
max = 0.8

SIZE POWER
Infeasible Feasible Feasible

Nominal size Nominal size
NH NL T 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

HF data: PCA first, then flow sample the factors
50 50 35 0.00 0.00 0.00 0.00 0.01 0.02 0.04 0.16 0.28

100 50 35 0.00 0.00 0.01 0.01 0.02 0.05 0.27 0.54 0.66
100 100 35 0.00 0.00 0.01 0.01 0.02 0.04 0.76 0.88 0.92
100 100 50 0.00 0.01 0.01 0.01 0.02 0.05 0.93 0.98 0.99
200 100 50 0.00 0.01 0.02 0.02 0.04 0.08 1.00 1.00 1.00
200 200 50 0.00 0.01 0.01 0.01 0.03 0.05 1.00 1.00 1.00
200 200 100 0.00 0.01 0.02 0.01 0.03 0.06 1.00 1.00 1.00
500 500 100 0.00 0.02 0.03 0.01 0.04 0.08 1.00 1.00 1.00
500 500 200 0.00 0.02 0.05 0.01 0.04 0.09 1.00 1.00 1.00
500 500 300 0.00 0.02 0.05 0.01 0.04 0.09 1.00 1.00 1.00
800 800 500 0.01 0.03 0.05 0.01 0.04 0.08 1.00 1.00 1.00

1000 1000 600 0.01 0.03 0.06 0.01 0.04 0.09 1.00 1.00 1.00

HF data: flow sample first, then PCA
50 50 35 0.00 0.00 0.01 0.01 0.05 0.09 0.24 0.52 0.67

100 50 35 0.00 0.00 0.01 0.02 0.06 0.12 0.53 0.77 0.85
100 100 35 0.00 0.01 0.01 0.03 0.09 0.13 0.92 0.97 0.98
100 100 50 0.00 0.01 0.02 0.03 0.08 0.13 0.98 0.99 1.00
200 100 50 0.00 0.01 0.02 0.03 0.08 0.13 1.00 1.00 1.00
200 200 50 0.00 0.01 0.02 0.03 0.08 0.13 1.00 1.00 1.00
200 200 100 0.00 0.02 0.03 0.02 0.07 0.12 1.00 1.00 1.00
500 500 100 0.00 0.02 0.04 0.03 0.08 0.13 1.00 1.00 1.00
500 500 200 0.01 0.03 0.05 0.02 0.07 0.12 1.00 1.00 1.00
500 500 300 0.00 0.03 0.06 0.02 0.07 0.12 1.00 1.00 1.00
800 800 500 0.01 0.03 0.06 0.01 0.05 0.11 1.00 1.00 1.00

1000 1000 600 0.01 0.03 0.07 0.01 0.06 0.11 1.00 1.00 1.00

Online Appendix - 129



DESIGN 11 : kC = 1, kH = kL = 5, β = 0.0, aF = 0.0, φ = 0.95, ae = 0.0, R2
max = 0.8

SIZE POWER
Infeasible Feasible Feasible

Nominal size Nominal size
NH NL T 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10

HF data: PCA first, then flow sample the factors
50 50 35 0.00 0.00 0.01 0.00 0.01 0.03 0.27 0.56 0.72

100 50 35 0.00 0.00 0.01 0.01 0.04 0.08 0.75 0.92 0.97
100 100 35 0.00 0.01 0.01 0.01 0.03 0.05 1.00 1.00 1.00
100 100 50 0.00 0.01 0.02 0.01 0.04 0.06 1.00 1.00 1.00
200 100 50 0.00 0.01 0.02 0.02 0.04 0.08 1.00 1.00 1.00
200 200 50 0.00 0.01 0.02 0.01 0.03 0.06 1.00 1.00 1.00
200 200 100 0.00 0.01 0.03 0.01 0.04 0.07 1.00 1.00 1.00
500 500 100 0.01 0.02 0.03 0.01 0.04 0.07 1.00 1.00 1.00
500 500 200 0.01 0.02 0.05 0.01 0.04 0.08 1.00 1.00 1.00
500 500 300 0.00 0.02 0.05 0.01 0.04 0.08 1.00 1.00 1.00
800 800 500 0.01 0.03 0.06 0.01 0.05 0.09 1.00 1.00 1.00

1000 1000 600 0.01 0.03 0.06 0.01 0.04 0.09 1.00 1.00 1.00

HF data: flow sample first, then PCA
50 50 35 0.00 0.01 0.01 0.02 0.09 0.14 0.60 0.85 0.93

100 50 35 0.00 0.01 0.02 0.04 0.11 0.17 0.86 0.97 0.99
100 100 35 0.00 0.01 0.02 0.05 0.12 0.16 1.00 1.00 1.00
100 100 50 0.00 0.01 0.03 0.04 0.10 0.16 1.00 1.00 1.00
200 100 50 0.00 0.02 0.03 0.03 0.09 0.14 1.00 1.00 1.00
200 200 50 0.00 0.01 0.03 0.03 0.09 0.15 1.00 1.00 1.00
200 200 100 0.00 0.02 0.03 0.02 0.08 0.13 1.00 1.00 1.00
500 500 100 0.01 0.02 0.04 0.02 0.07 0.12 1.00 1.00 1.00
500 500 200 0.01 0.03 0.05 0.02 0.07 0.13 1.00 1.00 1.00
500 500 300 0.00 0.03 0.06 0.01 0.06 0.12 1.00 1.00 1.00
800 800 500 0.01 0.03 0.06 0.02 0.06 0.11 1.00 1.00 1.00

1000 1000 600 0.01 0.03 0.06 0.01 0.06 0.11 1.00 1.00 1.00
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E.6 Tables: Selection of number of factors

DESIGN 1 : kC = 1, kH = kL = 1, β = 0.0, aF = 0.0, φ = 0.0, ae = 0.0, R2
max = 0.8

AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first

Average number of estimated factors over 4000 MC sim.
NH NL T k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L

