Inference in Group Factor Models with an Application to Mixed

Frequency Data

ONLINE APPENDIX

E. Andreou; P. Gagliardini! E. Ghysels! M. Rubin

First version: October, 2014

This version: January 5, 2019

*University of Cyprus and CEPR (elena.andreou@ucy.ac.cy).

TUniversita della Svizzera Italiana (USI, Lugano) and Swiss Finance Institute (patrick.gagliardini @usi.ch).
tUniversity of North Carolina - Chapel Hill and CEPR (eghysels @unc.edu).

§University of Bristol (mirco.rubin @bristol.ac.uk).



Contents

Introduction 2
C Proofs of Propositions 1, 2, 3 and Lemmas B.1-B.9 2
C.1 Proof of Proposition 1 . . . . . . . . . .. e 2
C.2 Proofof Proposition 2 . . . . . . . . . . . . e e 3
C.3 Proofof Proposition3 . . . . . . . . ... e 4
C4 Proofof LemmaB.1 . . . . . . . . . e 17
C.5 ProofofLemmaB.2 . . . . . . ... 19
C.6 Proofof LemmaB.3 . . . . . . . . . e 19
C.7 Proofof LemmaB.4 . . . . . . . ... 21
C.8 Proofof LemmaB.5 . . . . . . . . . e 23
C9 ProofofLemmaB.6 . . . . . . . . .. 35
C.10 Proofof Lemma B.7 . . . . . . . . . . 36
C.11 Proofof LemmaB.8 . . . . . . . . . . e 37
C.12 Proofof Lemma B.9 . . . . . . . . . .. 42
D Additional theoretical and empirical results 43
D.1 Separation of common and group-specific factors . . . . . . . .. ... oL 44
D.2 Identification of the common and group-specific factor spaces from the variance-covariance
matrix of stacked factors . . . . . . . ... 45
D.3 Identification with stock-sampling and generic linear aggregation schemes . . . . .. ... .. 48
D.4 Uniform asymptotic expansions of factor values and factor loadings in the group factor model . 49
D.5 Asymptotic distribution of factors and loadings in generic group factormodel . . . . ... .. 58
D.6 Asymptotic distribution of factor estimates in a mixed frequency model . . . . . . .. ... .. 60
D.7 Digression on Assumption A.7 . . . . . ..o Lo o e e 66
D.8 Estimators based on fixed pointiteration . . . . . . . . . ... ... Lo 69
D.9 Practical implementation of the procedure . . . . . . . .. ... ... L oL 72
D.10 Dataset description . . . . . . . . . . . . i e e e e e e e 74
D.11 Additional empirical results . . . . . . . . . . .. 77
E Monte Carlo experiments 109
E.1 Simulationdesignmodel . . . . . . . . ... e 109
E.2 Simulation design parameters and sample sizes . . . . . . . .. ... Lo 112
E.3 Description of content of tables of results . . . . . . . ... ... .. . 114
E.4 Discussionofresults . . . . . . .. . L 116
E.5 Tables: Sizeand Power . . . . . . . . . L e 120
E.6 Tables: Selection of number of factors . . . . . . . . .. ... ... L o 131
E.7 Cross-sectional distribution of R? and adjusted R? for correctly specified and misspecified num-
ber of common factors . . . . . . .. L. 142
References 145

Online Appendix - 1



Introduction

In this Online Appendix we provide material supplementary to Andreou, Gagliardini, Ghysels, and Rubin
(2019). In Section C we provide proofs of the Propositions 1, 2, 3 and technical Lemmas B.1-B.9 appearing in
the paper.

Section D provides additional theoretical results on identification, including the separation of common and
group-specific factors, an alternative identification strategy, different from the canonical correlation analysis
proposed in Section 2 of Andreou, Gagliardini, Ghysels, and Rubin (2019), for the common and group-specific
factor spaces in a group-factor model, and a discussion of identification of the mixed frequency factor model in
the cases of stock-sampling, and of general linear aggregation schemes for the LF observables. This section also
provides the asymptotic distribution of our factors and loadings estimators in group factor models, a digression
on some regularity conditions, and contains a discussion of properties of an iterative PCA estimator for group
factor models. Moreover, Section D also contains an exhaustive description of the dataset used in the empirical
application of Section 7 and presents additional empirical results.

Online Appendix E describes the Monte Carlo (MC) simulation study used to assess the finite sample size
and power properties of tests of hypotheses on the number of common factors k¢ based on the test statistics
introduced in Theorems 1 and 2. MC simulations are also used to compare the performance of the sequential
testing procedure for the selection of the number of common factors introduced in Proposition 2 with alternatives
adopted from earlier literature. Finally, we also compare the quantiles of the cross-sectional distribution of R?
and adjusted R? of regression of simulated observables on factors, when the number of common factors is either
correctly specified, or overestimated, for a DGP in which specific factors are highly correlated.

C Proofs of Propositions 1, 2, 3 and Lemmas B.1-B.9

C.1 Proof of Proposition 1

From equation (2.2) we have

Ipe O . Ipe 0
pe (e ) ® = (5 e )
Matrix R is block diagonal, and the upper-left block Ii. has eigenvalue 1 with multiplicity k. The asso-
ciated eigenspace is {(£',0'),¢ € R¥"}. From the positive-definite character of matrix X in Assumption
A.2, the lower-right block ®®’ is a positive semi-definite matrix and its largest eigenvalue is 5> < 1, where
p* = sup {£[P'E; : & € RM,||&1]| = 1} is the first squared canonical correlation of vectors ff, and f5 .
Therefore, we deduce that the largest eigenvalue of matrix R is equal to 1, with multiplicity k¢, and the associ-

ated eigenspace, denoted by &, is spanned by vectors (¢/,0'), with & € R¥". Let S; be an orthogonal (k¢, k°)
matrix, then the columns of the (k;, k°) matrix

Si
W, =
' ( Ok ke )

are an orthonormal basis of the eigenspace &.. We have:
Wil = Siff. (C.1)

Analogous arguments allow to show that the largest eigenvalue of matrix R* is equal to 1, with multiplicity k¢
and that the associated eigenspace, denoted by £, is spanned by vectors (£*/,0')’, with £&* € R**. We have
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EX = &.. Let S, be an orthogonal (k¢, k¢) matrix. Then, the columns of the (k2, k¢) matrix

Sa
Wo —
= (orr )

are an orthonormal basis of the eigenspace £ . We have:
Wihay = S5ff, (C2)

which yields parts i) and ii).

When there is no common factor, the matrix R becomes R = ®®’, and matrix R* becomes R* = ®'®. By the
above arguments, the largest eigenvalue of matrix R, which is equal to the largest eigenvalue of matrix R*, is not
larger than /2, where 5? < 1 is the first squared canonical correlation between the two group-specific factors.
This yields part iii).

Finally, we prove part iv). We showed that the lower-right block ®®’ of matrix R is a positive semi-definite
matrix and all its k{ = k; — k€ eigenvalues are strictly smaller than one. These are also eigenvalues of matrix
R. Let us denote the space spanned by the associated k{ eigenvectors of matrix R by &, 1. This space is spanned
by vectors (0, &) with € € R¥. We note that, by construction, the vectors (0, ')’ are linearly independent
of the vectors (§,0")’ spanning the eigenspace &.. Let 1 be an orthogonal (k5, k7) matrix whose columns are
eigenvectors of ®@’, then the columns of matrix

W = ( gﬂkaf )

are an orthonormal basis of the eigenspace & 1. We have: Wi'hy; = Q' f7 .

Analogously, we have that the lower-right block ®'® of matrix R* is a positive semi-definite matrix and all
its k5 = ko — k¢ eigenvalues are strictly smaller than one. These are also eigenvalues of matrix R*. Let us
denote the space spanned by the associated k3 eigenvectors of matrix R* by & 2. This space is spanned by
vectors (0, £¥) with £* € R¥3. We note that, by construction, the vectors (0/,£*')’ are linearly independent of
the vectors (£*,0')" spanning the eigenspace £F. Let Q)2 be an orthogonal (%3, k5) matrix whose columns are
eigenvectors of ®'®, then the columns of matrix

W = < gﬂ;kz )

are an orthonormal basis of the eigenspace &5 2. We have W5'ha 1 = Q5 f5 ;.- u

C.2 Proof of Proposition 2

C —

Let us define the events Q. , = {£(r) < zay 4 }» for r = 1, ..., k, and their complementary events O onr =

{(r) > Zay r }- For any integer k* < k we can write the event {k¢ = k*} as:

b an g if k* = k,

YN, T

(B =k} = (M1 Qraner ) Ny 0 <K <k, (C3)
%:k“rl QT@‘N,T’ if k* = 0.
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We prove Proposition 2 by distinguishing three cases according to the true number of common factors: kj = k,
0 < k§ < k, ki = 0. Moreover, we use the convergence results:

P(Qr,aN,T)
P(QT,aN,T)

— 1, r>kg, (C4)
— 0, 7r=Kkg, (C5)
which are proved at the end of the section.

i) Case k§ = k. We have P(k® = k§) = P(Q

k., an,T

) =1— P(Qgay,) — 1, from equation (C.5).

ii) Case 0 < k§ < k. From (C.3), we have {k® = k§} = (ﬂf:k’é“ Qr,aN,T) N ch,aN,T‘ The events ;. oy 1,
for r = k§ + 1, ..., k, have all probability tending to 1 from equation (C.4), and so do events ﬂf: ket 1 Qranr
k .
and (m;:kgﬂ Qr,aN,T) U QC&O(N,T. Moreover, P(QZ'(C),OJN,T) = 1 — P(Qg¢ ayr) — 1 from equation (C.5).

therefore, we get:

k
P(];‘c:kig) = P m Qranr mQCS,aN,T

r=k§+1
k k
— C C
= P ) Qarr +P< ksyaMT)—P N rane | U ans | =1
r=k§+1 r=k§+1

iii) Case ki = 0. We have P(l%c =k§) =P (ﬂle Qnawy) — 1, because the events ;.o ., forr = 1,... k,
have all probability tending to 1, from equation (C.4).

C.2.1 Proofs of (C.4) and (C.5)

Let r > k§. Then, from the arguments in the proof of Theorem 2 (ii) (see Section B.2.2), we have ]ff(\;)f < —cq,
z
w.p.a. 1, for a constant ¢; > 0. By Condition (ii) of Proposition 2, we have INT (. Then, P(QT@N’T) =

NVT

P ( ]5% < N%) s 1 follows, which yields (C.4).

Now, let 7 = k. Then, from Theorem 2 (ii) we have () 4N (0, 1). Moreover, since a7 — 0 by Condition
(i) of Proposition 2, we have z4, . < 2o+ for large N, T', for any given o* € (0, 1). therefore:

P(QT,aN,T) = P[g(T) < ZO!N,T] < P[é(’r‘) < ZOé*] —a’.

Therefore, we have ]l\l[r;l inf P(Qyap ) < oF, forany a* € (0,1). It follows P(€, o, ) — 0, which yields
,I'—o0 ’ ’

(C.5). [
C.3 Proof of Proposition 3

We omit the subpanel index j since it is immaterial for the proof’s arguments. We write the factor models in
each subpanel as:
yi,t:)\;ht"i_gi,ty 1= ].,...,N, t= 1,...,T, (C6)
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where h; is the (k, 1) vector of unobservable factors. In matrix notation, the model becomes:
Y = HA +e¢, (C.7)

where Y is the (7, N) matrix of observations and H is the (7, k) matrix of factor values. We introduce a set
of high-level assumptions (Assumptions C.1-C.3 below) and show in Section C.3.7 that they are implied by
Assumptions A.2-A.4, A.5 b)-c), A.6 a) and A.7.

Assumption C.1. The factors are such that H H/T = Ij, + o,(1) as T — oo. The loadings are such that
ANA/N =%+ o(1) as N — oo, where matrix 3 is positive definite.

The matrix of factor estimates H = [iLl, vy fLT]’ corresponds to the estimator obtained by Principal Component
Analysis (PCA), and satisfies the eigenvector-eigenvalue equation:

1 NN
WYY/H =HV, (C.8)

where V is the (k, k) diagonal matrix of the k largest eigenvalues of matrix Y'Y’/(NT), and the columns of
matrix H are the associated normalized eigenvectors such that HH /T = Ij.

We start by establishing an asymptotic expansion of the factor estimate with explicit characterization of the
remainder term. It is obtained by manipulating equation (C.8) using the next assumption.

Assumption C.2. We have (i) \/Z{TTH’&A = %Z;‘le hi€, = Op(1) and E[||&|*] = O(1), where & =
LN N, (i) || spee’ HI| = O, (ﬁ) (iii) || xipee’|| = O, (7%) where m := min{N, T}.
PROPOSITION C.1. Under Assumptions C.1-C.2 we have:

- 1 1
() he—he =t bt de+9,  t=1..T, (€9)

1
VN VNT

where matrix 5 = (N'A/N)~Y(H'H/T)V ' is invertible w.p.a. I, and:

u = (NA/N)TY&, by = Snihy,
dy = Sljhy, Oy = \/%Sat + %Dght + 7 + R,
with n? = plzm N ZZ 1 Ele; t|]:t] and Fy is the sigma-field generated by the h for s < t,
N—oo
1 1 o1 1 1
rn = B (Tbt + ﬁSat) + (I + B) mS/ﬁltht + (ﬁDl + ﬁDg)ht

- 1 1 1 1
+I+B’SA/AN—1< 6+ + + )
Lk )S(A'A/N) \/»Tﬂt& NTHtft N\/N(Pt N\/T%

n 1 1 1 1
+[(I, + B")S)*1I ( 2h, + nh+a>
[(k )] 1\/ﬁ T77tt T\/Ntt \/ﬁt

A 1
(I + B)SP ( Lt

1
+ —_a
72 \/ T2 VNTT
T

1 1
2hy + 51+
T2\/> Kty it NT2 NT\/NQOt NT\/T’yt

1 1 1
0. C.10

TF
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7@2 is the t-th row of matrix R defined by:

2
: [NT (ce' + HA'e ’)} (flj?*l —H) [ﬁ?(ﬁl’lﬁlr/:r)*l(A’A/N)*1 : (C.11)
and:
S = (NA/N)Y"YH'H/T)™, Dy = B'STI, + [(I), + B')S)*T3,
Dy = (I +B)S(AN'A/N)"I,, Ds = [(I, + B')S*113,

1 1
———H'eA= = > ],
VNT VT &= tbi
1 1 &
T ATA 75: /
H2 = NTA g €A T - &ft,

1 /

1

T T
1 1 1 1 1
I3 = ————H'edleA=—=(= aé)) + —=(—= 2hel) + ——(= hi&irke),
3 NT\/W \/N(T; tgt) T(ﬁ;nt tgt) W(T; tft t)

B = (NA/N)(H'H/T) [(Ik n A)_l . Ik} (H'H/T)" (A'A/N)™!

A = (H'H/T)'H'(Hx#"' — H)T, (C.12)
and we define:
1 N 1 N T
Rt = —F== 2(522,7& 77752)1 Ot = —F/—— Z Z E4,tE4, Sh‘87
N i=1 NT i=1 s=1,s#t
1 N T 1 N T
Yt = Z Z i, tE € sfs] "= T Z Z fi,t(gi,sﬁs - E[£i,$§8])7
1=1 s=1,s#t T i=1 s=1,s#t
1 N T 1 N T
SRS T RS S SRy
NT i=1 s=1,s%#t i=1 s=1,s#t
1 N T
Y = W Z Z 5i,t(5i,s/fshs - E[gi,s'%shs])a
i=1 s=1,s#t
1 N T
(5t = T Z Z Ei,tE[gi,sas]u
i=1 s=1,s#t
1 N T
Xt = == D cialeisas — Eleisas)). (C.13)
NT = S

Moreover, if the eigenvalues of matrix Xy in Assumptzon C.1 are distinct, then, for a suitable ordering and choice
of the signs of the factor estimates, we have H L5 A%, where the columns of the orthogonal matrix 7€* are

the normalized eigenvectors of 2.

In equation (C.9), the difference (t%z ! )_lﬁt — hy is written as a sum of a zero-mean term at stochastic order
1/V' N, terms at orders 1/7', 1/+/NT and 1/N, plus remainder terms r; and R;. The remainder terms are either
scaled by factors that converge to zero faster than max{ 7, %, +} = O(%), where m = min{N, T}, or are

NT
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of higher order in the sense that involve H#'—-H multiplied by matrices whose elements converge to zero
in probability. The result on the converge of matrix H corresponds to Proposition 1 in Bai (2003).

Equation (C.9) corresponds to the expansion in (B.1). We now control for the magnitude of the remainder terms
7y and Ry in ¥y to show the bounds in Proposition 3. The next Proposition C.2 provides an upper bound for
T-12|HA~' — H| = (% Zle (1Y by — ht||2> 1/2, namely the root MSE of the factor estimates. It is
similar to Lemma A.1 in Bai (2003) but it yields a sharper upper bound. This result is used to derive a bound on
the remainder term R, which is also provided in Proposition C.2.

PROPOSITION C.2. Under Assumptions C.1-C.2, we have

1

A 1
-1/2 -1 _ _ o
T \|H. 2 HI|| = Oy( ~ + T).