Estimated k1 and k2

50 50 35 0.92 1.08 1.04 0.85 1.15 1.11 0.98 1.02 0.98 1.37 0.63 0.59
100 50 35 0.89 1.11 1.08 0.83 1.17 1.13 0.98 1.02 0.99 1.52 0.48 0.45
100 100 35 0.92 1.08 1.08 0.85 1.15 1.15 1.00 1.00 1.00 1.12 0.88 0.88
100 100 50 0.94 1.06 1.06 0.89 1.11 1.11 1.00 1.00 1.00 1.01 0.99 0.99
200 100 50 0.91 1.09 1.09 0.87 1.13 1.13 1.00 1.00 1.00 1.09 0.91 0.91
200 200 50 0.94 1.06 1.06 0.90 1.10 1.10 1.00 1.00 1.00 1.00 1.00 1.00
200 200 100 0.97 1.03 1.03 0.95 1.05 1.05 1.00 1.00 1.00 1.00 1.00 1.00
500 500 100 0.97 1.03 1.03 0.96 1.04 1.04 1.00 1.00 1.00 1.00 1.00 1.00
500 500 200 0.98 1.02 1.02 0.98 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.00
500 500 300 0.98 1.02 1.02 0.98 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.00
800 800 500 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

1000 1000 600 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

True k1 and k2

50 50 35 0.95 1.05 1.05 0.88 1.12 1.12 1.00 1.00 1.00 1.41 0.59 0.59
100 50 35 0.91 1.09 1.09 0.85 1.15 1.15 1.00 1.00 1.00 1.55 0.45 0.45
100 100 35 0.92 1.08 1.08 0.85 1.15 1.15 1.00 1.00 1.00 1.12 0.88 0.88
100 100 50 0.94 1.06 1.06 0.89 1.11 1.11 1.00 1.00 1.00 1.01 0.99 0.99
200 100 50 0.91 1.09 1.09 0.87 1.13 1.13 1.00 1.00 1.00 1.09 0.91 0.91
200 200 50 0.94 1.06 1.06 0.90 1.10 1.10 1.00 1.00 1.00 1.00 1.00 1.00
200 200 100 0.97 1.03 1.03 0.95 1.05 1.05 1.00 1.00 1.00 1.00 1.00 1.00
500 500 100 0.97 1.03 1.03 0.96 1.04 1.04 1.00 1.00 1.00 1.00 1.00 1.00
500 500 200 0.98 1.02 1.02 0.98 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.00
500 500 300 0.98 1.02 1.02 0.98 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.00
800 800 500 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

1000 1000 600 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

The numbers of pervasive factors k1 and k2 in the first step of all the four estimation procedures
considered are estimated using the ICp2 information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmax = 16.
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DESIGN 2 : kC = 2, kH = kL = 0, β = 0.0, aF = 0.0, φ = 0.0, ae = 0.0, R2
max = 0.8

AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first

Average number of estimated factors over 4000 MC sim.
NH NL T k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L

Estimated k1 and k2

50 50 35 1.87 0.13 0.10 1.73 0.27 0.24 1.97 0.03 0.00 1.97 0.03 -0.00
100 50 35 1.83 0.17 0.15 1.73 0.27 0.25 1.98 0.02 0.00 1.98 0.02 0.00
100 100 35 1.86 0.14 0.14 1.71 0.29 0.29 2.00 0.00 0.00 2.00 0.00 -0.00
100 100 50 1.91 0.09 0.09 1.82 0.18 0.18 2.00 0.00 0.00 2.00 0.00 0.00
200 100 50 1.88 0.12 0.12 1.81 0.19 0.19 2.00 0.00 0.00 2.00 0.00 0.00
200 200 50 1.91 0.09 0.09 1.82 0.18 0.18 2.00 0.00 0.00 2.00 0.00 0.00
200 200 100 1.96 0.04 0.04 1.93 0.07 0.07 2.00 0.00 0.00 2.00 0.00 0.00
500 500 100 1.97 0.03 0.03 1.93 0.07 0.07 2.00 0.00 0.00 2.00 0.00 0.00
500 500 200 1.98 0.02 0.02 1.97 0.03 0.03 2.00 0.00 0.00 2.00 0.00 0.00
500 500 300 1.99 0.01 0.01 1.98 0.02 0.02 2.00 0.00 0.00 2.00 0.00 0.00
800 800 500 1.99 0.01 0.01 1.99 0.01 0.01 2.00 0.00 0.00 2.00 0.00 0.00

1000 1000 600 1.99 0.01 0.01 1.99 0.01 0.01 2.00 0.00 0.00 2.00 0.00 0.00

True k1 and k2

50 50 35 1.89 0.11 0.11 1.75 0.25 0.25 2.00 0.00 0.00 2.00 -0.00 -0.00
100 50 35 1.85 0.15 0.15 1.74 0.26 0.26 2.00 0.00 0.00 2.00 0.00 0.00
100 100 35 1.86 0.14 0.14 1.71 0.29 0.29 2.00 0.00 0.00 2.00 -0.00 -0.00
100 100 50 1.91 0.09 0.09 1.82 0.18 0.18 2.00 0.00 0.00 2.00 0.00 0.00
200 100 50 1.88 0.12 0.12 1.81 0.19 0.19 2.00 0.00 0.00 2.00 0.00 0.00
200 200 50 1.91 0.09 0.09 1.82 0.18 0.18 2.00 0.00 0.00 2.00 0.00 0.00
200 200 100 1.96 0.04 0.04 1.93 0.07 0.07 2.00 0.00 0.00 2.00 0.00 0.00
500 500 100 1.97 0.03 0.03 1.93 0.07 0.07 2.00 0.00 0.00 2.00 0.00 0.00
500 500 200 1.98 0.02 0.02 1.97 0.03 0.03 2.00 0.00 0.00 2.00 0.00 0.00
500 500 300 1.99 0.01 0.01 1.98 0.02 0.02 2.00 0.00 0.00 2.00 0.00 0.00
800 800 500 1.99 0.01 0.01 1.99 0.01 0.01 2.00 0.00 0.00 2.00 0.00 0.00

1000 1000 600 1.99 0.01 0.01 1.99 0.01 0.01 2.00 0.00 0.00 2.00 0.00 0.00

The numbers of pervasive factors k1 and k2 in the first step of all the four estimation procedures
considered are estimated using the ICp2 information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmax = 16.
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DESIGN 3 : kC = 2, kH = kL = 1, β = 0.0, aF = 0.0, φ = 0.0, ae = 0.0, R2
max = 0.8

AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first

Average number of estimated factors over 4000 MC sim.
NH NL T k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L

Estimated k1 and k2

50 50 35 1.16 1.81 1.07 1.00 1.98 1.24 1.28 1.70 0.96 2.03 0.95 0.21
100 50 35 1.17 1.83 1.09 1.05 1.95 1.21 1.29 1.71 0.98 1.99 1.01 0.27
100 100 35 1.61 1.39 1.21 1.32 1.68 1.50 1.82 1.18 0.99 2.10 0.90 0.72
100 100 50 1.81 1.19 1.14 1.58 1.42 1.37 1.95 1.05 1.00 2.00 1.00 0.96
200 100 50 1.74 1.26 1.22 1.58 1.42 1.37 1.95 1.05 1.00 2.07 0.93 0.88
200 200 50 1.83 1.17 1.17 1.60 1.40 1.39 2.00 1.00 1.00 2.00 1.00 1.00
200 200 100 1.93 1.07 1.07 1.85 1.15 1.15 2.00 1.00 1.00 2.00 1.00 1.00
500 500 100 1.94 1.06 1.06 1.86 1.14 1.14 2.00 1.00 1.00 2.00 1.00 1.00
500 500 200 1.97 1.03 1.03 1.94 1.06 1.06 2.00 1.00 1.00 2.00 1.00 1.00
500 500 300 1.98 1.02 1.02 1.96 1.04 1.04 2.00 1.00 1.00 2.00 1.00 1.00
800 800 500 1.99 1.01 1.01 1.98 1.02 1.02 2.00 1.00 1.00 2.00 1.00 1.00

1000 1000 600 1.99 1.01 1.01 1.99 1.01 1.01 2.00 1.00 1.00 2.00 1.00 1.00

True k1 and k2

50 50 35 1.81 1.19 1.19 1.49 1.51 1.51 1.99 1.01 1.01 2.83 0.17 0.17
100 50 35 1.68 1.32 1.32 1.46 1.54 1.54 1.99 1.01 1.01 2.73 0.27 0.27
100 100 35 1.74 1.26 1.26 1.41 1.59 1.59 2.00 1.00 1.00 2.28 0.72 0.72
100 100 50 1.85 1.15 1.15 1.61 1.39 1.39 2.00 1.00 1.00 2.04 0.96 0.96
200 100 50 1.76 1.24 1.24 1.60 1.40 1.40 2.00 1.00 1.00 2.12 0.88 0.88
200 200 50 1.83 1.17 1.17 1.61 1.39 1.39 2.00 1.00 1.00 2.00 1.00 1.00
200 200 100 1.93 1.07 1.07 1.85 1.15 1.15 2.00 1.00 1.00 2.00 1.00 1.00
500 500 100 1.94 1.06 1.06 1.86 1.14 1.14 2.00 1.00 1.00 2.00 1.00 1.00
500 500 200 1.97 1.03 1.03 1.94 1.06 1.06 2.00 1.00 1.00 2.00 1.00 1.00
500 500 300 1.98 1.02 1.02 1.96 1.04 1.04 2.00 1.00 1.00 2.00 1.00 1.00
800 800 500 1.99 1.01 1.01 1.98 1.02 1.02 2.00 1.00 1.00 2.00 1.00 1.00

1000 1000 600 1.99 1.01 1.01 1.99 1.01 1.01 2.00 1.00 1.00 2.00 1.00 1.00

The numbers of pervasive factors k1 and k2 in the first step of all the four estimation procedures
considered are estimated using the ICp2 information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmax = 16.
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DESIGN 4 : kC = 1, kH = kL = 1, β = 0.2, aF = 0.0, φ = 0.0, ae = 0.0, R2
max = 0.8

AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first

Average number of estimated factors over 4000 MC sim.
NH NL T k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L

Estimated k1 and k2

50 50 35 0.92 1.08 1.04 0.85 1.15 1.12 0.98 1.02 0.98 1.37 0.63 0.60
100 50 35 0.90 1.10 1.07 0.85 1.15 1.12 0.98 1.02 0.99 1.52 0.48 0.45
100 100 35 0.92 1.08 1.08 0.84 1.16 1.16 1.00 1.00 1.00 1.12 0.88 0.88
100 100 50 0.94 1.06 1.06 0.89 1.11 1.11 1.00 1.00 1.00 1.01 0.99 0.99
200 100 50 0.92 1.08 1.08 0.88 1.12 1.12 1.00 1.00 1.00 1.09 0.91 0.91
200 200 50 0.94 1.06 1.06 0.90 1.10 1.10 1.00 1.00 1.00 1.00 1.00 1.00
200 200 100 0.96 1.04 1.04 0.94 1.06 1.06 1.00 1.00 1.00 1.00 1.00 1.00
500 500 100 0.97 1.03 1.03 0.95 1.05 1.05 1.00 1.00 1.00 1.00 1.00 1.00
500 500 200 0.98 1.02 1.02 0.97 1.03 1.03 1.00 1.00 1.00 1.00 1.00 1.00
500 500 300 0.99 1.01 1.01 0.98 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.00
800 800 500 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

1000 1000 600 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

True k1 and k2

50 50 35 0.95 1.05 1.05 0.87 1.13 1.13 1.00 1.00 1.00 1.40 0.60 0.60
100 50 35 0.92 1.08 1.08 0.86 1.14 1.14 1.00 1.00 1.00 1.55 0.45 0.45
100 100 35 0.92 1.08 1.08 0.84 1.16 1.16 1.00 1.00 1.00 1.12 0.88 0.88
100 100 50 0.94 1.06 1.06 0.89 1.11 1.11 1.00 1.00 1.00 1.01 0.99 0.99
200 100 50 0.92 1.08 1.08 0.88 1.12 1.12 1.00 1.00 1.00 1.09 0.91 0.91
200 200 50 0.94 1.06 1.06 0.90 1.10 1.10 1.00 1.00 1.00 1.00 1.00 1.00
200 200 100 0.96 1.04 1.04 0.94 1.06 1.06 1.00 1.00 1.00 1.00 1.00 1.00
500 500 100 0.97 1.03 1.03 0.95 1.05 1.05 1.00 1.00 1.00 1.00 1.00 1.00
500 500 200 0.98 1.02 1.02 0.97 1.03 1.03 1.00 1.00 1.00 1.00 1.00 1.00
500 500 300 0.99 1.01 1.01 0.98 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.00
800 800 500 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

1000 1000 600 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

The numbers of pervasive factors k1 and k2 in the first step of all the four estimation procedures
considered are estimated using the ICp2 information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmax = 16.
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DESIGN 5 : kC = 1, kH = kL = 1, β = 0.0, aF = 0.6, φ = 0.0, ae = 0.0, R2
max = 0.8

AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first

Average number of estimated factors over 4000 MC sim.
NH NL T k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L