Moreover:

(C.14)

A 1 1 1 1
TR = 0, [( ]

oy + N)(ﬁ + f)
1 1
_ o, <N+T2>. (C.15)

From Proposition C.2 and Assumption C.1, we have term A defined in (C.12) is such that || A|| = Op(ﬁ + 7).
By the series representation of the inverse matrix function in a neighborhood of the identity, we deduce that

(I, + A"t = I]| = Op(ﬁ + %) Thus, from Proposition C.2 and Assumption C.1 we get that term B3

appearing in the remainder term 7, in the expansion of Proposition C.1 is such that:

B = 0,( \/lﬁ + %
To control for the remainder term r; we use the next assumption.
Assumption C.3. We have: (i) E[eit\}}} < M foralli > 1and t > 1, and a constant M > 0, (ii)
T iy heay = Op(L), (i) = S0y thea, = Op(1), (iv) 1 3, &y = 0,(1), and (v) ElJa,|*] = O(1),
where a; is any of the following processes: kihy, oy, K&t 01, Vi Qs Ii%ht, Dty Yt KOty Oty Xt
PROPOSITION C.3. Under Assumptions A.1 and C.1-C.3, we have:

). (C.16)

1 o 11
7 2 Il = Op(5; + 72)- (C.17)
t=1

Moreover, ¥y satisfies = S Ohl, = Op(% + 72) and 7 Zle(ﬁut + &b+ ﬁdt +9¢)0; = OP(#ﬁ)'

Propositions C.1 and C.3 yield Proposition 3 (with H = .7 in each group).
In the rest of this appendix we provide the proofs of Propositions C.1-C.3 and show that Assumptions C.1-C.3
are implied by the Assumptions in Appendix A.

C.3.1 Proof of Proposition C.1

From equation (C.7) we have YY' = HA'AH' + HAN'¢' + eAH' + e¢/. By plugging this equation into (C.8),
and rearranging the terms, we get:

HV — H (NA/N) (H’EI/T) - ﬁ(se’ﬁ + HNSH + eAH'H). (C.18)
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The large sample behaviours of the matrices H' /T and V are given in the next Lemmas C.4 and C.5, respec-
tively. These lemmas are similar to the results derived in e.g. Bai and Ng (2002), Bai (2003) - see in particular
their Proposition 1 - and Bai (2009) - see in particular his Proposition 1.

LEMMA C.4. Under Assumptions C.1-C.2, the matrix H' H /T is invertible w.p.a. 1, and the inverse is such
that |[(H'H/T) || = O,(1).

LEMMA C.5. Under Assumptions C.1-C.2, we have v 4 V., where V is the (k, k) diagonal matrix with
diagonal elements corresponding to the eigenvalues of matrix 2.

From Lemma C.5 and Assumption C.1, the matrix V is invertible w.p.a. 1. Define the matrix:
A = (NA/NYH'H/T)V L (C.19)

From Assumption C.1 and Lemmas C.4 and C.5, matrix %” is invertible w.p.a. 1. By post-multiplication

of equation (C.18) times the matrix (H'H /T)~'(A’A/N)~!, and using the definition of matrix . given in

(C.19), we get:
HA™' —

!/ / / —1 1 / -1
= N7 (e’ + HN'E') H(H'H/T) " (N'A/N) ! + NsA(A A/N)L (C.20)

This equation can be rewritten as:

HAT I = NlT (e'H + HN'¢'H) 7 (H'H/T) " (A'A/N) " + %eA(A’A/N)*1
+% (ee’ + HA'E) (ﬁj@fl - H) H(H'H/T) " (NA/N). (C.21)

By using H = [H + (H#~' — H)|.%#, we have:
~ ~ A ~1—1
(HH/T)! = [(H’H/T) (Ik, v (H'H/T) ' H(H 7 — H) /T) %ﬂ}
= #! (Ik + A) - (H'H/T)™!, (C.22)

where A = (H'H/T)"'H'(H#~' — H)/T. By substituting (C.22) in the first term in the RHS of (C.21), and
rearranging terms, we get:

A -0 = %A(A’A/N)—1 + % (e'H + HNE'H) (H'H/T) " (N'A/N)"\ (I, + B)

+$ (ce' + HA'S') (fu?—l - H) A(H'H)T) {(NA/N), (C.23)
where .
B = (NA/N)(H'H/T) [(Ik + A)_ - Ik] (H'H/T)"*(AN'A/N)~L. (C.24)

Equation (C.23) is a recursive equation for H.#~' — H, since this quantity appears in the third term in the r.h.s.
By iterating this equation, we get:
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HA#'—H
1 ~ 1 _ _ -
— NsA(A’A/N) 14 ~F (ee'H+ HN'E'H) (H'H/T)" " (N'A/N)" (I + B)

+% (e’ + HA'E') <]1[5A(A’A/N)1> S (H'H/T)"Y(NA/N)™!

R oy [
+NT (55 —i—HAg) NT
x(H'H/T)"Y(A'A/N)~

(ee/H+HNeH) (H'H/T)"\(NA/N) (I + B)}

1

1 / !/
+ﬁ (55 +HA€) _ﬁ

x A (H'H/T) Y (AN'A/N)~L.

(e’ + HN'E) (ﬁ%)—l — H) H(H'H/T) " (NA /N)_l]

By using that 7 (H'H /T)"*(A/A/N)~! = (H'H/T) Y (N'A/N)~*(I; + B) from (C.22) and (C.24), we get
the expansion:

H#'-H = %a/\(/\’z\/m*1 - % (e’H + HNH) (H'H/T) " (N'A/N) " (I + B)

+% (e’ + HA'E') (;ng) (NA/N)Y(H'H/T) Y (N'A/N)~ (I, + B)

2

]‘ / 1/
+— (ee +HA5)NT

NT
+R,

(ec'H + HN'¢'H) [(H'H/T)*l(A'A/N)*l(Ik + B)

where the higher-order remainder term R is defined in (C.11).
Let us rewrite the expansion as:

o' -g - %EA(A'A/N)—l + % [e'H + H(N'H)] (H'H/T)" (N'A/N) "\ (I, + B)

+ ﬁ [ee’eA + H(N'e'eA)| (N'A/N) T (H'H/T) " (NA/N) T (I + B)

—i—ﬁ {(ee")(ee'H) + (e’ H)(N'e'H) + H[(N'e'ee' H) + (N'H)?|}

X [(H’H/T)—l(A’A/N)—l(Ik + B)} iR (C.25)
We have:
1 ., 1 N T ) )
\/WA e¢H = INT ; ; Nigithy = 117,
iA’e’zsA = 1iii/\'et5“)\’z = 1i§t§/ =1II
NT NT i=1 t=1 /=1 T T t=1 : .
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and

N T N T
1
71\/5/55/}[ = — NiEs 167 46 h/
NTVNT NT\/WZZZE i€it€0480,s 00

1 T N T
= NT\/TZZthW,tEé,sh/S

t=1 ¢=1 s=1

1 T T 1 T N )
— ’ ,
B NT\/T Z Z Z Etgﬂ’tgé,shs + NT\/T ;—1 ;_1 StEZ,tht

t=1 ¢=1 s=1,s#t

_11T,11T2h, 1 1< Y — I
= \/N(TZ&%)‘FT(\/T;ftm t)+\/ﬁ(T;§t”t ¢) =113,

t=1

where matrices II;, Il and II3 are defined in (C.12). Let us now write expansion (C.25) for each date t. We
denote by a; = [A]; the column vector corresponding to the ¢-th row a} of matrix A. We have:

1 TR 1N L N
NT[geH] = WZZ»EMSH s ﬁZq%tthﬁz Z €i,t€i,shs

i=1 s=1 i=1 i=1 s=1,s7#t

1
Qi, (C26)

= —nihe+

h
T ——=HRrtht +

1 1
VN VNT
T N
1 /
~aplecedl = N2T DD D cutistnshe = fT Z Z €i1i,5Es

i=1 s=1 ¢=1 i=1 s=1
N

1
= N\/NTi_lezz,tgt N\/—TZ Z 5zt£zs€s

i=1 s=1,s#t

L 25 + 1
\/ﬁTnt t NT

1
K]tgt + bt + Yty
R T

and:

1 / / ]‘ /
ﬂ[ss ee'Hl, = 53 Z Z €it€islee Hls
N=T N=T ==

——— KM ht + = ht + —F

1 1
5, + _
1
N\/i Xt7

1
T2\F NT2"

1
2
UL S
T\/NTntt NTVT

using the definition of the processes in (C.13).

KO +
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The expansion in (C.25) for date ¢ reads:

b
VN

+\/J177T(Ik + B)(NA/N)H(H'H/T) ik

+(L, + B)(WA/N) T (H'H/T) " (AA/N)

(AN hy—hy = (NA/N)7Ye + (I + B')(AN'A/N) Y (H'H/T) ' —=[ee' H],

NT

[ee’eA];

N2T

+%(Ik + B')Y(NA/N)"YH'H/T)"Y(N'A/N) Tk,

+[(I + B’)(A’A/N)*l(H’H/T)*PmF[eamt

U+ BYWAN)T (T P
T+ B A/N) (U HTY Pl T + R

ee’ee’ H|y, and rearranging terms, the ex-

ec’ee’ H)y

By plugging the expressions for = [ec'H];,
pansion in (C.9) follows.

Let us now prove the convergence of matrix . From Proposition C.2 and Assumption C.1, we have o,,(1) =
H'(H — HA)|T = (H' H/T) — # + 0,(1), which implies:

o7 lee’eA]y and 1o

(H'H/T) = 5 + 0,(1). (C.27)
By combining equations (C.19) and (C.27), and using Lemma C.5 and Assumption C.1, we get:
S\ = AV +0,(1). (C.28)
Moreover, from H'H /T = I, Assumption C.1, Proposition C.2 and equation (C.27), we get:
H'H = Ty + 0,(1). (C.29)
Recall that V' is the diagonal matrix with diagonal elements corresponding to the eigenvalues of the symmetric

matrix X5. Then, if these eigenvalues are distinct, equations (C.28) and (C.29) imply that the columns of matrix
¢ converge in probability to the orthonormal eigenvectors of matrix 3. The conclusion follows.

C.3.2 Proof of Proposition C.2

By computing the norms of both sides of equation (C.21), using the triangular inequality and the Cauchy-
Schwarz inequality, Lemmas C.4 and C.5, and Assumption C.1, we get:

A 1
A7~ H = O, (I ggee' Il + g HNEH] + g

[(HNT&? |+ \| HA/5’||) |H 2~ —HH] (C.30)
To control the term in the r.h.s. we use the next lemma.

1 T 1
LEMMA C.6. Under Assumptions C.1 and C.2, we have: (i) ”NEAH =0, <\/ N)’ (ii) ||WHA/5/H =
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0, (e ) i It = 0, ()

By multiplying both sides of equation (C.30) times T2, and using Assumption C.2 ii)-iii) and Lemma C.6,
we get:
T4 —H| = O ( EE S ) op(T- V2| HA — H])
"\VN VNT VTm) 7 ’
where m = min{ N, T'}, that is:
TV2|HA —H| = O L), (C.31)
p \/N T

From equations (C.11) and (C.31), Assumptions C.1 and C.2 ii), and Lemmas C.4, C.5 and C.6 ii), and the
Cauchy-Schwarz inequality we have:

TR = {(H P | HAE ) (Y2 8 H|>]
1 1 1 1
= 0 {(m + N)(ﬁ + T)}
1 1
- o(y+m):
where m = min{N, T'} and we use mxl/N =O(3 + 72) and - = O(x + 7).

C.3.3 Proof of Proposition C.3

Let us first establish the MSE bound for remainder term 7;. From its definition in (C.10) and Assumption C.3
we have

A = 0y I + 2] + Only + 72)
= VT TN
= 0|+ Plg + )| + Ol + )
_ O(leJr%) (C32)

Let us now show that % Zthl Wh) = Op(% + %) We use ¥; = s + Ry where 0; =
From the Cauchy-Schwarz inequality and the bound in (C.15), we have:

T T T
1 1 ~ 1 .
t=1 t=1 t=1

O(% + 7). we have:

ﬁs@t + %Dth +7¢.

Moreover, by using Assumption C.3, bound (C.32) and fT

r 1 1 & 11 11
E — E U i — J—
=1 a \/NTS(\@ =1 Oétht)—FOp(N + Tz) Op(N + TZ)'

'ﬂ \
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Then, ~ 3°7, 9ih, = Op(% + ) follows.
Let us finally show that 7. Zf: (f + 4by + th + )0, = (N\I/T) We have:

T T
1 1 ;o l 1 l 1 T
T ; Nut + bt + \/]Wdt + 19t)19t = T 2(7\/NU1§ + Tbt + 7\/ﬁdt + 19t)19t

Moreover, by using bound (C.32) and Assumption C.3:

Isvge? = ot Ly 1
(T;Hﬁt!) = Ol5+ @t g (C33)

and thus, from (C.15) and VT < N < T°/? (Assumption A.1), we get:

T T
1, - a1 -
SR = 0 | TR D W)
=1 t=1
1 1.1 1 1 1
= Op |:(N+1-Q>(N+]-Q+\/W):| —Op(ﬁ)-

Further, from Proposition C.2 and (C.14):

T
-13 120 Fr a1 1721 I, 1.1 1 1
I R = 0, (1A HIT R = 0, (L4 D+ )] = ol

’ﬂ \

since VT < N < T5/2, Finally, from Assumption C.3 and the bound in (C.33), we have:

1 U
— u+—b+ d; + 9)V,
Z t tmt t)t
1 1

T
_ ! / i
= T;\ﬁ“tﬂ Z bty + Oy {\ﬁ ~ )

1 -1 - 1
= 7Zutﬁt+72btﬁt+0p(7),
TVN = T — NVT

and:
- 1 <& T 1 1
3 _ / B D D Ds)
T\/Ntzluﬂ% Tz; S+ Z tt 1+N 2—|—NT )
[1( Bl + 1 1 N 1 +1)}+0(1)
VN VNT \FT NVN NVT T2 PENVT
1 r 1 1
- - S’_|_ — — ),
Nf z;tat OP N\/T) Op(N\/T)
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from Assumption C.3 (iv), and:

1 <& 1 1 <
— N " = — S pal)s’

1 1 1 A 1 1
+0p |1 (7 + S IBI+ b+ v+ s )| +onp)
o 1 1 e 2 IAY U 1 — 1
= v e ol ) = )

since VT < N <« T°/2. Hence, + ZtT:1(\ﬁut + by + th + ), = OP(N\/T) follows.

C.3.4 Proof of Lemma C.4

The proof follows closely the proof of Proposition 1 (ii) in Bai (2009). Let us denote by H" the matrix of true
factor values, in order to distinguish it from a matrix H of generic factor values. The estimator H is obtained
from minimization of the LS criterion:

i trl(Y — HAD(Y — HAND. C.34
wasiom ) )] (C.34)

The criterium in (C.34), after concentration w.r.t. A, becomes tr(Y' MpgY), where My = Iy — Py and
Py = H(H'H)"'H'. Let us divide the criterium by NT', and subtract its value at HY, to get:

1 1
SNT( ) ﬁtr(Y MHY) — ﬁtT(E MHOE)
The matrix of factor estimates H is the minimizer of function Sy7(H) w.rt. H such that H'H/T = I;. By
using Y = HOA' + ¢, we get:
1 1 1

Snr(H) = Wtr(AJrjIO’MHHOA’) + QWtr(AHU’MHa) + ﬁtr(e’(PH — Ppo)e). (C.35)
Now, let us show that the second and third terms in the RHS are o, (1) uniformly w.r.t. the (7', k) matrix H such
that H'H/T = Ij,. We follow here different arguments compared to the ones in the proof of Lemma A.1 in Bai
(2009), since we deploy slightly different assumptions. We have:

%tr(AHO’MHe) = ﬁtr(HO’sA) [;HO’H(;H’H) NTH’sA]
= (H*HO%AIIHO(II*H’EAII) (H\f eAll) = (\/1N)’
and:
%tr( (P — Pyo)e) = %tr [;e’H(;H’H)_l;,H’g] —tr [;s’HO(;HO’HO)*;HO’s}
= %tr [H’(NlTsel)H} — %tr [(;HO’HO)‘IHO’(]\;Tss’)HO]
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uniformly w.r.t. the (7, k) matrix H such that H'H/T = I, using Assumptions C.1 and C.2 i) and iii), Lemma
C.6 1), and the invariance of the trace under cyclical permutations.
Thus, from (C.35) we get Snr(H) = Snr(H) + 0,(1), where:

Syr(H) = %tr(AHU’MHHOA’) = tr[(HY My H"/T)(A'A/N)), (C.36)

and the op,(1) term is uniform w.r.t. H such that H'H/T = I;. We have:
Snr(H)
0= Snr(H®)

> 0,

> Snr(H) = Snr(H) + 0,(1),

which imply Sy (H) = 0,(1). Then, from equation (C.36), Assumption C.1 and H'H /T = I, it follows:
HYH)T — (HYH/T)(H'H/T) = 0,(1).

Thus, from Assumption C.1, we have (H” H /T)(H'H/T) = Ij; + 0,(1). Lemma C.4 follows.

C.3.5 Proof of Lemma C.5
Let us multiply both sides of equation (C.18) by T~ H' to get:

(H'H/T)V — (H'H/T)(AN'A/N)(H'H/T) = H'(ec'H + HN'e'H + eAH'H).

NT?

By applying the Cauchy-Schwarz inequality, Assumption C.2 ii), Lemmas C.4 and C.6 (i), and T~ V/2|| H| =
Vk, we get:

(H'H/T)V — (H'H/T)(NA/N)(H' H/T) = 0,(1).
Then, from Lemma C.4 and Assumption C.1, we get:
V = (H'H/T)"YWH'H/T)(NA/N)(H'H/T) + 0,(1)
= (H'H/T)'S\(H'H/T) + 0,(1).

We deduce that the eigenvalues of matrix 1% converge in probability to the eigenvalues of matrix 3. Since
matrix V' is diagonal, the conclusion follows.

C.3.6 Proof of Lemma C.6
(i) Using ﬁ[EA]t = Tlﬁ Ziil Xigir = & and Assumption C.2 i), we have:

1 1 T 2 T 1 & 2 T
I SeAll = N [tr (;gtgg)] = \/; tr <T ;gtggﬂ =0, ( N) . (C.37)

(i) By using (C.37) and T~'/2||H|| = O,(1), we have:

N | 1 1
— < = — = — .
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(ii1) We have:

1 1
| HAEH| < =T 112 _NEH| = 0y(—=),

IH =
VN VN
by using \/lefTA’a’H = % ST &), = O,(1) from Assumption C.2 i).

b
VN

C.3.7 Check of the conditions in Assumptions C.1-C.3

Assumption C.1 is standard in the factor literature, see e.g. Bai and Ng (2002), Stock and Watson (2002), Bai
(2003). It is implied by Assumptions A.2 and A.3.

a) Check of Assumption C.2

Assumption C.2 i) is implied by Assumptions A.4 b), A.5 b) and A.6 a). Assumption C.2 ii) is implied by
Assumptions A.4 a) and Assumption C.3 (which is checked below). Indeed, from (C.26) we have:

1 2
H)' (5l Zu—as b

M'ﬂ

(=
:1

T
1 1 1 1
< 2 2helI? + hel? =0p(=+ —

under Assumption C.3 v), since n? < M (Assumption A.4 a)).
Let us now show the validity of Assumption C.2 iii). We have:

T
1 9 1
Hﬁse [ N2T2T rlee’ee] N2T2 ZZZ
t=1 1=

N N T
ztezsejsejt
1=

1 s=

1
T 1 T
- N2T2 Zzzsit‘g]t NQTQZ Z ZZEztgzsgjtggs-

3
N N T
t=1 i=1 j=1 t=1 s=1,s#t i=1 j=1

The first term in the RHS is O,(T~1) from Assumption A.4 b). Let us now consider the second term in the
RHS. We have:

t=1 s=1 i=1
g T i1 g Tl N 9 T =1/ N 2
= T2 Z n;ls + T2 Z (N Z €it€i,s — nts ) nts T2 Z <N Z Eit€is — 7]?5)) )
t=1 s=1 t=1 s=1 i=1 t=1 s=1
where 77, = plim + ~ Zl 1 €it€i,s- By taking expectations, and using the Cauchy-Schwarz inequality and
N—o0

Assumption A.7 a), we get that W thl ZS:LS# Zi:l ijl €it€i s€jtEjs = OP(T N)' Assumption
C.2 iii) follows.
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b) Check of the conditions in Assumption C.3

Assumption C.3 i) corresponds to Assumption A.4 a). Assumptions C.3 (ii)-(iv) are implied by Assumption A.7
b). Assumption C.3 (v) is implied by Assumptions A.5 b), ¢), and A.7 c).

C.4 Proof of Lemma B.1

We prove the bound for X 1,2; the bounds for the other terms are obtained similarly. We substitute the definition
Vi = ﬁuﬁ + b]t + Fd]t + v, into (B.3) and use No = N, N; = N/u?v. We get:

T T
“ 1 N
X —_ h / h’ A / C.38
12 ;1 Letlag + Nl ) + E IRATo (C.38)

T

T T
1 1 1
t E (hltbzt +b1th2t W E bl7t“/2,t +NN“1,tb/2,t) + T3 E :bLthZ,t
- T t=1 t=1

=

T T
1
+T VNT ; (e & T HNd tth TN\/> Z:: Ul,td/2,t + d1,tu’2’t)
1 T 1 T
/ , .
+T2 T tz; b1tdy, + ,UNdl,tbg ‘ NT2 Z dq td + T ;(huﬁz,t + V1,4ho )

1 1 1 1 !
D [ —ul Lt b1 L+ f%du + m) Oy + 914 <ﬁu2¢ + mbo + Wdz,t) } :
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To bound the terms in the r.h.s. of (C.38), we use that under Assumptions A.2-A.4, A.5 b)-c) and A.6 a) we
have:

T T
1 1
7F ; hiv, = Op(1), = ; wjguf,, = Op(1), (C.39)
1 T
72 hiabi = Op(1), (C.40)
t=1
1 & 1
“Nbih, = O <> C.41)
T ; 5t Uk P\ U7 (
1 T
72 bidhy = Op(1), (C.42)
t=1
L I
72 iy = 0y(1), (C43)
t=1
1 I
7F > ujadi, = 0p(1), (C.44)
t=1
1 I
= biadi, = Oy(1), (C.45)
t=1
1 I
T > djdy, = 0p(1), (C.46)
t=1
for j,k = 1, 2. These bounds are shown below by using the definitions of w;¢, b;;, d; ; in Proposition 3. There-
fore, the first nine summation terms in the r.h.s. of (C.38) are of order Op(ﬁ)’ Op(%), Op(%), OP(T%/W)’

Op(72), Op(ﬁ), Op(57), Op(%m) and Op(57), respectively. From Proposition 3, the last two sum-
mation terms in the r.h.s. of (C.38) are of order O,(+ + %) and op(

X12 = O, (On7), where dx 7 = max{ 4, ~} = (min{N,T})~".
Proof of (C.40). We have:

1 & 1< 1< N
=N hobh, ==Y hihl o n? =N by — Y A\
T; 3,69kt <T; Gt 1Mk ¢ T; kit ¢ Ny ; ik

The first and second terms in the r.h.s. are O, (1) by Assumptions A.2, A.4 b) and A.6 a) and an application of
a LLN for mixing processes. The third term in the r.h.s. is O, (1) by Assumption A.3. Then, (C.40) follows.
Proof of (C.41). We have:

ﬁﬁ)’ respectively. Therefore, we get

-1

-1

N T —1
1 < 1
bie = | > AN (T > hj,th},t> R3¢ (C.47)
J =1 t=1

and:
-1

N;
1 /
wj = ﬁi NN | it
J i=1
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where sz,t and &; ; are defined as in Assumption A.5. Then, we have:

1 T 1 1 N 1 T
j : / § Y E N
t=1 b'»tuk,t VT Nj i=1 )\N)\j’i ( t=1 h]’thﬁ)

-1

1 T 1 Ny,
2 / /
an,thj,tfk,t] < E Ak,i k,)
VT prt N P

Now, % ZtT:1 17]2-7thj7t§,;7t = O,(1) follows from the bound Hnithﬂg,’c’t |l» < M with r > 2 (implied by
Assumptions A.4 a)-b) and A.5 b) and Cauchy-Schwarz inequality), the mixing property with size r/(r — 2) in
A.6 a), and an application of Corollary 14.3 in Davidson (1994). Then, (C.41) follows.

The proofs of the other bounds are established by similar arguments and are omitted. |

C.5 Proof of Lemma B.2

By using (I — X)™' = I + X + X? + Op(6%7) for X = Op(dnr), from (B.4) and Lemma B.1 we
have 2= (I, — Vig" X + Vip X Vi X ) Vit (Ve + %o ) (T, — Vig! Koo + Vg Ko Vi X ) V!
X (‘721 + X21> + OP((S?V,T) and therefore:

R = V'Vl 'V
—‘71]1)211‘7111‘712‘7251‘721 + ‘71]1X12‘72§1‘721 - ‘71]1‘712‘7251)222‘7251‘721 + VﬁlVlegElel
*‘71]1)211‘7111)212‘7251‘721 + ‘7111)211‘712‘7251)%22‘7251‘721 — f/ﬁlelf/ﬁlVleg}lel
—Vi XiaVoy Koo Vi ' Vor + Vi Ko Vg ' Koy — Vi ' VigVy' Xao Vi ' Xon
HV XV X Vi ViV ' Vot + Vi 'Wia Vi Koo Vig ' Koo Viy ' Var + Op (63 7)-

By rearranging the terms, and using the definitions of ¥, U*, B, R, the conclusion follows. |

C.6 Proof of Lemma B.3
We define A = 171_11‘712 and B = ‘7251‘721. Then, R = AB. Let us first derive the block form of matrix A.

From the formula for the inverse of the symmetric block matrix 1711 = [ gcc gd } , we have:
lc 11
~ Q Q
Vfl — cc cs C.48
u [ Qe Qs ] (C.48)
where:
- N |
Qcc = (Ecc — X1 E711210> (C49)
$—1 15 S S so1w ) e et
= Yo tXXa ( 11— X1eXie Ecl> Y1eXee 5 (C.50)
- - eqe \ L
st = (Ell - EICECC Ecl) (CSl)
S—1 , s—1§ S S amle )\l -t
= E11 + E11 D E01211 E1c> 201211 > (C.52)
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and:
-1

ch = - (icc - i:cli_llilc) i](:121_11 = Q/gcy (CS?’)

Qe = — (in - 2102;1261) SieSil = Q. (C.54)

Then, by matrix multiplication we get:
A= V_1‘712 — |: Qcczcc + chzlc QCCECQ + Q05212 :|
1 Qsczcc + stzlc QSCECQ + Q55212
and from (C.49) and (C.53) we have Qccf}cc—i—ﬂcsfllc = Ijec, from (C.51) and (C.54) we have Qe+ Q5521 =
0, from (C.51) and (C.54) we have

Qscitﬁ + Q55212 = (211 - ElcZ 12cl) (212 - E1cZ 1202) = i1711|0212|C7
where we use the notation ijk‘g = f)jk — ijgi[glf}gk for j, k,£ = 1,2, c. Moreover, from (C.49) and (C.53)
we have:

~ ~ ~ ~ o~ ~ -1 ,. ~ o~
QCCZCQ + chzl2 = (200 - E0121_11210) (262 - Z0121_11212> = Zt;jlzcﬂlv

while from (C.50) and (C.54) we have:

- ~ ~ - ~ - -~ ~ -1 /. - o~
QCCECQ + Q05212 — E;;l |:202 - Ecl <211 - Elczc_clzc1> (212 — 2102;1202)}

Thus, we get:
L Iie S0 %en
A = ViVip= 'S
0 211\c212lc
_ Ikc i;jl <SC2~_ iflil_lllcilmc) . (C55)
0 21_11|0212|C

N Iie S L%
B = V251V21 = ~Cfl2~
0 222|0221|c
I 2(;1 (icl — i 22 221|c>
= g o e : (C.56)
0 E22|c221\c

By multiplying the matrices in (C.55) and (C.56) we get:

~ 1D Ikc Rcs
= AB = ~
Redp= [l G ]
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where

Res =X, 1‘ 5 2|02~122|CE21\07
and:
Rey = 3} (icl - 20222_21‘0221|c> +3) (id — +ic1i1_11|ci12\c) 22_21‘0221\0
= 5250 (Take = B0 S5 S ) = B Tar (Tyore = Ras) (C.57)
|
C.7 Proof of Lemma B.4
Substituting the expansions (B.5) and (B.10) into the eigenvalue-eigenvector equation (B.9), we get:
(R + op(aivT)) (B.U+ Ed) = (E.U+ Ey@)(Iye + M).
By using RE, = E, from Lemma B.3, and keeping only the terms up to second order in d 1, we get:
RE6+VYE. U+ VYE,6 = E.UM + Esa+ E,aM + Op(5% 7). (C.58)
Pre-multiplying equation (C.58) by E, using the block notation VU, = E'VE,, U, = E/VE, and R.s =
E! RE, and the fact that matrix { is non- singular, we get:
M=t (Rcs@ U+ ) +0p(5% 7). (C.59)
Similarly, pre-multiplying equation (C.58) by E’, we get:
Rosb+ Uoo U + Uyl = & + &M + Op(5% 1), (C.60)

where W se = EL \flE and W ss = B \iJE To solve this equation for & up to terms Op(é?v 1), it is instrumental
to get first expansions for M and & at order O, (63 NT)-

i) Expansions at order O, (6% 1)

Since Wosa = Op(éjz\nT) and GM = Op(éjg\,,T), from (C.60) we have:

& = (Igy—ke — Ros) W U+ Op(6% 7). (C.61)

If we plug this into (C.59) we get:

~

Moo= ! (R &+ u) +0,(6% 1)

u-
_ gt ( ot Res (I e — Rss)—lﬁlsc) U+ 0,(6%1). (C.62)

ii) Expansions at order O, (53 )
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A~

By plugging (C.61) and (C.62) into terms W& and &M in equation (C.60), and solving for &, we get:
&

- (Iklfkc - Rss)_l [\i/sc + @ss(lklfkc - Rss)_l\ijsc

_(Ik1—kc - Rss)_l‘ilsc (\i’cc + Rcs(Ikl—kC - Rss)—l‘ijsc)] Z;[ + Op(é?V,T)' (C63)
We replace (C.63) and (C.61) for the first and second occurrences of & in the r.h.s. of (C.59), respectively, and
we rearrange terms to get:

~

M

a_l {\ijcc + Rcs(lkl—lcC - Rss)_lilsc
+R05(Ik17kc - Rss)il [\ilss([klfkc - Rss)il\i/sc

_(Ikl—kc - Rss)_llilsc (\i’cc + Rcs(Ikl—kC - Rss)_lijsc>]

+\ilcs([klfkc - Rss>_1¢/sc}a + Op((s?V,T)- (C‘64)
Substituting the second-order approximation of & from equation (C.63) into the equation for Wl* in (B.10), we
get:

Wl* = (Ec + Es(lkl—kzc - Rss)_l |:‘i/sc + \ilss(Ikl—kC - Rss)_ \ilsc

1

(Iy—pe — Rs) s, (\II ¥ Res(Iny_pe — R S)*lxifsc)}) U+0,(0% 7). (C.65)

By replacing equation (C.64) into (B.10), we get the asymptotic expansion of A:
A =

- Ikc + a_l {\ijcc + Rcs(Ik;l—kC - Rss)_lilsc
+Rcs(Ik17kc - Rss)_l [\i}ss(lklfkc - Rss)_lf[l

sc

_(Ikl—kc - Rss)il‘i]sc (‘ilcc + Rcs(Ikl—kC - Rss)il\ijsc>:|

o (L e — Rss)—lxifsc} U+ O0p(6% 7). (C.66)
Note that this approximation holds for the terms in the main diagonal, as matrix A has been defined to be
diagonal.

The asymptotic expansions of A and Wl* can be further simplified by using the next equation:

Res(Iny—ge — Res) 7t =580 1, (C.67)

which follows from (C.57). Equation (C.67) and equation ‘711 U = ¢+ (Lemma B.2) imply:

\chc + Rcs(-[kl—kc - Rss)il‘i’sc i

- (?cl [icc\i’cc + ic,l‘ilsc} = i&l (‘711\11> (cc) == i;cl\ilzcv
M) denoting the upper-left (k¢, k°) block of matrix M. Using the latter equation as well as SeeWes + 2671 V.
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= \TJZS in (C.66), and rearranging terms, we get:

~ ~ ~ ~

A = Letu'so) {\p B (T e — Ros) Wae — St (I, e — RSS)*lxifSCz*l\if:C} U
+0p(8%.7); (C.68)

which yields equation (B.11). A similar argument yields (B.12) from (C.65). |

C.8 Proof of Lemma B.5

The proof is based on the asymptotic expansions of the terms within the trace operator in the r.h.s. of equation
(B.13). We distinguish the terms that are first-order, resp. second-order, with respect to the X ;.

i) Asymptotic expansion of first-order term \ilzél)

A x N~ A~ ~ A~ -~ A (ec) ) - ~
From equation (B.6), we have \Ilcél) = |—-X11 R+ X19B — B' X9 B + B' X5 . As matrices I and B have
the same structure [ E. Dok | (see Lemma B.3), we have:

VOIS SR D, S ¢ /LD ¢l (C.69)

From the expressions of the matrices X jk in (B.3), and using the fact that upper k°-dimensional subvector
of both hy; and hoy is ff, the upper-left (k¢, k¢) blocks of the first and second matrices in the r.h.s. vanish.
Therefore, from (C.69) we get:

T % 1 c c c c
Ui = -2 3 ) — DT — o)) (€.70)

where zp( + denotes the upper (k¢, 1) block of vector 1;;. To compute the matrix in the rh.s., we plug the

1 1 1
T a. —_b.: .
\/ﬁjuﬁ + T 5.t + \/W

Assumptions A.1-A.4, A.5 b)-c) and A.6 a) to bound negligible terms up to o, (e 1), where ex 7 = (NVT)™!

expressions v ; = dji + 19,4 for 7 = 1,2 from (B.1), and use Proposition 3 and

LEMMA C.7. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a) and A.7 we have:

T
v = ( PRL (v — ) (s - uznrﬂ)
= (1 y [l = ) (el = )Y = El(unul? = o) (a7 1])
NVT \VT =
oz (e 0 (680 D) - o5+ vl ) - 5]
TVNT \VT = U~ ’ ’ ’ » O ’

T
1 1 7Cc 7.C C C C C 7c 7\c
- (T > — BN (i) — d5Y + (unl?) - dSD@ — bé,b’]) + 0y (enr)
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where b; 1 is defined as in Theorem 1. The terms in the parentheses are O,(1).