Estimated k1 and k2

50 50 35 0.87 1.13 1.08 0.85 1.15 1.10 0.98 1.02 0.98 1.08 0.92 0.87
100 50 35 0.84 1.16 1.11 0.84 1.16 1.12 0.96 1.04 0.99 1.26 0.74 0.70
100 100 35 0.88 1.12 1.11 0.87 1.13 1.13 1.00 1.00 1.00 1.03 0.97 0.96
100 100 50 0.92 1.08 1.08 0.90 1.10 1.10 1.00 1.00 1.00 1.00 1.00 1.00
200 100 50 0.89 1.11 1.11 0.89 1.11 1.11 1.00 1.00 1.00 1.02 0.98 0.98
200 200 50 0.93 1.07 1.07 0.92 1.08 1.08 1.00 1.00 1.00 1.00 1.00 1.00
200 200 100 0.95 1.05 1.05 0.95 1.05 1.05 1.00 1.00 1.00 1.00 1.00 1.00
500 500 100 0.97 1.03 1.03 0.96 1.04 1.04 1.00 1.00 1.00 1.00 1.00 1.00
500 500 200 0.98 1.02 1.02 0.98 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.00
500 500 300 0.99 1.01 1.01 0.98 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.00
800 800 500 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

1000 1000 600 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

True k1 and k2

50 50 35 0.90 1.10 1.10 0.88 1.12 1.12 1.00 1.00 1.00 1.13 0.87 0.87
100 50 35 0.87 1.13 1.13 0.86 1.14 1.14 1.00 1.00 1.00 1.30 0.70 0.70
100 100 35 0.89 1.11 1.11 0.87 1.13 1.13 1.00 1.00 1.00 1.04 0.96 0.96
100 100 50 0.92 1.08 1.08 0.90 1.10 1.10 1.00 1.00 1.00 1.00 1.00 1.00
200 100 50 0.89 1.11 1.11 0.89 1.11 1.11 1.00 1.00 1.00 1.02 0.98 0.98
200 200 50 0.93 1.07 1.07 0.92 1.08 1.08 1.00 1.00 1.00 1.00 1.00 1.00
200 200 100 0.95 1.05 1.05 0.95 1.05 1.05 1.00 1.00 1.00 1.00 1.00 1.00
500 500 100 0.97 1.03 1.03 0.96 1.04 1.04 1.00 1.00 1.00 1.00 1.00 1.00
500 500 200 0.98 1.02 1.02 0.98 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.00
500 500 300 0.99 1.01 1.01 0.98 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.00
800 800 500 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

1000 1000 600 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

The numbers of pervasive factors k1 and k2 in the first step of all the four estimation procedures
considered are estimated using the ICp2 information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmax = 16.
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DESIGN 6 : kC = 1, kH = kL = 1, β = 0.0, aF = 0.0, φ = 0.7, ae = 0.0, R2
max = 0.8

AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first

Average number of estimated factors over 4000 MC sim.
NH NL T k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L

Estimated k1 and k2

50 50 35 0.90 1.10 1.07 0.83 1.17 1.13 1.02 0.98 0.95 1.96 0.04 -0.00
100 50 35 0.87 1.13 1.10 0.82 1.18 1.14 0.98 1.02 0.98 1.96 0.04 -0.00
100 100 35 0.92 1.08 1.08 0.84 1.16 1.16 1.04 0.96 0.96 2.00 0.00 0.00
100 100 50 0.94 1.06 1.06 0.89 1.11 1.11 1.00 1.00 1.00 1.99 0.01 0.01
200 100 50 0.92 1.08 1.08 0.89 1.11 1.11 1.00 1.00 1.00 2.00 0.00 0.00
200 200 50 0.95 1.05 1.05 0.90 1.10 1.10 1.00 1.00 1.00 1.99 0.01 0.01
200 200 100 0.97 1.03 1.03 0.94 1.06 1.06 1.00 1.00 1.00 1.67 0.33 0.33
500 500 100 0.97 1.03 1.03 0.95 1.05 1.05 1.00 1.00 1.00 1.34 0.66 0.66
500 500 200 0.98 1.02 1.02 0.97 1.03 1.03 1.00 1.00 1.00 1.00 1.00 1.00
500 500 300 0.99 1.01 1.01 0.98 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.00
800 800 500 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

1000 1000 600 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

True k1 and k2

50 50 35 0.92 1.08 1.08 0.85 1.15 1.15 1.03 0.97 0.97 2.00 -0.00 -0.00
100 50 35 0.89 1.11 1.11 0.84 1.16 1.16 1.00 1.00 1.00 2.00 -0.00 -0.00
100 100 35 0.92 1.08 1.08 0.84 1.16 1.16 1.04 0.96 0.96 2.00 0.00 0.00
100 100 50 0.94 1.06 1.06 0.89 1.11 1.11 1.00 1.00 1.00 1.99 0.01 0.01
200 100 50 0.92 1.08 1.08 0.89 1.11 1.11 1.00 1.00 1.00 2.00 0.00 0.00
200 200 50 0.95 1.05 1.05 0.90 1.10 1.10 1.00 1.00 1.00 1.99 0.01 0.01
200 200 100 0.97 1.03 1.03 0.94 1.06 1.06 1.00 1.00 1.00 1.67 0.33 0.33
500 500 100 0.97 1.03 1.03 0.95 1.05 1.05 1.00 1.00 1.00 1.34 0.66 0.66
500 500 200 0.98 1.02 1.02 0.97 1.03 1.03 1.00 1.00 1.00 1.00 1.00 1.00
500 500 300 0.99 1.01 1.01 0.98 1.02 1.02 1.00 1.00 1.00 1.00 1.00 1.00
800 800 500 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

1000 1000 600 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00

The numbers of pervasive factors k1 and k2 in the first step of all the four estimation procedures
considered are estimated using the ICp2 information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmax = 16.
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DESIGN 7 : kC = 1, kH = kL = 1, β = 0.0, aF = 0.0, φ = 0.95, ae = 0.0, R2
max = 0.8

AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first

Average number of estimated factors over 4000 MC sim.
NH NL T k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L