1 1 1
Lemma C.7 shows that the leading stochastic terms in \I/ (D) are of order O <> , O () , O < )
g PAN) P\ NvT) "\TVNT
1
and O, <T2 )

ii) Asymptotic expansion of the second-order terms in the r.h.s. of (B.13)

N 1- ~ N - ~ A
The asymptotic expansion of the second-order term W*{/7) — Z\IJ’C‘EI)E;\IIzé]) + U (I, _pe — Res) 10D —

Sc
Sed (T, —ge — Res) U DB- 10D is provided in the next lemma.

LEMMA C.8. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a) and A.7 we have:

Wit — ixifzé”i;;@:é” + WED (T e — Raa) ML) — S (T —pe — Rao) 1080

-] 57 [ 5 m (-) )
t=1

e { (E (5 -58)) #1] = = ; By () — )

.
({5 -150) ] 57 5 30 (- ) )+ e

where X = + ZtT:1 FyF] and A" := A+ A'. The terms in the curly brackets are O,(1).
From Lemmas C.7 and C.8, the asymptotic expansion of the term within the square brackets in the r.h.s of (B.13)

is:

R 1o ietan . . . i
\IJ:C - Z\Pzél)zccllllcél) + \I’CLSI) (Ik1—kc - RSS) 1\Dg{:) — X 1(I]€1—kc - RSS) lqjg{:)zccl\l]:gl)

T
= ( Z :“Nult _Ugt))(UNugt) U2t)|]:> { ZAbt Abt }

]- 1 Cc C C C C C
v {T > [Gwen? ) ! = )Y = By =) e w57y }

T
1 1 (©) (oe© — )y © () Aple)
- Z Aby 7 (unvuy p — ugy) + (unvuy, — ugy ) Ab
T\/NT{ T~ [ }
1 1 (c) © )y (© (e An(e)
- T Z Ab; (NNdl,t —dyy) + (undyy — dyy)Ab; +op(en), (C.71)
T~ NT {T pary [ }

where Ab; and &)t are the population and sample residuals defined in Theorem 1. For the fifth summation term
in the r.h.s., let us now check that:

T

1 C C C C C C 1
730 (8007w = )+ uva) i) 207] = 0, (5)- )
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Indeed, we have:

T

1 c c 1

T E Abg )h},t = E[Abg )h},t} + 0O, <ﬁ> : (C.73)
t=1

from Assumption A.4 b) and A.6 a), and Corollary 14.3 in Davidson (1994). Then, (C.72) follows from the

definition of d;;, the convergence in (C.73), and equality F [Abgc) h97 ] =0, for j = 1,2. The latter equality
holds because Aby is the residual of a projection on F}, and h;; is spanned by F;.

Moreover, from Assumptions A.2, A.4 b) and A.6 a), and Corollary 14.3 in Davidson (1994), we have:

Iye 0

Vij = I, + Op(T7?), j=1,2, ‘7122[ 0 @

} + 0,(T~Y?). (C.74)

By plugging (C.71)-(C.72) into (B.13), and using = o(ey) when N < T3, and Yo = Ipe +

1
TVTVNT
Op(T ~1/2) from (C.74), the conclusion follows.

C.8.1 Proof of Lemma C.7
We substitute the expressions v ; = %u]‘,t + %bj,t + #dj,t + 19+ for j = 1,2 into the r.h.s. of (C.70).

VN T

We use Ny = N and N; = N/ ,u,?\,, and partition vectors u;; and b;; in block-form as:

(c) (c)
_ | Yt _ | by C_
Ujp = [ o) ] , b= [ 19 ] , 7=1,2

jt jt
Moreover, we use that from Proposition 3 the contribution of the remainder terms 9, ; in the r.h.s. of (C.70) is of
order o, (en,7), and that under Assumptions A.2-A.4, A.5 b)-c) and A.6 a) we have % ZZ;I wjqdy , = Op(1)
and % Zthl dj,td;@,t = Op(1) (see (C.44) and (C.46)). Therefore, we get:

T
T % 1 c c c c
‘I’cgl) = TN Z(uzvu§,2 - té})(/wuﬁ,i - “é,z)/
t=1
1 < (e) (¢) (e) (e) (¢) @)y (pe) ()
- Z (bft - bft)(MNuft - U2?t)/ + (MNUft - u2?t)(blft - b;t)/
T?V'N = [ }
1 X
w2 (T — )b — b3
t=1
1 a (c) () () ( () ( (c) (c)
Z (blft - b2?t)<:u’Nd1?t - d2?t)/ + (MNdlft - dQl,:t)(bl?t - bZ(,:t)/ + op (en,T) -
TQ\/NTt 7 [ }
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By recentering the first term in the r.h.s., and highlighting the convergence rates, we have:

T
., 1 (1
v = - <T ;E[wzvu?? — ) (vl — )y |f]> (C.75)
T
1 1 (& C C (& C C C
o Z {mNUgt) - ugt))(MNugt) - uét))/ - E[(NNU§1§) - u;t))(MNU§t) “gt)) ‘}—t]]
NVT \VT =
]- 1 C C C (& C C C C
oo (o 080 o] 5+ o] 0] ]

7. _y—1,2
ijt - ZA,jn.],thj7t7

and the O,(T~'/? + N~'/2) term is independent of ¢, and the bound TF(\lf + \}) = o(en,7) when
N < T3, we can further simplify this asymptotic expansion to get the expansion in Lemma C.7. |

C.8.2 Proof of Lemma C.8

i) Asymptotic expansion of ¥'")

Let us start with \fIZ(gII) From the definitions of the matrices X, ] & in equation (B.3), bounding the higher-order
terms as in the proof of Lemma B.1, and using that T \/7 < fT < % ( Ly Tlg) we have:

. 1~ 1 1 1
X, S Op C.76
S L, . (N T2> (70
where:
- 1 <&
Sik = 5 D> (hiabis +bishi ), (C.77)

P
o
|

t=1
1 < 1 <&
= 77 ;(#Nykhjiu;c,t + g hig) + ;(Mvahj,td;c,t + pnjdjihy),  (C78)

with iy 1 = pun and iy 2 = 1. Terms éj,k and S’j,k are Op (1) under Assumptions A.2-A.4, A.5b)-c) and A.6 a).
Then, from the definition of U*(/) in (B.7), the bounds (% + ﬁ) (% + %) = o(en,r) and (4 + %)2 =
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o(en.r) which hold if T2 < N < T°/2, we get:

A 1 = Tr— R = S ~ = =5 = \ & ~
* an — - {—\:11‘/111 [—\:HR + =128 — B/:QQB + B/221i| + (:QQB — :.21) ‘/221 (._QQB =) )}

W {—éllffl_ll [—SllR + SlQB - B/SQQB + B/;§21:|
—5'11‘71; [ _11R + _123 B'= QQB + B/_Ql]

# (B~ 8) V' (B~ Zn) + (BB - Z) V! (S8 - $m) |
+op(enT).

[I]Z

The second term in the r.h.s. can be further simplified by using (C.74) and éj k

= Zx + Op(T~Y/?), where
Zjk = Elhjb) , + bj+h) ], and neglecting terms at order o, (en 1) to get:

“ 1 = o - ST B3
G 4D = {,511\/111 [7;11R+:1QB*B

[I]x

2B+ B'En| + (E228 fém)’v;; (2252 1)}
ﬁ {—uu [ S11R+ S12B — B'S2:B+ B Szl] — 811 [~E11R + Z12B — B'E23B + B'Sy1]

~ ~ / ~ N
+ (5223 - 521) (E22B — E21) + (E22B — E21)’ <5223 - 321>} + oplen,T),

| Ige O | Ike O
B_[O @/}’ R_[O <I><I>’]'
Let us now compute the (cc) block of this expansion. Since [—-Z11 R + Z12B — B'Z92B + B’:gl]( ) = 0 and
[—SnR + S19B — B'S;,B + B’gm}(

where:

=0, we get:
cc)

* 1 — Cr— —_— = — ~ 5/ — ~ ) — — S — !~ — — ~ —
WD = B0V [SEuR+ EuB - BEnB+ B3| + (2B - En) Vi' (528 - 2x)
g (cc)
1 _ )
+T\/ﬁ { 11,es [ SuR+ S12B — B'S»B + B 521} .
_Sll,cs [ =R+ E19B - B =9 B+ B ._21]

+ [(5”223 - §21> (E22B — Ea1) + (Z22B — Exn1)’ (‘%23 a SQI)]

By straightforward matrix algebra we have:

} + op(en,T)-

cc

[—511R +Z12B — B'Z99B + 3'521]SC

_Ell,sc + El?,sc - (I)EQQ,SC + (1)521,507 (C79)
=81+ 8128 — B'S»B + B'S |

= _gll,sc + SIZ,SC - (I)SQQ,SC + (IDSQI,sa (C80)
sc

and [(5223 —Z01) <§22B - §21>L : = (Z22.cc — Zo1.cc) (S22,cc - §21,cc) + (Z22.5c — Zo1.5¢) X
cc
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<S’22’ sc — 5”21, sc) . Then we get the asymptotic expansion:

[1]:

T ok 1 — — —_ 5 — D ~ ~ /= ) > — I~ — — ~ —
U = T2 {_:11‘/111 {—:nR—&- Z12B — B'Z92B + B’:21} + (:223 — :21) Vo' (:223 — :21)}

(ce)

—S11,es [—E11,5¢ + Z12,5¢ — PE22 sc + PE21 5]

~ ~ A N +
+ ((322,&: - E21,cc)/ (SQQ,CC - SQI,CC) + (522,86 - 521,35)/ <S22,sc - SZl,sc)) }

+op(en,r), (C.81)
where (A)T = A+ A

ii) Asymptotic expansion of g (Ipy e — Rss)_lﬁfgﬁ)

Let us now consider the term @Zg” (I —ge — }?SS)*l\i/g{;). By the formula of the partitioned inverse for f/ﬁl,
and Lemmas B.1 and C.7, we have:

@Zﬁl) (L —e — RSS)_I\i’(I)

sc

= V(D e = Ro) ™ [V W20 + 0, (7120200 ) |

S ~ ~ . 1 1 1 1
= ‘I’Zﬁl) (Ilcl—kc - RSS)_I(Vlll)ss\I'sgl) + Op <5N,T\/T <N + ﬁ + W + €N,T>>

= WD (L, _ge — Res) (VT )ss V2D + 0y (enr), (C.82)

if N < T°/2. Let us consider @Zﬁ”(]kl,kc — R, ) (V11 )Sslllsg ) By using ) = —X11R+ X12B —

B'X55B + B' X1, the expansion for Xj,k in (C.76), Rgs = ®®’ + 0,(1), and the condition TY? « N <« T%/2
to control negligible terms, we get:

Ui (I, e — Ros) " (V7Y )ss 0280

sc

(
[ E1R+Z12B—- B'E2:B+ B ~21] Ty —ke — Rss)il(f/ﬁl)ss [—énR-i- E19B — B'E22B + Blém] }
1

TNT [ Z11R+Z12B — B'E92B+ B 521]CS (Ikl—kc - @@’)*1 [—S'uR-i- S12B — B'S92B + B/g21]

sc

[*SIIR +812B — B'S92B + B'~5A'21]CS Ty — e — ‘1"19')71 [-E11R+EZ12B — B'Es2B + B'~21] } + op(en,T)-

By using equations (C.79)-(C.80) and:

—_ —_ /= /= —_ 5, = ;= ;=
[-EniR+E1uB— BEnB+ B :21]68 = —E11,sPP + E12,06P" — E92 6P + a1 ¢,

[—SnR + S19B — B'S,B + B,§21] = _gll,cs<b(b, + 5'12,cs<1>/ — 322,(:5(1)/ + Szl,cs,

CcS

we get:

Tr D (I, pe — Ros) M (V7 Hess 02D

[I]x
[1]:

LR+

[I]x

12§ — B/égzé + B

o

(
1 = D = D RI= RI= D —1/,—1
- = {[-21R+208-BEnB+ B zzl]cs (Thy —ke = Ros) " (ViTHss [~
1 _ N X N N
+T7\/ﬁ {[ Ell,csq)q’/ + 512,c3q>, - 522,(:3@/ + 521,(:3] ([kl—kzc - q:'(I)/) ! [_Sll,sc + Sl2,sc - @522,50 + q>321,sc]

[ 511,0sP® + S12,05P — S22,05P + So1 cs] (T —e — ‘1)@/)_1 [=E11,s¢c + Z12,5¢c — PE22,5c + ‘1)521,55]} + op(en,T)-
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iii) Asymptotic expansion of W/.'") + ‘If*(l)(f fy ke — Rs) Ly )

By putting the expansions (C.81), (C.82) and (C.83) together, we get the asymptotic expansion:

D 4 D (1 e — Ros) 7Y
1 {( =2 -1 & B E B PBIE B B = \eo-1(z 5 = )
= — —E11V, —E11R+E12B — B'E02B + B'Ea1| 4+ (E22B — E01) V. Zo2B — Eo1
T2 1 [ ] ( ) 22 ( > ce
+ [—5111% +E12B — B'ExB + B/ém] Iy —ke — Ros) TH(V D ss [—311}? +E12B - B'Es2B+ B ~21] }
cs sc
— ‘1"1")71 [—911,55 + 819 50 — ®829 50 + <I>5'21,sc]

[1]x

—_ —_ ’ —_ i —_
[ Z11,cs + ~:'12,c.5q> - ~:'22,c5(D + :21,65] (Iklfk"'

+ [ S’ 11,cs + 512 cs<I) - 522 csq) + 521 cs] (Ikl ke — P ) ! [_Ell,ss + E12,36 - ¢322,sc + &2 sc]
= 170G & = = 10 & & +

+ ((‘—'22 cc — -—21,00) (522,cc - SQl,cc) + (-:422,30 - \:21,30) (SZQ,SC - SQl,sc)) } + Op(GN,T)~

By using:

[~Bit,cs + B12,es® — E22,cs® + Bo1,cs] (Ioy —ke — ‘?@/)71 |:7§11,5c + 812, 50 — ®Sa2 5c + (D§21,SC:I

+ [ Sll cs + ng,csél - §22,csq)l + SQI,CS] (Ikl—kc - q)q),)_l [_Ell,sc + El2,sc - {9522 sc + @_21 sc]

[*-—'11 sc d=o1 sc D99 sct+ El2,sc]/ (Iklfkc - (I)(I)/)71 I:*S'll,sc + §12,sc - (bSQQ,SC + ‘bSQI,sc]

A ~ A ~ / _
[ Sll sc + ‘I)SQI,SC - (13522,30 + 512,50] (Iklfkc - (I)q:',) ! [*Ell,sc + E12,sc - (13522,30 + ®=o1 sc]

_ ~ ~ ~ ~ +
([(-—411 sc :12 sc) q>(521 sc — EQQ,SC)}/ (Ikl—kc - CI)(I)/) ! [(Sll,sc - SlQ,sc) - ‘I)(SQI,sc - SQQ,SC)]) )
; R = = == i G .
since Zj; = =5 ; forj=1,2,219= o1 and similarly for the S; i, we get:
‘ilZCUI) + quEI)(Ikl—k“ - Rss)71®g£>
1 = - SIS /= 5= "o 1 (= 5 =
— {(75 . [7:‘11R+ E12B — BlzzzB -+ B/.:.21:| + ( 2B — =9 ) V221 (:223 — :21))

11Vq
12B — B'E22B + B'ém] Ty —ke — Rss)il(vlill)ss [—5111? +E19B—B'E:B+B ~21] }
cSs sc

cc

+ [—éué +E
+ ! [(Ell,sc - 512,30) - ‘I)(EQI,SC - EQQ,SC)]I (Iklfkc - (bq)l)71 (Sll,sc - S12,sc) - CI)(SQLSC - S22,sc) -
TVNT
A N o o +
+ ((:22 cc — E21 cc)/(S22,cc - SZl,cc) + (522,56 - EZl,sc)/(SQQ,sc - S21,sc)> } + Op(EN,T)

. 1 o . . el A~ . .
Let us now rewrite the term at order TUNT From the definitions of matrices Z; ;, and S ., we have:

—_— — ! & & —_ —_ ! & &
(B22,cc — B21,c¢) <522,cc - SQl,cc) + (B22,s¢ — Z21,s¢) <522,sc - 521,sc>

T T
c c 1 c 7(c 7(c C 1 c c
= B[ED 0D m S A =)+ B (B B S] 2 S el - )
t=1 t=1
1 & 1 &
+8 @47 = B3] = 3T A ey — ) + B (B = BN IS 1 30 f5 Gl — a5
t=1 t:l
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and:

[(B11,sc — E12,6¢) — ®(E21,s¢ — Z22,5¢)]” (Tgy —ke — <I><I>')71 [(3'11,30 — 5’12,sc) - q:’(S'Zl,sc - §22,sc)]

S

- E[(E(C) S )(f”—(bf“)]([kl_kc_q)@,)

! T Z(fl,t —of5 ) (MNu(fz “gcz)/

S

5 [(80) = 50) (2 — @05 | (e = 99) 7 23208 — @5) (novl) — 7))

t=1

= B[(5-5) 5L t] 7rs zT: Fiiog (nnul?) - ug) +B[(51) - 55)) £t t] i:flet (nndi) - défi)',
= =

where f7) 4, = (Ij,—ge — @’ )71/ 2( fii— @f5,) is the residual of the L? orthogonal projection of f;, onto
134 normahzed to have unit length. Moreover, since [f{’, 7/, © 5]" is a linear one-to-one transformation of
Fy=[fe', i1, f5 (]’ with unit identity variance-covariance matrix, we have that:

c 7(c 1 d c 7(c 7(c s 1 d s c

E [(bﬁi — bé}) td] ﬁ tz;ft (uNu§2 ué})’ + E [(b§,2 - b;,z) 2,,t] T ;f (MNUSE ué})’
T

48 [(05) = 052) filae] <= 30 Firae (vl = f])’
=1
T

= E[(0 — ) g E_lL F(p wl® — ) ,
{( 1,t 2,t> t} Fﬁ; ( N1t Qt)

where matrix X is defined in Assumption A.2. The vector E [(b( °_ b(c)) } I 1Ft is the L? orthogonal
projection of <b§2 — b(c)) onto F;. Similarly:

T

[(Egcz _ : } ; Z ftc )) B [(Bgcz - 6262 ] ;“ET: f2t dgct dgcz)
B {(5502 B ng) ﬂz,t] %fou,t (,Ung(fz — dé‘?)l

= EB[(57-5) ] =7 ZFt(uNd” dgfg).
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Then, we get:

B 0D 4 G D (e — Ry) 100

cc cs
1 N T = I N ) = 5 =~ o1/ 5 =
= ﬁ { (—:11‘/111 [—:HR + Z19B — B,.:QQB + B/:21] + (:223 — :21) V221 (:22B — .:21))
cc

+ [—éné—i— =198 — B'Z»B + B ~21] (In, ke — Rss) 1 (V7Y ss X
+

+
+E [(6@ - Bgfg) F’] popel ET:Ft (uNd —dlf >> ) + oplenr)- (C.83)
t

Let us now rework the term at order 7~2. For this purpose we use the equations:

=5 A D ST = = = = =
—EnR+EZ12B — B'E92B + B'Eg = —Ellec T Z12,cc — Z22,cc + E21,cc = 0,
4 cc
—_ —_ o/ —
:11R +Z12B — B'Z99B + B'Zyy = —Ei1sc+ 125 — BhZ2.cc
4.8C
Nl = r/
— B!, Z99 s + BL,Z21 cc + BlyZo1 500
[ = 5, =~ 7 ~)= S ~= ] = ~ = = = ~
—EnR+E12B — B'E02B + B'E0; = _:11,ccRcs - :ll,csRss + :12,cchs + :12,csBss
L dcCs

_E22,cchs - E22,csBss + EZLcs-

Then, a block product computation yields:

(-

[I]z
I]z

Vit { EnR+Z12B — B'E»B + ~21DCC

+ [EuR+E0B - BEnB+ BEa| (y-re — Ru) ™ (7)s %
[—énf‘i +Z12B — B'EnB + 3/321} e

= = [Eree(ViT es + Ertes (Vi1 ss] %

[—én sc 312 sc — Bésé22,cc - Bgsézz,sc + 325321,@ + Bgsézl,sc]

11 csRss + 512,CCBCS + El?,csBss - :22,cchs - EQ?,csBss + E21,05]

+
|
[1]:
jay)
8
[I]z

—1/vr—1 —_ —_ S/ — S/ — S/ — S/ —
X (Ikl—kc - Rss) (‘/11 )ss |:_~:'11,sc + =12,5¢ — BCS:‘ZQ,CC - B55~:'22,sc + Bc5~:21,cc + B55:21,sc:|

- {_éll cc ((Vn )CS<V11 )551 (Thy—ke — RSS) T RCS)

E11 ,CS + =12 cchs + ElQ,csBss - E22,cc-Bcs - E22,csBss + 521,05}

—1/y7—1 = = D! = Dl = > )
X (Iklfkc - Rss) (V11 )ss {_:'11,30 + =12,5¢ — Bcs:22,cc - B55~:'22,sc + Bcs:21,cc + BSSE2I,SC:| .

Let us show that the term (Vl_ll)cs(vl_ll)gsl (I —ge — RSS) + R., vanishes. Indeed, from equation (C.67) we
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have:

(‘71;1)08(‘71_11);91 (Iklfkc - RSS) + Rcs [(ﬁ]l)cs(‘ﬁl);ﬁ + Rcs(Ilﬂfkc - Rss)il ([lﬂfkc - Rss)
)

cs{f/ﬁl);sl + ic_clic,l] (Ikl_kc - RSS)

i_l [SCC(Vﬁl)cs + ic,l(vﬁl)ss} (‘7111);31 (Iklfkc - RSS)
St [(Va)ee(Vi Des + (Van)es (Vi oo (V7Y Ty b — R)

Therefore, we get:

= |:_Ell,cs + E412,cchs + E12,csBss - EQQ,cchs - E22,05-885 + 521,08]

5, —1/y7—1 = = Rl = ® Y > Ul > U
X (Ikl—kc - Rss) (V11 )ss |:_~:'11,sc + Z12,5¢ — Bcs:22,cc - 355:22,50 + BCS‘:‘QI,CC + 335:21,50:|
. . - . . - . . /
-~ = ;= ;= ;= ;=
= [_Ell,sc + Z12,5¢c — Bc5~:22,cc - Bss:22,sc + Bcs:Ql,cc + Bss‘:‘Ql,SC]

—ly-1 = = R = B! = Bl = B! =
X (L —ke — Rss) ™ (Vi1 )ss [_—'ll,sc + Z12,s¢ — BesZ22,cc — BssZ22,5¢ + BesZ=21,cc + B55—421,sc} .
. —_ —_ D/ — D/ — D/ — D/ —
Let us consider the term —=11 5¢c + Z12,s¢ - B sZ22,cc - BsgZ22,5c + BrgZ21 cc + BggZ21 5 =
= = B! (= = B (= = - = — 1 s (c) (c)
- |:(~11,sc - '—‘12,80) - Bcs('—’21,cc - \—22,00) - Bss(\—Ql,sc - \—'22,50):| . USlng —1l,s¢™=12,sc — T Zt fl,t <b17t - b27t P

/ /
= = _ 1 ¢ (1,0 (o) = = 1 s () () et oo
E21cc — E22,cc = T > It (bLt — b27t and 21 5 — Z22.5c = T ) . f2,t bLt — b2,t , We can write it as:

—_ ) — ! — S/ — >/ —
11,sc T 212,s¢ — 355:22,00 - 355:22,50 + Bcs~:'21,cc + B55~:21,sc

1 & . 2 /
LS [ Bl - Bl (60— 4)
t=1

[1]x

Noting that
~ - = 1 0
B’—V12V_1—[~ = ]7
2 = | B, B,
we deduce that: . ) )
fiioer = fi — Besff — Bisf3y t=1,..T,

are the residuals in the sample orthogonal projection of f7, on f3, and ff. Let us now show that (T —ke —
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Rgs)*1 (f/ﬁl)ss is the inverse of the sample variance of that residuals. Indeed, the sample variance is:

T T

1 - - N

=3 Friseifiized = 730 [Fie— Blaft — Buufad 724
t=1 t=1

= %1 - BLY.1 — Bl Y1 = (‘711 - B/Vm)

- (),
= _SICRCS + i]ll(Iklka - Rss)
= [_Slcécs(lkl—kc - Fiss)_1 + i:11:| (Ikl—kc - Rss)

== <_Slcigclicl + 211) (Ikl—kc - Rss) = [(‘7111)88]71([161—160 - R88)7

Ss

from Equation (C.67). By gathering these results, we get:

(*énf/ﬁ { EnR+Z12B - B 223+B~21D
cc

=+ [—éuR + élgé — BIEQQB —+ B,é21:| , (Iklfkc — RSS)_la}lIl)ss X

[*EHR + élgé — B/EQQB + B,égl}

=3 (08~ 0)) Fr e

t=1

sc

T
1 - -
<T E fluc,tf{uc,t)
t=1

-1

T /
F3 o (12 ) |
=1

Let us now consider the term [<_QQB _21) ‘7251 (EQQB — é21>:| also showing at order T-2 in the r.h.s.
of the asymptotic expansion (C.83). Direct computation yields: “

~ ~ ~ . ~ ~ ~
{(EQQB - 521> V! (EQQB - 521)}

= |:(§22,cc - é21,¢:c)/ (é22,sc - é?l,sc)/:| ‘7251 |: :22’& a :217@ :|

E92.s¢ — 221 s¢
- |72 (- k) s ](Z“> 9]

cc
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Hence, the term at order 72 in the r.h.s. of (C.83) becomes:

~ ~ ~ ~ ~ ~ ~ ~ ~ o~ ~ ~ ~ ~ I ~ ~ ~
<—511Vﬁ1 [—5113 +E12B — B'E92B + 3/521} + (EzzB - E21) Vo' (5223 - E21)>
cc

+ [—311}? +Z12B — B'EyB + B/ém} (I, ke — Rss) (Vi )ss X
CS
+

(s

-1

1 o © @Y
> (- 1)
t=1

t=1
1 © L\ 7 1 7 & &, © Y
tl7 Z (bl,t - b2,t> Fiioe T qu2c,tf1uc,t T qug,c (bLt — b27t>
t=1 t=1 t=1
L (@0 @) o] o1 | 1 o © Y
= fZ(bLt_bM)Ft X szt (bl,t_b2,t> ; (C.84)
t=1 t=1
where:
1 T
S

because f1 | 2. + is orthogonal in-sample to h ¢, and ( f1 12,60 R, t) is a linear transformation of (f{, f t, fft)’ )
By substituting (C.84) into (C.83), we get:

WD 4 WD (L e — Ris) 7ML
T

13 -] s 13 )
v { (E (5 -58) #1] = = éF () =)

.
E|(5 - 85)) K| =5 TszFt (vt} - d(c)>> +oplens).  (C.85)

t=1

-1
EF

iv) Conclusion

We finally consider the other second-order terms in the r.h.s. of (B.13).
By \ifzgl) =0, (% + % + lew + €N7T) from Lemma C.7, we have:

TS 1D = o, (enr), (C.86)

if T1/? <« N < T?. Moreover, by using X1 (I, ke — Rss)™" = O,(T~/?) from (C.74), b = Op(dn,7)-
and \Il*(l) 0, (% + % + TIJ\TT + 6N,T>a we have:

- - - ~ 1A 1 1 1 1
Set(Iny—ke — Res) TEDS MDD = 0, [\F oN.T (N T2 W * eN’Tﬂ
= op(enr), (C.87)
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if TY/2 <« N < T3. From (C.85), (C.86) and (C.87), the conclusion follows. [

C.9 Proof of Lemma B.6

We show the conditions in parts (i)-(iv) of Lemma B.6. Part (i) follows by the Law of Iterated Expectation and
E(U¢|F;) = 0, which is implied by Assumption A.4 a). Part (ii) is implied by Assumptions A.3, A.4 b) and A.5
b). The NED property in part (iii) holds true because conditional expectations given F; can be well approximated
by elements in the sigma-field fo;l” generated by the mixing process (V;), for large m, by Assumptions A.3,

A.4b), AS5b)and A.6 a)-c), as we show in the next lemma.
LEMMA C.9. Assumptions A.3, A.4 b), A.5 b) and A.6 a)-c) imply part (iii) in Lemma B.6.

To check part (iv) in Lemma B.6 we use:

T T—1
1 1
1i — > Z = lim — T— Znt ZN g
pm vV ( ﬁZ N¢> T&rgooTh_E;H( Ih))Cov (Zx4, Zi-n)
o0
= lim COU (ZN,t7 ZN,t—h) )
N—oo
h=—o00

where the first equality follows from stationarity of the data. The series converges because the zero-mean process
Znytisa L2—mixingale with size —1, ! by Theorem 17.5 in Davidson (1994) and Conditions (ii)-(iii), which
implies | Cov (24, Zve-n)| = | B [B@xalVee) Zhvon] || < IB@xalVin) ol Znsnllz = 0 (%),
uniformly in Ny, Ny > 1, for some ¢» > 1. The latter uniform bound also allows for an application of the

Lebesgue Lemma to get:
[e.e]

T
) 1
= (o) = X

h=-—00

where I'(h) = limy_,o0 Cov (2N, Zn4—1), Which yields equation (B.16). The computations in Subsection
B.1.6, and in particular Lemma B.7, show that the limit in I'(h) is well-defined.

C.9.1 Proof of Lemma C.9

- () /=~ (c)
Assumption A.6 a) gives the strong mixing condition for process V;. Since Uy = <EX11€1¢> — (E/_\zfgi) ,
where ¥ Aj = A;Aj /N; for j = 1,2, process U, is function of the components of process V;. Therefore, to
prove the NED property for process Zpy ;, we simply have to show that processes Xn; = E(U/U;|F;) and
Yn: = Abgc)/Ut are L2-NED on (V}). For the first process we have:

1Xne = B(XneViEE 2 < XN = B(XN4|Fyy ooy Foom) |12

t—m —
= [[B(U{U|F) = E(UU|Fy, o.cs Fe—m) |2 = O(m™),
for v» > 1, by the Law of Iterated Expectation and Assumption A.6 b). For the second process we have:

m c c m c c m 1/2
IYae = BVl < [0/(A67 = EIA6I VED < B |26 — B V)2

A

Ul | A — E(AB V™|,

—m

"That is, | E[Zn,¢[Vi—m]|l, < ¢(m), uniformly in ¢ > 1 and N1, N» > 1, where {(m) = O(m™") for some ¢ > 1.
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where p = r/(r — 1), by the Holder inequality. Term ||U;||2, is bounded uniformly in N1, No > 1and ¢t > 1 by
Assumptions A.3 and A.5 b). Moreover, by the definition of process Ab; we get:

146 — BE(ABE V)

IN

Vitm)llzp

Z 1857 =BG viEmllzp < Z 13511 (s = E

Z =3 511
j=1

The latter term is O(m %) with ¢y > 1 by Assumptions A.3, A.4 b) A.6 c¢) and 4p < 8. The conclusion follows.
]

IN

‘ t+m)‘

4P||77]2‘,t (77] t |4p-

C.10 Proof of Lemma B.7

First, let us show that we can interchange the limit N — oo and the outer expectation in the r.h.s. of equation
(B.18), i.e.:

hrn FE [CO'U (ZNt, ZNt h’]:t)] ]\}E)noo COU (ZNﬂg, ZN,t—h|ft) . (C88)

N—oo

Indeed, by the Cauchy-Schwarz inequality, we have the bound Cov (Zn 4, Znt—n|Ft) < XeXt—h, P-a.s., uni-
formly in N1, Na > 1, where x; := supy;,_ Nzl E [ Zn.|?1F] /2 The uniform upper bound s x_p is inte-
grable, because E[x;xi—n] < E[x?]V/2E[x?_,]"/? by Cauchy-Schwarz, and E[x?] = E [supy, n,>1 E (|| Zn4]% )]
< CE [supy, n,>1 E (|U]* |}})} < 00, for a constant C, by Assumption A.5 b). Then, (C.88) follows by an
application of the Lebesgue Lemma.