Estimated k1 and k2

50 50 35 1.17 0.83 0.79 0.99 1.01 0.98 1.96 0.04 0.00 1.96 0.04 -0.00
100 50 35 1.00 1.00 0.96 0.92 1.08 1.04 1.89 0.11 0.07 1.96 0.04 0.00
100 100 35 0.94 1.06 1.06 0.85 1.15 1.14 2.00 0.00 0.00 2.00 0.00 0.00
100 100 50 0.95 1.05 1.05 0.89 1.11 1.11 2.00 0.00 0.00 2.00 0.00 0.00
200 100 50 0.92 1.08 1.08 0.88 1.12 1.12 1.97 0.03 0.03 2.00 0.00 0.00
200 200 50 0.94 1.06 1.06 0.90 1.10 1.10 2.00 0.00 0.00 2.00 0.00 0.00
200 200 100 0.97 1.03 1.03 0.95 1.05 1.05 2.00 0.00 0.00 2.00 0.00 0.00
500 500 100 0.97 1.03 1.03 0.95 1.05 1.05 2.00 0.00 0.00 2.00 0.00 0.00
500 500 200 0.98 1.02 1.02 0.97 1.03 1.03 1.38 0.62 0.62 2.00 0.00 0.00
500 500 300 0.99 1.01 1.01 0.98 1.02 1.02 1.00 1.00 1.00 2.00 0.00 0.00
800 800 500 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 2.00 0.00 0.00

1000 1000 600 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 2.00 0.00 0.00

True k1 and k2

50 50 35 1.19 0.81 0.81 1.00 1.00 1.00 2.00 0.00 0.00 2.00 -0.00 -0.00
100 50 35 1.02 0.98 0.98 0.93 1.07 1.07 1.93 0.07 0.07 2.00 0.00 0.00
100 100 35 0.94 1.06 1.06 0.86 1.14 1.14 2.00 0.00 0.00 2.00 0.00 0.00
100 100 50 0.95 1.05 1.05 0.89 1.11 1.11 2.00 0.00 0.00 2.00 0.00 0.00
200 100 50 0.92 1.08 1.08 0.88 1.12 1.12 1.97 0.03 0.03 2.00 0.00 0.00
200 200 50 0.94 1.06 1.06 0.90 1.10 1.10 2.00 0.00 0.00 2.00 0.00 0.00
200 200 100 0.97 1.03 1.03 0.95 1.05 1.05 2.00 0.00 0.00 2.00 0.00 0.00
500 500 100 0.97 1.03 1.03 0.95 1.05 1.05 2.00 0.00 0.00 2.00 0.00 0.00
500 500 200 0.98 1.02 1.02 0.97 1.03 1.03 1.38 0.62 0.62 2.00 0.00 0.00
500 500 300 0.99 1.01 1.01 0.98 1.02 1.02 1.00 1.00 1.00 2.00 0.00 0.00
800 800 500 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 2.00 0.00 0.00

1000 1000 600 0.99 1.01 1.01 0.99 1.01 1.01 1.00 1.00 1.00 2.00 0.00 0.00

The numbers of pervasive factors k1 and k2 in the first step of all the four estimation procedures
considered are estimated using the ICp2 information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmax = 16.
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DESIGN 8 : kC = 1, kH = kL = 5, β = 0.0, aF = 0.0, φ = 0.0, ae = 0.0, R2
max = 0.8

AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first

Average number of estimated factors over 4000 MC sim.
NH NL T k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L

Estimated k1 and k2

50 50 35 1.79 3.07 8.11 1.35 3.51 8.55 2.57 2.29 7.33 12.97 -8.12 -3.07
100 50 35 1.33 4.67 8.55 1.13 4.87 8.75 2.23 3.77 7.65 14.36 -8.36 -4.48
100 100 35 0.93 5.06 3.22 0.82 5.17 3.33 1.96 4.04 2.20 9.06 -3.07 -4.91
100 100 50 0.96 5.03 4.39 0.90 5.09 4.45 1.51 4.48 3.85 9.78 -3.79 -4.42
200 100 50 0.95 5.05 4.41 0.91 5.09 4.45 1.04 4.96 4.32 9.55 -3.55 -4.20
200 200 50 0.95 5.05 4.00 0.90 5.10 4.05 1.45 4.55 3.50 9.79 -3.79 -4.85
200 200 100 0.98 5.02 5.02 0.96 5.04 5.04 1.00 5.00 5.00 6.28 -0.28 -0.28
500 500 100 0.99 5.01 5.01 0.97 5.03 5.03 1.00 5.00 5.00 7.32 -1.32 -1.32
500 500 200 0.99 5.01 5.01 0.98 5.02 5.02 1.00 5.00 5.00 1.01 4.99 4.99
500 500 300 0.99 5.01 5.01 0.99 5.01 5.01 1.00 5.00 5.00 1.00 5.00 5.00
800 800 500 0.99 5.01 5.01 0.99 5.01 5.01 1.00 5.00 5.00 1.00 5.00 5.00

1000 1000 600 1.00 5.00 5.00 0.99 5.01 5.01 1.00 5.00 5.00 1.00 5.00 5.00

True k1 and k2

50 50 35 1.66 4.34 4.34 1.17 4.83 4.83 2.14 3.86 3.86 10.22 -4.22 -4.22
100 50 35 1.07 4.93 4.93 0.96 5.04 5.04 1.47 4.53 4.53 10.49 -4.49 -4.49
100 100 35 0.98 5.02 5.02 0.90 5.10 5.10 2.66 3.34 3.34 10.91 -4.91 -4.91
100 100 50 0.98 5.02 5.02 0.92 5.08 5.08 1.72 4.28 4.28 10.43 -4.43 -4.43
200 100 50 0.96 5.04 5.04 0.93 5.07 5.07 1.08 4.92 4.92 10.20 -4.20 -4.20
200 200 50 0.98 5.02 5.02 0.94 5.06 5.06 1.77 4.23 4.23 10.85 -4.85 -4.85
200 200 100 0.98 5.02 5.02 0.96 5.04 5.04 1.00 5.00 5.00 6.28 -0.28 -0.28
500 500 100 0.99 5.01 5.01 0.97 5.03 5.03 1.00 5.00 5.00 7.32 -1.32 -1.32
500 500 200 0.99 5.01 5.01 0.98 5.02 5.02 1.00 5.00 5.00 1.01 4.99 4.99
500 500 300 0.99 5.01 5.01 0.99 5.01 5.01 1.00 5.00 5.00 1.00 5.00 5.00
800 800 500 0.99 5.01 5.01 0.99 5.01 5.01 1.00 5.00 5.00 1.00 5.00 5.00

1000 1000 600 1.00 5.00 5.00 0.99 5.01 5.01 1.00 5.00 5.00 1.00 5.00 5.00

The numbers of pervasive factors k1 and k2 in the first step of all the four estimation procedures
considered are estimated using the ICp2 information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmax = 16.
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DESIGN 9 : kC = 1, kH = kL = 5, β = 0.0, aF = 0.0, φ = 0.5, ae = 0.0, R2
max = 0.8

AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first

Average number of estimated factors over 4000 MC sim.
NH NL T k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L

Estimated k1 and k2

50 50 35 2.32 2.55 7.58 1.68 3.19 8.23 3.06 1.81 6.85 12.26 -7.40 -2.36
100 50 35 1.65 4.34 8.22 1.30 4.70 8.58 2.74 3.26 7.14 13.82 -7.82 -3.94
100 100 35 0.95 5.04 3.21 0.85 5.14 3.31 2.90 3.10 1.26 8.55 -2.55 -4.38
100 100 50 0.97 5.02 4.34 0.91 5.08 4.40 2.68 3.31 2.63 8.46 -2.46 -3.14
200 100 50 0.95 5.05 4.41 0.91 5.09 4.45 1.56 4.44 3.80 8.51 -2.51 -3.15
200 200 50 0.95 5.05 3.97 0.90 5.10 4.03 2.95 3.05 1.97 8.68 -2.68 -3.76
200 200 100 0.99 5.01 5.01 0.96 5.04 5.04 1.21 4.79 4.79 6.20 -0.20 -0.20
500 500 100 0.99 5.01 5.01 0.97 5.03 5.03 1.17 4.83 4.83 6.25 -0.25 -0.25
500 500 200 0.99 5.01 5.01 0.99 5.01 5.01 1.00 5.00 5.00 4.91 1.09 1.09
500 500 300 0.99 5.01 5.01 0.98 5.02 5.02 1.00 5.00 5.00 1.38 4.62 4.62
800 800 500 0.99 5.01 5.01 0.99 5.01 5.01 1.00 5.00 5.00 1.00 5.00 5.00

1000 1000 600 1.00 5.00 5.00 0.99 5.01 5.01 1.00 5.00 5.00 1.00 5.00 5.00

True k1 and k2

50 50 35 1.99 4.01 4.01 1.31 4.69 4.69 2.70 3.30 3.30 9.49 -3.49 -3.49
100 50 35 1.20 4.80 4.80 1.00 5.00 5.00 2.01 3.99 3.99 9.94 -3.94 -3.94
100 100 35 1.00 5.00 5.00 0.92 5.08 5.08 3.65 2.35 2.35 10.38 -4.38 -4.38
100 100 50 0.98 5.02 5.02 0.93 5.07 5.07 2.92 3.08 3.08 9.14 -3.14 -3.14
200 100 50 0.97 5.03 5.03 0.93 5.07 5.07 1.68 4.32 4.32 9.15 -3.15 -3.15
200 200 50 0.98 5.02 5.02 0.94 5.06 5.06 3.39 2.61 2.61 9.76 -3.76 -3.76
200 200 100 0.99 5.01 5.01 0.96 5.04 5.04 1.21 4.79 4.79 6.20 -0.20 -0.20
500 500 100 0.99 5.01 5.01 0.97 5.03 5.03 1.17 4.83 4.83 6.25 -0.25 -0.25
500 500 200 0.99 5.01 5.01 0.99 5.01 5.01 1.00 5.00 5.00 4.91 1.09 1.09
500 500 300 0.99 5.01 5.01 0.98 5.02 5.02 1.00 5.00 5.00 1.38 4.62 4.62
800 800 500 0.99 5.01 5.01 0.99 5.01 5.01 1.00 5.00 5.00 1.00 5.00 5.00

1000 1000 600 1.00 5.00 5.00 0.99 5.01 5.01 1.00 5.00 5.00 1.00 5.00 5.00

The numbers of pervasive factors k1 and k2 in the first step of all the four estimation procedures
considered are estimated using the ICp3 information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmax = 16.
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DESIGN 10 : kC = 1, kH = kL = 5, β = 0.0, aF = 0.0, φ = 0.7, ae = 0.0, R2
max = 0.8

AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first

Average number of estimated factors over 4000 MC sim.
NH NL T k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L

Estimated k1 and k2

50 50 35 3.00 1.88 6.89 2.09 2.79 7.80 3.59 1.29 6.31 11.62 -6.73 -1.72
100 50 35 2.22 3.78 7.66 1.66 4.34 8.22 3.41 2.58 6.46 13.21 -7.21 -3.33
100 100 35 1.02 4.98 3.15 0.89 5.10 3.27 3.70 2.29 0.46 7.93 -1.94 -3.77
100 100 50 1.00 5.00 4.37 0.94 5.06 4.43 4.12 1.87 1.24 7.63 -1.63 -2.26
200 100 50 0.96 5.04 4.39 0.93 5.07 4.43 2.82 3.18 2.53 7.72 -1.72 -2.37
200 200 50 0.97 5.03 3.95 0.92 5.08 4.00 4.50 1.50 0.42 7.64 -1.64 -2.72
200 200 100 0.98 5.02 5.01 0.97 5.03 5.03 3.22 2.78 2.78 6.04 -0.04 -0.04
500 500 100 0.99 5.01 5.01 0.97 5.03 5.03 3.50 2.50 2.50 6.03 -0.03 -0.03
500 500 200 0.99 5.01 5.01 0.98 5.02 5.02 1.01 4.99 4.99 6.00 0.00 0.00
500 500 300 0.99 5.01 5.01 0.98 5.02 5.02 1.00 5.00 5.00 5.91 0.09 0.09
800 800 500 0.99 5.01 5.01 0.99 5.01 5.01 1.00 5.00 5.00 1.80 4.20 4.20

1000 1000 600 1.00 5.00 5.00 0.99 5.01 5.01 1.00 5.00 5.00 1.01 4.99 4.99

True k1 and k2

50 50 35 2.52 3.48 3.48 1.57 4.43 4.43 3.34 2.66 2.66 8.84 -2.84 -2.84
100 50 35 1.55 4.45 4.45 1.21 4.79 4.79 2.70 3.30 3.30 9.33 -3.33 -3.33
100 100 35 1.13 4.87 4.87 0.97 5.03 5.03 4.75 1.25 1.25 9.77 -3.77 -3.77
100 100 50 1.01 4.99 4.99 0.95 5.05 5.05 4.42 1.58 1.58 8.27 -2.27 -2.27
200 100 50 0.97 5.03 5.03 0.94 5.06 5.06 2.98 3.02 3.02 8.37 -2.37 -2.37
200 200 50 0.98 5.02 5.02 0.95 5.05 5.05 5.26 0.74 0.74 8.72 -2.72 -2.72
200 200 100 0.98 5.02 5.02 0.97 5.03 5.03 3.22 2.78 2.78 6.04 -0.04 -0.04
500 500 100 0.99 5.01 5.01 0.97 5.03 5.03 3.50 2.50 2.50 6.03 -0.03 -0.03
500 500 200 0.99 5.01 5.01 0.98 5.02 5.02 1.01 4.99 4.99 6.00 0.00 0.00
500 500 300 0.99 5.01 5.01 0.98 5.02 5.02 1.00 5.00 5.00 5.91 0.09 0.09
800 800 500 0.99 5.01 5.01 0.99 5.01 5.01 1.00 5.00 5.00 1.80 4.20 4.20