Second, let us write Cov (2.4, Zn.4—n|F) in block form using Zy¢ = [U/U; — E(ULU|F), Ab U] and
show that:

Cov(UlU,, U!_, Up_n| Fr) Cov(ULUy, AD Uy | )
Cov(AW U, UL, Uy_n|Fi)  Covo(ABY U, AW U, | o)
Cov(UX U, UX/UR, |F)  Con(Us®'UX, Ab UX, | Fy)

Cov(AW UX, U2 /U, |F) Cov(AbYUX, AbY U, | F)

N%oo

P —a.5.(C.89)

We focus on the convergence of the upper-left block; the arguments for the other blocks are similar. We have
Cov(U{Uy, U_ Up_p|Ft) = E[(U{U)(U}_,Ur—n)|Fe] — E[U{U| F|E[U{_,,Us—p|F¢]. Let us prove that:
lim E{(U[U)(Ui_pUsp)|Fe] = E[(UZUP)NUZSUS)F], P —as. (C.90)

N—oo

By definition of conditional expectation, this is equivalent to:
E | lim E[UU)(U_Ur-n)|Flla| = E (U U ) UZRUZ) 1]

for any measurable set A € F;. By Assumption A.5 b) and the Lebesgue Lemma, we can interchange the limes
and the expectation in the L.h.s., and by the Law of Iterated Expectation we get:

Jim B [(UU) (U] Ur-n)1a] = B [(UFU)URRUR)14] - (C.91)
Now, by (B.19) and stable convergence, we have (U;Uy)(U,_,Us—1)14 4 (U'U) (U2, U,)1 4. More-
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over, by Assumption A.5 b), we have uniform integrability: sup y~; E[|(U{U;)(U;_,U—p)14]°] < oo, for some
p > 1. Therefore, by the Corollary of Theorem 25.12 on page_338 in Billingsley (1995), we get (C.91). By
similar arguments applied to E[U;U;|F;] and E[U/_, U;_p|F;], and to the other blocks of the matrix in the Lh.s.
of (C.89), equation (C.89) follows. Combining (C.88) and (C.89), the statement of Lemma B.7 follows. |

C.11 Proof of Lemma B.§

The proof of Lemma B.8 deploys the following uniform asymptotic expansions of factors and loadings estimates:

Fc - c 1 c -
feo= H! |:ft + mugﬁ] +0p (T 1/2), (C.92)
" ~ ~ 1
soo= {4 | 40, (T2 j=1,2 (C.93)
,t s, .t it y4 9 ) 4y
J J J \/ﬁ] J
- ol ae s 1 . .
X o= ., [/\jﬂ. + Ecclzc,j)\jﬂ- + \/ij’i] + op (T 1/2) : j=1,2, (C.94)
DU PR RS S T-1/2 i=1,2 C.95
Ji = Tiej | At \/ij,i +op ) J=12, (C.95)

where the 0,(T~1/2) terms are uniform w.r.t. 1 <¢ < T'and 1 < i < Nj, vector u, is defined in Proposition 3,
=[5 Zj7CEC_C1ff, w§; = ZC_CI% Z;‘FZI ffejis and wi; = (%FJS /Fjs)_lﬁ Zthl fﬁﬁj,i,t, and matrices

Hc and s, ; are such that HiHe = Iye + op(1) and 1 ;Hsj = Ins + 0p(1).

These asymptotic expansions hold under Assumptions A.1-A.4, A.5 b)-c), A.6 a), A.7, A.8, and are derived in

Proposition D.4 in Appendix D.4.

C.11.1 Proof of Lemma B.8 Part (i)

To derive the asymptotic expansion of matrix A;AJ /N;, we work with the matrix versions of the asymptotic

~

expansions in equations (C.94) and (C.95). Stacking the loadings ;\52 in matrix A; = [;\571, ey )\;7 Nj]’ we get:

Ac c 1 c s S S — ) —
AS = |AS+— T(GﬁAjﬁzj,Czcg)} He + o <T 1/2),
where
C 1 / C
Gj = —\/Tst , (C.96)

and 0, (T~'/?) denotes a matrix whose rows are (k¢, 1) vectors uniformly of order 0,(7~'/2). Similarly, stack-

~

ing the loadings 5\;’1 in matrix A;f =X

S / .
]’1,...,/\j7Nj} we get:

AN S «'S 1 S » —1/2
j - |: j + HCij:| H57j + Op (1 / > ,
where

S 1 S
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By gathering these expansions into matrix f\j = [j\r;

J
Aj:<

A%, we get:

A, Q3> U + o, (T‘1/2> . j=1,2,

50 i
where
[ . 1 / [ nk}
Gj = |G PG } = it Hp=FE
. [ H. 0
uj a L 0 ,]:ls’j :| ’
Q0 — [ 0 0
VTS S o
A’A
To compute , we consider the matrix product:
A+ — —A,; Q] [A + ! —Gj + Q]
\F \F : f f e
_ / 1 / / / 1 —ALA ; ! L !
= AA +N\F(AG +GAj) + NTG]G it 7 NjAjA] Qi + Qi | § A

(QJA’G + GiAQ5) + Qj < .A]) Q.

Let us now bound the different terms. We have:

1z
A’ /H = Z)\ ]t?ﬂzt p(1)7

= 35
V. N;T i=1 t=1

A;Gj

/
and:
N;

1 1 1 & 1 & /
— GG, = — — h‘&‘i h‘&‘@ :O(l),
Nj i~ Nj ; (ﬁ ;:1: J,t< 7, :t) <ﬁ ;:1: J,t< 7, t) D

(C.9%)

(C.99)

(C.100)

(C.101)

)

(C.102)

by arguments similar to the proof of Lemma B.1. Thus, by using these bounds and AA;/N; = O(1) and

Qj = Op(1), from equation (C.102) we get:

(C.103)

1 ! 1 1
A + —= ] [A4+G~+A-Q} = A’A + Lx;+ L
j \F ﬁ \/T J \/T 1%] \/T( J A])
+O <1+1>
P\VNT T)’
where
AN A
J N] J
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Therefore we have:

C.11.2 Proof of Lemma B.8 Part (ii)

a) Asymptotic expansion of r P
We start by deriving the uniform asymptotic expansion for the residuals. The asymptotic expansions in (C.92)-
(C.95) allow to compute the asymptotic expansion of £;; ;:

Eiat = Yist = NifE = Nifi = eia - [X”ft Xife| = [N = X503

_ ' c 1 c — c! pc
\f jz + op(T 1/2)> (ft + \/7]\71“&,2 +op(T 1/2)> - Aj,gft}

s 1 s —-1/2 ' s N —1 1 —1/2 s!ps
- K/\j,ﬂL\/ij,ﬂrop(T / )) <j7t_zﬂc ce \/> Jt +0P(T ) = AjifTe

) o, (T712). (C104)

= Ejit — |:<)‘§z + ic_cli&j)\j,i

+ iws’

1
Ejyit — (F/\ﬂ (102 \/ijc,/zftc> - (r)‘jzl gst) 7,0
Here the op(Tfl/z) term is uniform w.r.t. 1 < ¢ < N;, 1 <t < T by the bounds in the next Lemma C.10 and

Assumption A.8 d).

LEMMA C.10. Let X = O (an,r) mean X = Oplan r(log T)?) for some b > 0. Under Assumption A.8 we
have the following uniform bounds:

sup [|hjell = Ope(1), (C.105)
1<t<T
sup lujell = Ope(1), (C.106)
1<t<

sup || Zhgté‘g,z,tll = O, (T7"?), (C.107)

1<i<N;
where nn > 1/2.

If we adopt ff to compute residuals in panel j = 1, and ftc* for j = 2, we have:

2 1 S c C s s —
S = Ehae— = (WIE +wliff) - —= (Nsil? + x50l)) + 0, (T712) . (C.108)

m
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Equation (C.108) allows us to compute:
2

T T
e = 7 2B %; chia 7 LFE Wit - ij(A;; il X fu) | o (172)
1 T
= T; Zgw,t wi i fy "’wS/]S, /N ;51,1,7& ()‘51/ Ut + Ajiu gst))
T T
+%Z( e wllf, T1]Z(/\§{ © §{u§:9t))2
t=1 t=1
2 a c/ A/ (s) T—1/2
o 0 A+ w1 (G - ) + o0 (277).

: : c _ 1 T . fC s _ 1 T s
By solving out the parentheses, using wf; = —= 32— €jicfi = Op(1), wj; = 7= >4y €t S}

ﬁ Zle Ej%tug.’ct) = O0p(1) and ﬁ Zle Ej,iytuft) = Op(1), uniformly in 1 < i < N;, we get:

T
. 1 _
Vi = T Z‘g?,z,t + O, ( ) +op < 1/2) ;

uniformly in 1 < i < N;. Using that 1/N = o(1/v/T) when VT < N, we get:

T
. 1 ) . )
Yt = 0o St on (T7) = it oy (T777).

t=1

uniformly in 1 <7 < INV;, where

’ﬂ

T
2N
‘,' : 5: j,z,t 7]22
t:l

Therefore, we have:

A 1 _
Fj = FJ+ﬁW;+Op<T 1/2>,

where I'; = diag(vji, @ = 1,..., Nj) and W7 = diag(w5,;, i = 1,...,N), for j = 1,2.

b) Asymptotic expansion of - L A’ F A
From (C.98) and (C.109) we have
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where we define:

A 1 1
PI— .y —we) (A, Ly
s e (e o ) (o ) (o s o)
= Qi+ Q*] 1t Q]j 7t ij I ‘1' ij i+ Q) IV + ij v
+

( JJQ]+QJQJ]) (Q*]IQJ +Qg j][) (Q*jIIQ] +Q] ]]II)

v v

1
VT
1
+\/T( ]jII[Q]+QJ ]][II)+ QQ]QJ+ Q] ]]Iij

and:

~ 1
Qj]’ = EA;F]A],

. 1 1
fo WA =0, (—— |,
it N,VT 7 p<\/NT)

.y 1 1
Wjur = mGﬁrjAj =0p <\/ﬁ> ,
- 1
ij,]][ = WG;WEA Op <T> y
- 1
By = I ———GW:G; =0 <1 )
Ve NTT P\rvT)”

Collecting the previous results, we get:

1 1
Lo+ Lg —_— + = A11
(Lag + Q,])+Op< ﬁNT+T), (C.111)

aJ,r
35~

where:
Lao; = 94Q;. (C.112)

By substituting into equation (C.110) we get:

x 1 / . ~1/2 -
N, g b \/T(Lij+LQ,j):|uj+op<T /), j=12

C.11.3 Proof of Lemma C.10

We prove the uniform bounds in (C.105) and (C.107). The proof of bound (C.106) follows by similar arguments.
Proof of (C.105). Let § = c(log T)®, for constants ¢ > 0 and b = 1/b, where b > 0 is defined in Assumption
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A.8 a). Then:

T
> Plllhjell = 6] < e1T exp(—c26”) = 1T exp[—cac’(log T)]
t=1

= T e = o),

IN

Pl sup ||zl > 9]
1<t<T

if ¢ > (1/c2)'/b. Thus, sup ||hjll = Op[(logT)B].
1<t<T

Proof of (C.107). Let § = ¢(log T')/>T—"/2, for constants ¢ > 0 and 7, where 7 > 1/2 is defined in Assumption
A.8 ¢). Then:

T
1
P| sup ||= hiseridll >0
[1Si§NjHT tzl segicl 20

IN

N T T

;P[Hz{ tzl hjgjatl = 0] < lej;gvjp[\; tzlhj,t&“j,i,tH > 4]
c1 N;T exp(—cad*T") 4 c3TN;6~ exp(—caT™)

= 1 N;Texp(—cac®(logT)) + c3TN;6 " exp(—csT7)

= O(T7*7%%) +o(1) = o(1),

ifc > (%)1/2. Thus, 1<slu<l3v|]% Sl hiagjidll = Opl(log T)V2T=1/2) = O, ,(T~/?).
SUSHVG

C.12 Proof of Lemma B.9

We assume that estimator ftc is used to get factor loadings on panel j = 1, and estimator ftc * is used to get
factor loadings on panel j = 2. Recall 3y = (N2 /Nl)flq(f(lj)l + 2%)2 Let r be the true number of common
factors, and let k¢ denote the number of common factors used in the estimation procedure. We consider the case
with r < k¢ < k = min{ky, ka}.

Let us first consider panel 7 = 1. The common factor estimator is ff = W{hl,t where W1 is the k1 x k°
matrix whose columns are eigenvectors of R associated with the k¢ largest eigenvalues, normalized to have
W{ W1 = Ije. Without loss of generality, let ’I:lj = I, in Proposition 3. Then, we have R=R+ op(1), where
R = < I(; <I>(<)I>’ > . The large-sample limit of W1 is the matrix of normalized eigenvectors associated to the k¢
largest eigenvalues of matrix R. These eigenvalues are 1, with multiplicity 7, and p? L1 e pic, that are the k¢ —1r
largest eigenvalues of matrix @’ (assumed distinct, to simplify the proof). Let v denote the (k1 —r) x (k¢ —r)
matrix whose columns are the corresponding normalized eigenvectors of ®®’. Then, we have Wy =W+ op(1)
where

w0

0 «

r x r matrix U is possibly stochastic and such that /'U = I, and o/ = Ic_,.. For later use, we denote by /3
the (k1 — ) x (k1 — k°) matrix whose columns are an orthonormal basis of the orthogonal complement to the

columns space of «. Then, [« : f] is an orthogonal matrix, 5’3 = I, e, &/ = 0, and:
ad' + BB = Iy . (C.113)

From Proposition 3 with 7:[j = Ij;; we have ﬁj,t ~ hjs, where symbol ~ means equality up to terms that are
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asymptotically negligible for determining large-sample limits. Then:
u'fe
O/f f,t '

Let us consider the estimation of the factor loadings on the panel with 7 = 1. From (C.113) the model for this
panel can be written as:

fe~Wihy, = {

Yiie = SO LA e = UFETUN ]+ [ f7 ) 0N 5]+ (B fL 18] + €1
= [UAL+ f8/>\12+51,1,ta

u/ c u/)\c’
where f = [ O/f'?t }’/\ii = [ a’)\%ﬂ» [, =B fiyand Aj; = B'A] ;. Note that the transformed factors
I 7Z

Lf and ﬁ , are orthogonal, and have dimensions k¢ and k1 — k¢ respectively. Since ff converges to Lf, by

regressing y1 ; ; onto ff we estimate \{ ;. Then, the residuals satisfy the model:
/
§1,it ﬁ,tAii +e1,it

The frequency-specific factor is estimated by extracting the first k; — k€ principal components from the residuals,
which yields asymptotically f}, ~ Vf7, where V is an orthogonal matrix. So for the estimated factor loadings
we have:

NP
Al = AL =

u/)\c i n
] A v,
Thus, )\1 . 1s asymptotically an orthogonal transformation of Aq ;, i.e. /\1 i~ RiAi, say. Using €1+ ~ €1,i 4,
we get Eu 11 =~ R1X,,11 R}, which implies Eu 11 = 0p(1).
Let us now consider the estimation of factor loadings in panel j = 2. By paralleling the above arguments, we
have ¥, 20 = Op(1). Thus, ||Xy7|| = Op(1). The conclusion follows. [

D Additional theoretical and empirical results

Section D.1 discusses the separation of common and group specific factors for identification purposes in generic
group-factor models. Section D.2 provides details about an alternative identification strategy, different from the
canonical correlation analysis proposed in Proposition 1 of Andreou, Gagliardini, Ghysels, and Rubin (2019), for
the common and group-specific factor spaces in a group-factor model. Section D.3 discusses the identification of
the mixed frequency factor model in the cases of stock-sampling, and of general linear aggregation schemes for
the LF observables. Sections D.4 and D.5 provide uniform asymptotic expansions and asymptotic distributions
of factors and loadings estimators in a group factor model. Section D.6 provides the asymptotic distribution
of factors and loadings estimators in a mixed frequency model. Section D.7 contains a digression on some
technical assumptions. Section D.8 contains a discussion of properties of an iterative PCA estimator for group
factor models. A description of the practical implementation of our estimation and testing procedures appears
in Section D.9. Section D.10 describes exhaustively the dataset used in the empirical application of Section 7.
Section D.11 presents additional empirical results.
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D.1 Separation of common and group-specific factors

The following proposition gives a sufficient condition for the identification of the group factor model (2.1) -
(2.2) when the factor dimensions k¢, k7, k5 are known.

PROPOSITION D.1. Assume that the matrices Ay = [Af D AS ] and Ny = [Ag DA ] are full column-

rank, for N1, No large enough. Then, the factor model is identifiable: the data [yivt, 9,2,75]/ satisfy a group factor
model as (2.1) - (2.2) with stacked factor (ff', fi [, f5])" replaced by ( fe!, th’ , ~257t/)’ defined by the linear
transformation

It A Az A ff
I = | A1 Az A3 Ji (D.1)
I3 Az1 Asz Asz f54

if, and only if, the matrix A = (A; ;) is a block-diagonal orthogonal matrix.

The full-rank condition in Proposition D.1 is a standard condition for separate identification of the pervasive
factor spaces in the two subgroups. The identification condition in Proposition D.1 is implied by Assumption
A.3, and implies that the matrix of loadings in the right hand side of equation (2.1) is full-rank. Proposition D.1
shows that this condition - together with the normalization restrictions in (2.2) - is also sufficient for identifi-
ability of the common factor f, the group-specific factors f7,, and the factor loadings A¢, AJ"? , up to separate
rotations. Hence, the rotational invariance of model (2.1) - (2.2) maintains the interpretation of common factor
and group-specific factors.

D.1.1 Proof of Proposition D.1
By replacing equation (D.1) into model (2.1), we get
[ Y1t } _ [ AfA1; +AJAr A§A19 + AjAge ATA13 + AJAss } Ji n [ €1t ]

S
Yot ASA11 + ASA31 ASA1e + ASA3e ASA13 + ASAs3 j;st ot
2.t

This factor model satisfies the restrictions in the loading matrix appearing in equation (2.1) if, and only if,
A§A13 + AjAgz = 0, and ASA12 + AJAze = 0, which can be written as linear homogeneous systems of
equations for the elements of matrices [A); Ab,] and [A], A%,]":

[AfEAi] M;i ] — 0, and [A;EA;] [ﬁ;z } —0.

Since [Aff : Ai] and [Ag : A;] are full column rank, it follows that A;3 = 0, Ao = 0, A12 = 0, and Agy = 0.

Therefore, the transformation of the factors that is compatible with the restrictions on the loading matrix in
equation (2.1) is:

It An 0 0 thc
Iy = A1 Az 0 R
f34 A1 0 Ass 5
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We can invert this transformation and write:
rc —1 rc rs —1 rs -1 —1 rc rs —1 rs -1 —1 rc
ft = A11 ft ) fl,t = A22 fl,t - A22 A21A11 ft ’ f2,t = A33 f2,t - A33 A31A11 ft .