1000 1000 600 1.00 5.00 5.00 0.99 5.01 5.01 1.00 5.00 5.00 1.01 4.99 4.99

The numbers of pervasive factors k1 and k2 in the first step of all the four estimation procedures
considered are estimated using the ICp3 information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmax = 16.
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DESIGN 11 : kC = 1, kH = kL = 5, β = 0.0, aF = 0.0, φ = 0.95, ae = 0.0, R2
max = 0.8

AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first

Average number of estimated factors over 4000 MC sim.
NH NL T k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L k̂C k̂H k̂L

Estimated k1 and k2

50 50 35 4.34 0.53 5.54 3.39 1.48 6.50 4.48 0.40 5.41 10.73 -5.86 -0.85
100 50 35 4.19 1.81 5.68 3.15 2.85 6.72 4.94 1.06 4.93 12.34 -6.35 -2.47
100 100 35 2.49 3.51 1.70 1.74 4.26 2.45 4.18 1.81 0.01 6.94 -0.94 -2.75
100 100 50 2.73 3.27 2.63 1.93 4.07 3.43 5.34 0.66 0.01 6.57 -0.57 -1.22
200 100 50 2.10 3.90 3.23 1.72 4.28 3.61 5.31 0.69 0.02 6.70 -0.70 -1.36
200 200 50 1.64 4.36 3.29 1.29 4.71 3.64 4.93 1.07 0.00 6.42 -0.42 -1.49
200 200 100 1.19 4.81 4.81 1.07 4.93 4.93 6.00 0.00 0.00 6.00 -0.00 -0.00
500 500 100 0.99 5.01 5.01 0.98 5.02 5.02 6.00 0.00 0.00 6.00 -0.00 -0.00
500 500 200 0.99 5.01 5.01 0.98 5.02 5.02 6.00 0.00 0.00 6.00 0.00 0.00
500 500 300 0.99 5.01 5.01 0.99 5.01 5.01 6.00 0.00 0.00 6.00 0.00 0.00
800 800 500 0.99 5.01 5.01 0.99 5.01 5.01 6.00 0.00 0.00 6.00 0.00 0.00

1000 1000 600 1.00 5.00 5.00 0.99 5.01 5.01 6.00 0.00 0.00 6.00 0.00 0.00

True k1 and k2

50 50 35 4.09 1.91 1.91 2.73 3.27 3.27 4.53 1.47 1.47 7.98 -1.98 -1.98
100 50 35 3.33 2.67 2.67 2.49 3.51 3.51 4.30 1.70 1.70 8.47 -2.47 -2.47
100 100 35 2.96 3.04 3.04 2.05 3.95 3.95 5.90 0.10 0.10 8.75 -2.75 -2.75
100 100 50 2.86 3.14 3.14 2.03 3.97 3.97 5.96 0.04 0.04 7.22 -1.22 -1.22
200 100 50 2.17 3.83 3.83 1.77 4.23 4.23 5.87 0.13 0.13 7.36 -1.36 -1.36
200 200 50 1.76 4.24 4.24 1.36 4.64 4.64 6.00 0.00 0.00 7.49 -1.49 -1.49
200 200 100 1.19 4.81 4.81 1.07 4.93 4.93 6.00 0.00 0.00 6.00 -0.00 -0.00
500 500 100 0.99 5.01 5.01 0.98 5.02 5.02 6.00 0.00 0.00 6.00 -0.00 -0.00
500 500 200 0.99 5.01 5.01 0.98 5.02 5.02 6.00 0.00 0.00 6.00 0.00 0.00
500 500 300 0.99 5.01 5.01 0.99 5.01 5.01 6.00 0.00 0.00 6.00 0.00 0.00
800 800 500 0.99 5.01 5.01 0.99 5.01 5.01 6.00 0.00 0.00 6.00 0.00 0.00

1000 1000 600 1.00 5.00 5.00 0.99 5.01 5.01 6.00 0.00 0.00 6.00 0.00 0.00

The numbers of pervasive factors k1 and k2 in the first step of all the four estimation procedures
considered are estimated using the ICp3 information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmax = 16.
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E.7 Cross-sectional distribution of R2 and adjusted R2 for correctly specified
and misspecified number of common factors

In the empirical analysis of Section 7 we use adjusted R2 as a measure to compare the fraction of variability
of the original data explained by the different estimated factors. One referee raised the important issue of
whether two highly correlated specific factors (as the ones considered in some of the previous simulation designs)
maybe better interpreted as a common factor when the sample sizes are as small as in our empirical application,
especially when adjusted R2 is used. In fact, it is possible that interpreting two highly correlated specific factors
as one common factor will increase the adjusted adjusted R2 even more due to the efficiency gain from a larger
combined sample.
We address this concern in a MC experiment where data are generated from a DGP with kC = 1 common
factor, and 1 HF-specific and 1 LF-specific factors (kH = kL = 1) which are highly correlated. We consider
two values of the correlation coefficient among the specific factors, namely φ = 0.7, and 0.9. Then, we estimate
on the simulated data both a correctly specified model with kC = kH = kL = 1, and a misspecified model with
kC = 2 and kH = kL = 0. In both cases we compute the quantiles of the CS distributions for both the R2, and
the adjusted R2, of the regressions of the observed data on the different estimated factors, as in Table 1. That
is, for the correctly specified model we regress the simulated LF and HF data on (i) the common factor only, (ii)
the specific factor only, and (iii) both common and specific factors. For the misspecified model the regressors
include the two common factors only. Table E.5 (φ = 0.7) and Table E.6 (φ = 0.9) report the sample average
computed over 2000 MC simulations for each of the 10%, 25%, 50%, 75%, and 90% quantiles of both the R2s,
and the adjusted R2s. The results clearly show that the factors estimated from a correctly specified model, when
both the common and the specific factors are included in the regressions, produce both R2 and adjusted R2 for
the LF data which are consistently higher than those of a misspecified model. As expected, the cross-sectional
distribution of the regressions of the HF data on one common and one HF-specific factors produce exactly the
same R2 and adjusted R2 as the regressions on 2 common factors. This happens because the common and the
specific factors are estimated from a rotation of the same k1 = 2 pervasive factors estimated by PCA in the
first step of our procedure, which are also used to estimate the two common factors in the misspecified model.
The results are qualitatively the same for both values of the correlation coefficients among the specific factors
φ = 0.7, and 0.9. They suggest that even for prediction purposes distinguishing two highly correlated specific
factors from a single common factor is valuable.
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Table E.5: Sample averages over 2000 MC simulations of the quantiles of R2 and adjusted R2 of
regressions on true and estimated factors, with R2

all = 0.8, NH = 100, NL = 50, T = 35, M = 4,
aF = 0.0, β = 0, ae = 0.0, φ = 0.7 .