The transformed factors satisfy the normalization restrictions in (2.2) if, and only if,

Cov(fiy, f5) = —ApAnAf (A =0, (D.2)
Cou(fsy fE) = —AzAsi AN (AR =0, (D.3)
V() = AR AR = L, (D.4)
V(i) = Ay (Ay) + Ay AnAf (A Ay (Ayy ) = s, (D.5)
V(f30) = Ay (A5) + Az An AR (AL) A5 (A5 = g, (D.6)

Since the matrices A1, Ao and Ass are nonsingular, equations (D.2) and (D.3) imply Ao; = 0, and As; = 0.
Then, from equations (D.4) - (D.6), we get that matrices A11, A2 and Ass are orthogonal.
|

D.2 Identification of the common and group-specific factor spaces from the
variance-covariance matrix of stacked factors

In this section we provide an identification strategy for the common and group-specific factor spaces in a group-
factor model, which is alternative to canonical correlation analysis proposed in Proposition 1. The identification
of the factor spaces is achieved through an eigenvalue-eigenvector decomposition of the variance-covariance
matrix of the stacked principal components extracted separately from the two different groups of data.

We define the matrices w; = [wj1,...,wjk|, j = 1,2, with the canonical directions. These matrices are such
that wVjjw; = Iy, j = 1,2. Moreover, when py # 0, then

1. 1.
wyy = aVHlVlzwu, way = @Vﬂlvmwu. (D.7)

The principal components are normalized such that V' (h;) = I, for j = 1, 2.

LEMMA D.2. Let h; = [h’ll,t h/2,t],’ be a random vector, such that Vi1 =V (h1¢) = I, Voo = V(hay) = I,,
Via = Cov(hi ¢, hat) and let V (hi) be the variance-covariance matrix of vector hy:

_ I, Vio
V(h) = [Vm I, }

Let r = rank(Vay), with v < k = min(ky, k2). Then, matrix V (h;) has 2r eigenvalues 1 + pg, £ = 1,..., 1,
with multiplicity 1, corresponding to the non-zero canonical correlations,p; # 0 between hy ; and hs 4, and the
eigenvalue 1 with multiplicity ki + ko — 2r. The eigenvectors of V (hy) associated with the eigenvalues 1 + py,
{=1,..,rare

where w1 ¢ (resp. wa ), are the normalized eigenvectors of R = V12V (resp. R* = V21V12), associated with
eigenvalues ,0%.
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From Proposition 1 and Lemma D.2 we get the next Proposition, which yields an identification result for group
factor models.

PROPOSITION D.3. i) The number k¢ of common factors is equal to the multiplicity of the eigenvalue 2 of
matrix V (hy). ii) Let W be the (k1 + ka2, k) matrix whose columns are the orthonormal eigenvectors associated

1
with the k¢ eigenvalues of V (hy) equal to 2. Then, ff = —W'h; (up to a one-to-one transformation).

V2

Proposition D.3 is analogous to Proposition 3.1 in Chen (2012). Our derivation of Proposition D.3 as a con-
sequence of Lemma D.2 and Proposition 1 allows us to clarify the link between eigenvalues equal to 2 of the
stacked variance-covariance matrix and unit canonical correlations. Moreover, Lemma D.2 and Proposition D.3
admit a rather straightforward generalization to the case of a generic number of groups. Those results would be
the basis for extending the results of our paper to more than two groups, i.e., more than two sampling frequencies.

The sample counterparts of the results in Lemma D.2 and Proposition D.3 suggest an alternative estimator of the
common factor, which has been sometimes applied in the literature (see e.g. Goyal, Pérignon, and Villa (2008)
and the reference therein). In the notation of Section 3 of the paper, a consistent estimator of matrix V' (h¢) is

V= %f[’ﬁ where H := [H) : H,], and it holds:

VW = W(Ie + A), (D.8)

V2 | T,

the two groups, and A is the diagonal matrix that collects the k¢ largest estimated canonical correlations. Now,
by using that matrices H'H and H H' have the same non zero eigenvalues, and by pre-multiplying equation

(D.8) times %f] we get (%f[ﬁ’)ﬁ’c* = F* (I 4+ A), where F'* := %fﬂ/f/ Thus, we get a T' X k¢ matrix

of common factor estimates £'* as the matrix of eigenvectors to the k¢ largest eigenvalues (equal to 1 + jy,
¢ =1,..,k° of matrix £ HH' = L(HH| + HyH}). We have F'** = (I3 W + HoWs) = 4(F¢ + F*),
i.e., the average of the two estimators in Definition 1.

where W := L [ .1 | is a matrix with orthonormal columns in which we stack the canonical directions in

D.2.1 Proof of Lemma D.2

Let p;, i = 1, ..., k, be the canonical correlations between h1 ; and ho ;. From Anderson (2003) and Magnus and
Neudecker (2007), p? corresponds to the i-th ordered eigenvalue of matrix R = Vi2V5;. Let 1 4 i, say, be an
eigenvalue of matrix V (h¢), and Z = [Z] Z})' € R¥17F2 be the associated (normalized) eigenvector. We have:

VihZ = (1+wp)Z.

Rewriting matrix V' (h;) as:
) (D.9)

we get:

0 V12 Zl . Zl
e 2] -2
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The last equation implies:

VisZy = pza, (D.11)

Vo121 = pZs, (D.12)
and:

VieVor Z1 = uZi, (D.13)

VorViaZy = p2Zs. (D.14)

If Z1 # 0, then 12 is an eigenvalue of Vi2Va1, i.e. a squared canonical correlation, and if Zy # 0, then 2 is
an eigenvalue of V21V1o. From the condition rank(Ve1) = r, with r < k, there are r canonical correlations
different from zero: p1 > ... > p, > 0. Let wy ¢, £ = 1,...,7, be the associated eigenvectors of R = Vi3V51,
and wy ¢, £ = 1, ..., r the corresponding eigenvectors of R* = V51 V;2. Then, the scalars

Mo+ = ipfa L= 1> s Ty
and the vectors
w16
vE = X - [ Wi, } (D.15)
:|:p7V21’LU17g :l:w27€

solve equation (D.10). Here, we use nglwu = wa ¢, from property (D.7). Therefore, 1 £ p, are eigenvalues

of V' (h:) associated with eigenvectors vét, with=1,...,7.
Let us now consider the solutions of equation (D.10) with iz = 0. We have:

VisZy = 0, (D.16)
VorZi = O. (D.17)

From rank(Vi2) = r, the null space of matrix V3 is (k2 — r)-dimensional. Let the columns of the (k2, ko — 7)
full column rank matrix Z span the (ko — r)-dimensional space of solutions of equation (D.16). Similarly, let
the columns of the (k1, k1 — ) full column rank matrix Z; span the (k; — r)-dimensional space of solutions of
equation (D.17). Define the (k1 + k2, 2(k2 — 7)) matrix:

7 Z Oy x (ky—k1) _Zl~0k1><(k27k1)
0 Zs Z

Any column of this matrix is a solution of (D.10) with g = 0. Since matrices Z 1 and ZQ are full column rank,
the column rank of matrix Zj is 2(ky —r) + (ke — k1) = k1 + ko — 2r. Therefore, there are ki + ko — 2r linearly

. . 0 V . . . .

independent eigenvectors of [ v 52 associated with the eigenvalue 0. These vectors are eigenvectors of
21

V' (h) associated with the eigenvalue 1. [

D.2.2 Proof of Proposition D.3

From Lemma D.2, V'(h;) has eigenvalue 2 if, and only if, there is a canonical correlation equal to 1. Part i)
follows from Proposition 1 i{). Moreover, from Proposition 1 and Lemma D.2 the columns of matrix W =

% [ %1 } are orthonormal eigenvectors of V'(h;) associated with eigenvalue 2, since W/'W = %(Wl' Wi +
2
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WiWa) = Ije. Finally, 5W'he = 5(Wihis + Wihay) = 5(S] + S3) ff, from (C.1) and (C.2), which implies

part ii). |
D.3 Identification with stock-sampling and generic linear aggregation schemes

In the case of stock- sampling, the low frequency observations of 2%, in the mixed-frequency factor model (5.1)
are the values of 2% Mt 1€ e 31+ Then, the model for the observable variables becomes:

H C H H
Tmt — AHC'gm7t+AHgm7t+€m’t, m=1,.., M,
L C L L
Ly = ALCgM,t + ALgM’t + eM,t'

We stack the observations /! = xﬁt and 2 of the last high frequency subperiod and write:

9pre el
Age Ag 0O ] H { Mt:|
+ . D.18
Ao 0 Ag || e D19

It

This last equation corresponds to a group factor model, with common factor gf“ and “group-specific” factors
gf“, g]’%“. Therefore, the factor values g]((} " fﬁt, f]{;[t, and the factor loadings Agc, Arc, Ag, Ap, are
identifiable up to a sign as proved in Section 2. 7 7

Once the factor loadings are identified from equation (D.18), the values of the common and high frequency
factors for subperiods m = 1, ..., M — 1 are identifiable by Cross- sectional regression of the high frequency data
on loadings Agc and Ay in (5 1). More precisely, gmt and gmt are identified by regressing w , on Apgcy
and A\pr; across i = 1,2, ..., Ny, forany m = 1, ..., M — 1 and any ¢. To summarize, with stock—samphng, we
can identify the common factor gf,;t and the high frequency factor ggt at all high frequency subperiods. We
cannot estimate gfmb for m < M, as only gf“ is identified by the last paired panel data set consisting of m]\HM
combined with 2. This is not surprising, since we have no HF observation available for the LF process.

Flow sampling and stock-sampling are examples of linear aggregation schemes. The case of a general linear

aggregation scheme relatlng the LF observations ) to the unobservable variables xm +» can be described using

the cumulator :U i defined by the process:

Lx,c Lx,c Lx.c
T 0,

mit = AmTp 1yt bmxm ts Lot

and letting xt =z M’ for m = M, while zk ;5 is not observed otherwise. A similar representation is used by
Harvey (1989) and Nunes (2005), among others and includes both stock and flow aggregation as special cases.
More specifically, stock-sampling corresponds to the case a,, = 1(m # M) and b, = 1(m = M), where 1(.)
denotes the indicator function. Flow sampling can be represented setting a,, = 1(m # 1) and b,,, = 1/M for
all m. As the aggregation scheme is linear, it is straightforward to show that applying it to the HF observables
and stacking them together with the LF ones, a representation analogous to the one in equation (5.3) is obtained.
Then, the identification of the loadings, the aggregated factors, and the common and high frequency factors,
follows as in the cases of flow and stock-sampling.
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D.4 Uniform asymptotic expansions of factor values and factor loadings in the
group factor model

We derive uniform asymptotic expansions for the estimators of the factor values and factor loadings in Defini-
tions 1 and 2 and equations (3.3) and (3.4), up to terms 0,(N~'/2), where N := max{Ny, T}.

PROPOSITION Du4. i) Under Assumption A.1 with pn > 0, and Assumptions A.2-A.4, A.5 b)-c), A.6 a), A.7,
A.8, the asymptotic expansions of the factors estimators are given by:

£ — c 1 c 1 c N —
feo= Hcl[fmmuiHTm,t%op (N7, (D.19)

and.:

r3 1 S — .
B3+ —=ul ()+ B +o (N =12, (D.20)

VN

where fjt f EJ CZ L f¢ and the op terms are uniform w.rt. 1 < t < T'. The asymptotic expansions of the
loadings estimators are:

fﬁt:Hs‘j

Ao = H, [A?,ﬁ et Se A + f wf; + 5A,jz]+0p<]v1/2>7 i=1z2 (D21)

and:

s »y s T —1/2 :
A =T {/\N- T BA,J,]JFOP(N 2), =12 (D.22)

where the oy, terms are uniform w.rt. 1 <1 < N;. Matrices 7—26 and H s,j are such that:

PN ~ _ A N 1 ~.,~ _

HoHe = Bee +0p(NT2), HogHiy = (GE BT 4 op(NT), =12, (D.23)
where FJS = [}‘9,17 ""ff,T]/' Vector ujy is defined in Proposition 3, and wj, = Dl \F Zthl fiejie and
wj,; = (%FJS /Fjs)*lﬁ Zle fjs’tsj,i’t. The bias terms are such that:

Bia = B = BIOT = 05U — L) (T ae — 2271 f,
P = N1 (et = SN BLBEASE — 209 55)
Brgi = EBL SN — BB
Bf\,j,i = [f]t C,]AC - [f]t S/])‘jm
where vector bj is defined in Theorem 1, and B;':,t = 35, — EB5, {1 ff.

ii) If we relax the regularity conditions to allow for pu > 0 in Assumption A.l, the asymptotic expansions in
(D.19)-(D.23) hold with remainder term of uniform order op(T_l/Q) (and bias terms of order T~ absorbed
into the remainder term).

In the asymptotic expansion of ff, the stochastic term at order [V, 1/2 comes from the estimation of the principal

components in the first subgroup. The bias at order 7! consists both of a term arising from principal compo-
nents estimation, namely T*15§62, and another term induced by estimation of the canonical directions associated
with the unit canonical correlations. Vector f; . estimates the residual of the sample projection of f;; onto f{ at

rate N ]‘,1/ ?. The bias at order 7~ is induced by both extraction of PC from the panel of residuals and the bias
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in estimator ft

In the asymptotic expansion of )\C the term E IEC ,jA\j,; is induced by the fact that the common and frequency-
specific factors are not orthogonal in-sample. The determlmstlc term at order 7! is induced by the bias in the
common factor estimates. The expansion of 5\51 does not contain explicitly a bias component at order N, j_l,
since N>' = 0,(N~"/2) under Assumption A.1.

The uniform asymptotic expansions at order op(T_l/ 2) in Proposition D.4 ii) suffice for the proof of Theorem
2. We need the more accurate expansions at order o, (N ~1/2) in the proof of Proposition D.7, where the error-
in-variable from estimation of factor loadings has to be controlled.

D.4.1 Proof of Proposition D.4

We start by providing some uniform bounds in Subsection D.4.1 a), that are instrumental for the rest of the proof
of Proposition D.4. Then, in Subsections D.4.1 b)-e) we establish the uniform asymptotic expansions of factors
and loadings up to order 0,(N~1/2), where N = max{Ny, T} (proof of part i)). Finally, in Subsection D.4.1 )
we show how to get the uniform asymptotic expansions up to order op(T_l/ 2) under a less restrictive asymptotic
scheme (proof of part ii)).

a) Uniform bounds

Let X = Op¢(anr) mean X = Oylan,r(log T)?] for some b > 0. Under Assumption A.8 we have the
following uniform bounds, which complement those in Lemma C.10:

sup [|bjell = Ope(1), (D.24)
1<t<T
sup [|dj¢l| = Opu(1), (D.25)
1<t<T
sup [|hsl] = Ope(1), (D.26)
1<t<T
lsup 185l = Ope(1), (D.27)
S = Zﬁw,z,tll = Opu(T7?), (D.28)
T
2
su el = Op(1), (D.29)
mgv = ; Gl (1)
sup Z ijffjétgyzt = Opﬁ( ! )+O(i)7 (D30)
ISiSNNTe 1,04 t=1 7 ’ C VNI N

where > 1/2. We prove below the uniform bound in (D.30). The proofs of the other ones follow by similar
arguments.
Proof of (D.30). We have:

1 3 Z
N,T § : G LEGLE G it

Nl =
zmﬂ

j
Z EjetEjit — Z )‘]7583 £,t€5,, t]
iy ",

(=140 (=104

TR
+ NjeElejet€it]-

T o=104i
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. N, N;
From Assumption A.8 c¢) we have % Zthl <\/1N—J Zé:ﬁ’g# €j e tEjit — E[ﬁ ZZ;M# Aj,g@,ﬂ,ﬁj,i,t]) =
Opyg(T*"/ %), uniformly in 1 < i < Nj, similarly as in the proof of (C.107). From Assumptions A.8 b) and d)
we have Zévzjl?#i NjeElgj i€ = O(1), uniformly in 1 < i < Nj. Then, (D.30) follows.

b) Asymptotic expansion of ff

Let us start by establishing the asymptotic expansion of f¢ up to order 0,(N~'/2). Equation (B.12) and ¥ =
O,(On.7) imply Wi = [Ee+Es (I, _ge—Rss) ™ 1@2?]5{—1—0])(5]2\“). The normalized eigenvectors corresponding
to the canonical directions are: W1 = VV1 D, where D = dz’ag(Wf ! Van )_1/ 2 Then, we get:

f& = Wihy, = DU’ [Eéfu ¢+ 00 '(Ikl—kc = Rss)_lEQiLLt} + Oy (%7
. 1 1
— Du/ c + ( ) b(C) +
[ft U, ittt \/N T
N ~ 1 1
I —
+\Il'(SC) /(Ikl—kc - Rss) ! <fit + 7W1 (S) + Tbg't) + ,7N T
uniformly in 1 < ¢ < T, where we use the expansion of the factor estimates in Proposition 3, and (D.26). Under
Assumption A.1 with y > 0, N = N and Ny grow at the same rate such that T1/2 <N T5/2 Therefore,
(log T)bé?V,T = o(N~1/2), for any b > 0, ﬁdN,T = o(N~'/?) and FONT = o(N~1/2) under Assumption
A.1 with y > 0. By using uniform bounds in Lemma C.10 and (D.24)-(D.25), and keeping only terms up to
0p(N71/2), we get:

di) + 0\

di*) + 05‘?)] + 0y (8%7) , (D31)

£ c 1 c > —1 rs NT—
ftc — Hc |: (©) + \/Tugt) 7b(12 + \II(I) ,(Iklfk:c - Rss) 1f1,t:| + Op (N 1/2> ; (D32)
1

uniformly in 1 < t < T, where H; ! = Dif’.
To further develop this asymptotic expansion, we need the asymptotic behavior of \ifgc) . From equation U =
‘71_11\11* (see Lemma B.2) we have \ilgc) = (VH )sePe *(I) + (V11 )Sslllsg ). From Lemma C. 7, we have \Ilcg ) —

O, (% + % + T\/lﬁ) = 0,(N ~1/2) under Assumption A.1 with z > 0. Moreover, from (B.6) and Lemma

B.3 we get:
‘i’:y) = _(Xll,sc - Xl?,sc) + Bés(XQI,cc - XQQ,CC) + BQS (XQLSC - X22,sc)'

From Lemmas B.1 and B.3, and equation (C.74), the second term in the r.h.s. is O, (T~ /25y 1) = 0,(N~1/?)
under Assumption A.1 with & > 0. Now, we substitute in the definitions of terms X 5,k from (B.3), and use that

A e, = 0p(NTL2). We get:

T

WO = S U Bl )+ op(N ),

t=1
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By using the definition of 1); ;, Bss = ® + O,(T~%/2), and keeping terms up to 0,(N~'/2), we get:

T
T, % 1 1 s s \ri(c _
R (T D (St - 0500 - B N) +op(N 1)

t=1

]- c 7(C)\/ NT —
=~ B~ 2BIE - B + 0 (N712).