Panel A: Estimated with kC = kH = kL = 1, as in DGP

R2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: LF variables

common 0.6 3.0 12.2 31.2 52.7
common, LF-spec. 7.0 17.2 36.9 60.5 77. 0
LF-spec. 0.6 2.9 11.9 30.9 53. 0

Observables: HF variables

common 0.4 2.5 10.7 29.5 52.4
common, HF-spec. 5.8 15.0 34.3 58.5 76.2
HF-spec. 0.4 2.5 10.6 29.0 51.7

Panel B: Estimated with kC = 2, kH = kL = 0

R2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: LF variables

common 5.1 12.5 26.7 44.7 61.1
common, LF-spec. - - - - -
LF-spec. - - - - -

Observables: HF variables

common 5.8 15.0 34.3 58.5 76.2
common, HF-spec. - - - - -
HF-spec. - - - - -

Panel C: Estimated with kC = kH = kL = 1, as in DGP

R̄2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: LF variables

common -2.4 0.1 9.6 29.2 51.2
common, LF-spec. 1.2 12.0 33.0 58.0 75.6
LF-spec. -2.4 0 9.2 28.8 51.6

Observables: HF variables

common -0.3 1.8 10.1 29.0 52. 0
common, HF-spec. 4.4 13.8 33.3 57.9 75.9
HF-spec. -0.3 1.8 10.0 28.5 51.4

Panel D: Estimated with kC = 2, kH = kL = 0

R̄2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: LF variables

common -0.9 7.1 22.2 41.3 58.7
common, LF-spec. - - - - -
LF-spec. - - - - -

Observables: HF variables

common 4.4 13.8 33.3 57.9 75.9
common, HF-spec. - - - - -
HF-spec. - - - - -

In each line we report the sample averages, computed over 2000 MC simulations, of the quantiles of R2 (Panels A and B)
and adj.R2 (Panels C and D) of regressions on estimated factors. In all panels, the regressions in the first three lines involve
the growth rates of the 50 LF observables as dependent variables, while those in the last three lines involve the growth rates
of the 100 HF observables as dependent variables. In Panels A and C the explanatory variables are the factors estimated
assuming that kC = kH = kL = 1, as in the DGP. In Panels B and D the explanatory variables are the factors estimated
assuming that kC = 2 and kH = kL = 0, differently from the true number of factors in the DGP. The low-frequency
sample size T is set equal to 35, and the number of high-frequency subperiods is M = 4. All low frequency observables
are flow-sampled. For all the DGPs we set aF = 0.0, β = 0, ae = 0.0, φ = 0.7, and R2

all = 0.8.
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Table E.6: Sample averages over 2000 MC simulations of the quantiles of R2 and adjusted R2 of
regressions on true and estimated factors, with R2

all = 0.8, NH = 100, NL = 50, T = 35, M = 4,
aF = 0.0, β = 0, ae = 0.0, φ = 0.9 .

Panel A: Estimated with kC = kH = kL = 1, as in DGP

R2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: LF variables

common 0.6 3.1 12.6 32.0 53.1
common, LF-spec. 6.8 17.2 36.8 60.2 76.9
LF-spec. 0.5 2.8 11.5 30.2 52.2

Observables: HF variables

common 0.4 2.5 10.8 29.6 52.4
common, HF-spec. 5.6 14.9 34.1 58.6 76.2
HF-spec. 0.4 2.4 10.6 28.9 51.5

Panel B: Estimated with kC = 2, kH = kL = 0

R2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: LF variables

common 6.1 15.2 32.7 53.6 69.0
common, LF-spec. - - - - -
LF-spec. - - - - -

Observables: HF variables

common 5.6 14.9 34.1 58.6 76.2
common, HF-spec. - - - - -
HF-spec. - - - - -

Panel C: Estimated with kC = kH = kL = 1, as in DGP

R̄2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: LF variables

common -2.4 0.2 10.0 29.9 51.7
common, LF-spec. 1.0 12.0 32.9 57.8 75.4
LF-spec. -2.5 -0.2 8.9 28.1 50.8

Observables: HF variables

common -0.3 1.8 10.1 29.1 52.1
common, HF-spec. 4.3 13.6 33.1 58.0 75.9
HF-spec. -0.3 1.7 10.0 28.4 51.1

Panel D: Estimated with kC = 2, kH = kL = 0

R̄2: Quantile

Factors 10% 25% 50% 75% 90%

Observables: LF variables

common 0.2 9.9 28.5 50.7 67.1
common, LF-spec. - - - - -
LF-spec. - - - - -

Observables: HF variables

common 4.3 13.6 33.1 58.0 75.9
common, HF-spec. - - - - -
HF-spec. - - - - -

In each line we report the sample averages, computed over 2000 MC simulations, of the quantiles of R2 (Panels A and B)
and adj.R2 (Panels C and D) of regressions on estimated factors. In all panels, the regressions in the first three lines involve
the growth rates of the 50 LF observables as dependent variables, while those in the last three lines involve the growth rates
of the 100 HF observables as dependent variables. In Panels A and C the explanatory variables are the factors estimated
assuming that kC = kH = kL = 1, as in the DGP. In Panels B and D the explanatory variables are the factors estimated
assuming that kC = 2 and kH = kL = 0, differently from the true number of factors in the DGP. The low-frequency
sample size T is set equal to 35, and the number of high-frequency subperiods is M = 4. All low frequency observables
are flow-sampled. For all the DGPs we set aF = 0.0, β = 0, ae = 0.0, φ = 0.9, and R2

all = 0.8.
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