)

Thus, by using (Vi;)ss = I, xe + Op(T7Y2) and N < T3, we get:

1 () 7(c)\s o
W = B~ @00 B+ op(N ). (D.33)

sc ,

~

Thus, from (D.32) and (D.33), and by using (I, e — Rss) ™' = (I, _ge — PP )1+ 0, (T"/?) and N < T3,
we get:

) . 0 1 o 1. -
feo= A7 ft”+mu§,2+Tﬁ1,t}+op (N7, (D34)

uniformly in 1 < ¢ < T', where:

55, = b — BIOS) — 05D (f1r — 5,) 1Ty —re — ©O) 717,

which yields (D.19). R
The asymptotic expansion for estimator f{ * is obtained by interchanging the roles of panels j = 1 and j = 2.

Hence,
~ =1 1 1 —
* = H*c ftC) + 7%]\],2 Ug?z + Tﬁg’t:| + Op (Nil/z) s

uniformly in 1 <t < T, where:

B, = b5} — E[(05) — 0D (f5, — © )| Inp—re — ©'®) £,

)

Finally, let us show the asymptotic expansion for 7:{07:[’0 Substituting the expression of ff from equation (D.34)
into the equality =+ 23:1 fEfF = Iye, we get:

e = H_ T i (ft \/1— 1,1 /81 t) (ftC + \/%ugcz + ;5it)/ (7_10—1)' +0p (N_l/Q)
= H'S.. (Hc_l) +op (N_1/2> , (D.35)

using arguments similar to the proof of Lemma B.1 and Assumption A.1 with x> 0. Thus, we get H, 7—[/
See + Op ( -1/ 2) which yields the first equation in (D.23). By using (C.74) it follows:

HH. = Iye + O,(T~Y?). (D.36)

¢) Asymptotic expansion of )‘51

Let us now derive the asymptotic expansion of the loading estimator 5\51 = F*°'y;;/T up to order o, (N~/?),
where y;; is the i-th column of matrix Y; and F° = [f{,..., f¢]’. From equation (D.34) we have F'° =

Online Appendix - 52



N / _
(Fe+ AU+ 2Bp) (1) +0p (N1/2), where UF = [uf?), .., u{*))" and Bf = 55, ... 5 ', which
implies:

- 1 1 .
PR, = F* = —Uf + 2B +0, (N1/2) (D-37)
ViVl

Here 0, (N ~%/2) denotes a matrix whose rows are uniformly of stochastic order o, (N ~/2). Then:

5‘?,1’ _ *FC/y]z _ FC/(FC)\C +FS)\S _}_5],71')
1. . .
= F ([F?—[’ - (FC’H’C - F)} AL+ FSAS, + sj,i)

= BN — P (FHL PO N+ PN 1 F s =12,
By writing F'¢ = [FC + (FH., — FC)} (H.)~!, and rearranging terms, we get:

A ! 1\ —1 4] —11 / 1N —1 (47 —11 /

o = AL G ) L e ()7 () D,
O () PR — P+ ()™ ()™ o
—(7%2)’1(7%)’1% FC + (Fe, — FC)}/ (F?—l’ - F) )\jl} . (D.38)

(FH, — FOY 3,

We use equation (D.37) to bound the different terms. We have:

1, o~ 1 1 _
T (FH = F)e \/JTTUf e1i + 73 B e+ op(N~1/?)
1
N1 T
L1 _
= (MA/Ny) lmzzh,eﬁl,z,tﬁm+0p(N 1/2)

(=1 t=1

= (AA1/N)” NTZ)\leUt“‘(A Ay/N1)~ NT Z Z)\léé‘leté‘l,z,t
=100 t=1

+0p(N7Y2) = Op(NTH) + Opal(N1T") /2] + 0p(N71/2),

uniformly in 1 < ¢ < Ny, using bounds (D.28)-(D.29) and Assumption A.S_d ). A similar bound holds for j = 2.
Since [NV grows at the same rate as NV and T1/27<< N, we have Nl_1 = 0(N‘1/2). Moreovgr, fromn > 1/2 and
T'/? < N, we have Op[(N\T")~1/%] = 0,(N~1/2). Hence, £ (E“H, — F¢)'c;; = 0,(N~1/2), uniformly in
1 <4 < Nj. Moreover:

1, s 1 _
T(FCH’C—FC)’FJIS = TFU F]‘?—i—ﬁBf’Fjs—i—op(N_l/z)

- TE[Bft Jst] + Op((NlT)_l/Z) + Op(N_l/Q) —E[BT, ] + Op(N_1/2)a
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and:
T Fe 4 (FH, — FC)}’ (FC# - F°)

= FeUS + Fc 'BS +
T\/Nl 1t 1t N T T?x/

- TE[ftcﬁit]+Op((N1T)’1/2+Nf)+0(N V2) = LI + op(N )

(UT'Bf + B{'UY) + 335 'Bf + 0p(N71/?)

—Uy'US + T

Further, from (D.36) we have (H.) ™' (H.) ™" = (HHL) ™" = 2.1 4 0,(N~Y/?) = I + O,(T~/?). Then,
from (D.38) and Assumption A.8 d) we get:
Mo = L ST ek ST PR+ 3 (BB - BURBEIND) | + 071

uniformly in 1 <4 < NV;. The last equation can be rewritten as

Xi=H, [Aiﬁ Set Se A + —=ws, + ,BA“] + 0, ( _*1/2), j=1,2, (D.39)
\F
where:
'l,Uii = ECC TFC/ .= EC_C \/7 th 6.]71715’
. 1 .
See = LF° 'FC = Z fefel, Sey = FC 'F5 = Z fEr,
Pigi = FEBLST /])‘s - [ftcﬁm] Aji

If we use ff * for group j = 2, the bias is:
BA,], [B] tfs ,]AS - [ 6 ] 3,10 (D40)

where [37 ; is the bias at order T~ Lof ff *.

d) Asymptotic expansion of fjt

Let us now derive the asymptotic expansion of term fjt We start by computing the asymptotic expansion of
the regression residuals &;; + := y;it — ff' Af ;» where we replace fi with fi * for j = 2. By substituting the
asymptotic expansions in equations (D.34) and (D.39), have:

Eiat = TN T it — <ff N - ff ,)‘5,1')
= JiiNji T g

/
(ft \/> gt ;t) ()‘j,z_'_i 12 7])‘51 \/“ jz+ 6/\,]1) - tC/)\;,i

= fs IS+ ejin +op(N7h), (D.41)

+0P(N71)
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where we define:

£s . 1

3t j t EJ CEcc ft ’

S . (C)')\C**( 'BR i + BN
6]77'7t T 8.7717t w], u],t 7, AJ i :

V',

The term op(N_l) isuniformin¢ = 1,..., Ny and ¢t = 1,...,T" by bounds (C.105)-(C.106) and (D.26)-(D.27),
and Assumption A.8 d). Then, the residuals &;; ¢, withi = 1,..., N and ¢t = 1,...,T, satisfy an approximate
factor structure with factors fjs +» loadings A% ; and errors €;; ¢, up to op(N ~1/2). The error terms contain a factor
structure at order 7.

From the asymptotic theory of the PC estimators in large panels we have an asymptotic expansion as that in
Proposition 3:

=

1
e o= M) s 1 sy +O5, =12 (D.42)

Jt \ﬁ Jt T Jt \/ﬁ 75t
where ’HSJ, 7 = 1,2, is a non-singular matrix w.p.a. 1, and:
1 —1
vig = (J\GAlej) \ﬁAJS'e],t
1 A U .
e = (wams) (3877 wof

1 TN 1 R :
o= (58%) (FEE) g7 Xedia] f
i=1r=1

. N; ~ o =
where (77;715)2 = Jelzm N% >oih E[ej?7i7t|}"t] and [ denotes the matrix with rows f7/. We have
j—700

N;

1 1 1 1 AYAS
—Ae;; = PNy — ) ASws! C—( 2 J)u(-c)
N Z e\ e ) )
1 (1Y 1
S c/ C S/AcC c
T ]\fj;)‘]z A | Jt — T < Aj°A >
We have 7= Y50 A8 s = O, (N /%), 343 7A¢ = 5179 + O(N; /%) and from (D.40):
N 1 1
W e = () B - (s s) s
SS c C —1/2
= SUIB[f,650) - SUOBIBS S + O(NS ).
Thus
1 s 1 AYAS c 1 EX) s sc o
N eji = Z)\J 3TN <§ij> - % (Zg\,j)E[ e+ 200 B ) +0p(N71/2),
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uniformly w.r.t. ¢ = 1,...,7T, where ﬁNjct =
5 onto ff, and:

<, — E[B5,ff '1ff is the residual of the orthogonal projection of

1 x5 _ 1 s 1
\/vaj’t N \/vaj’t T

AFASN L N; AZASN ~L s AvAc
J 3 1 IS ~.., _ J g J (c) .
where v] ;= ( N, ) N Zz’:l )\Ma],l,t ( N, ) ( N, ) (OFe Moreover:

FIEI (20 BB S5 + 205 B + 0N,

bi = (SN2 f5, + Op(T 12 4 N712),

Therefore, we have:

. N o~ 1 —1/2 .
o= 15— SieS e+ ot 85| + oI A, =12, (D.43)

1
VE,

uniformly w.r.t. t = 1, ..., 7T, where:
5= (T (5 — =N BB S = 205 B ) -

(s)

Let us now show that v7, = u ;i » the lower k;-dimensional component of w;;. For this purpose, let us denote

by iab and (f]‘l)ab, with a, b = ¢, s the blocks of matrix Y= fJAJ and of its inverse 21 Then, we have:

s N —
Vit = Zss \/7 E :)‘] i€g,it —

J i=1

and:

(c) E : E :
Ujt >\j i€4,0,t + >\j i€4,i,t

]zl ]zl

Therefore, we get:

N,
- . 1 J s e o~ 1 .
vy = o [k, — Ese(E Des—= Z A€t — Ve Bse(Xee—= Z Aj i€t

VN i=1 h VN; i=1

From the property of the matrix inverse, [, — ) se(X7
Therefore, we get:

M:
H
N—
o
vy
I
M
vl
V)
—
™
N—
vl
V)
[
=
o,
M
vl
a
—
M
|
—_
SN—
S
)
1l
|
™
vl
V)
—
M
|
—_
N—
vl
Iy

s
Vit = E :)‘]1 Jlt+ § )\]foj,z,t

‘77,1 ‘77,1 jzl

Plugging the latter equation in (D.43) yields (D.20).

e) Asymptotic expansion of 5\51

Let us now derive the asymptotic expansion of factor loadings estimator X;Z up to order o, (N~1/2). The
analysis parallels the one in Subsection D.4.1 ¢). We have j\jz = Fjs ! &;i/T , where &;; is the i-th column of
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N ~ ~ ~ ~ ~ /
matrix Z; and F} = [f1, ..., f77]'. From equation (D.43) we have I} = (Fjs + ﬁUj + %Bj) (HS_JI) +
0p (N71/2), where U = [u?), ..., u$)) and B§ = [B5,, ..., B3 7). which implies:
syl nk 1 s 1 B N—1/2 D.44
B, —F = —=Ui + 7 j+op< ) (D.44)
j
Then:
NG 1 s/ 1 st [ sy s v —1/2
g o= 78 = S I (Fj)‘j,iJrejﬂ') +0p(N77)

T
1. . . _ ~
- T 7 ({FJ'SH;',S - (F;H;}s - FJS)} A+ ej,i) + Op(N71/2)

~ 1

A A A ~ 1 - _
7,87%9,1 TFJ‘.SI (F]SH;,S - F;) )‘j,z + 717]8 /ej,i + OP(N71/2)7 ] = 17 27

T

uniformly in ¢ = 1, ..., N;. By writing Fj = [FJS + (FJS’;’:[;S - FJS)} (7%;'73)_1’ and rearranging terms, we get:

o = g { Xk 00 ) L e
— F¥)ej

R R 17~ o NS VA - _
_(Hg,s)il(ij,S)ilf [FJS + (FJ'SHQ',S - FJ'S) (FJ'SHQ',S - F}s)/\j,z} + Op(Nil/Q)- (D.45)

By using equations ¢;; = &ji — %F Wi — %jU; X5, — pFBS ;i — 7BjAS,; and F$'F¢ = 0, equation
(D.44), and paralleling the computations in Subsection D.4.1 c), we get:
S e = L E} ey — U BIN + op(NTV2),
LA Fess = op(N),
l [Ff + (Ff}l;,s — Fjs)}/ (FJ.S’}-Z}’S — Fjs) — %E[fj,t js7t/] + op(Nfl/Q)j
(H o) t(Hye) ™t = (F'F3 /7)™ + 0, (N~1/2),

uniformly in 7 = 1, ..., IV;. Thus, from (D.45) we get:

1 - 1
fFf €5 — T

(BU 851050 + EUB510050) b+ 0n(N %),

%o = A (R

uniformly in 7 = 1, ..., N;. This equation can be written as:

3 ’ 1 1 G—1/2
A= Hyy )\f,ﬂrﬁwf,ﬂrfﬂf\,j,i +op(N71/2),
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where:
1 T
wi, = F.S'F.ST%*E:?&H 7
Js ( J J/ ) VT — fj,t Jstst
57\7]',@' - —E[ js,t ;:{]A?z —E[ js,t jt/])‘jz

f) Asymptotic expansions up to order o,(7~/2)

Let us start by establishing the uniform asymptotic expansion of estimator ftc at order op(T_l/ 2). From (D.31),
using (log T)b(SN,T = 0(T‘1/2), for any b > 0, and the uniform bounds (C.105)-(D.26), we get:

Ry » 1 c _
fe=w" <ff+ u§2> +op(T7?),

vVN, &
uniformly in t = 1, ..., T, which yields the uniform bound for ftc. The uniform bounds for the other estimators
follow by paralleling the arguments in Subsection D.4.1 c)-e). |

D.5 Asymptotic distribution of factors and loadings in generic group factor
model

The next proposition provides the asymptotic distribution of the common and group-specific factors estimators

introduced in Definitions 1 and 2 in the main body of the paper. To simplify the proof, we assume that /N; and

Ny, with Ny < Ny, grow at the same rate, i.e., No/N7 — p with g > 0. This condition could be relaxed at the
expense of a more involved restriction on N, No, T'.

PROPOSITION D.5. Under Assumption A.1 with u > 0, and Assumptions A.2 - A.8 we have:

] o . _
Hcfc - fc - *ﬁc

o v e T P 1 . L N(0,%u11y), (Fi-stably), (D.46)

Haafie = (fig = (FYFO)(FCF) ) = 5P

N

and.:

. |
H:fc* — fe— S

o S 1 ) A N (0, Suay), (Fi-stably), (D.A7)
Hoafia— (0= (B FOF ) ff) — 555,

VN2

for any t, where matrices H., H: and H; are such that HH., = (pF'Fe)~1 + op(Nl_l/Q), HIH:' =
_ ~1/2 Y s 1 s\ — ~1/2
(LFe/F) ™ 4 0p(Ny /%) and FjH, ; = (RF3'ER)71 4 0)(N;/?), we define F© = [ff, ..., f5)), F§ =

(fi1s s fi7] and F‘j =F; - FC(FC’FC)_l(FC’F]‘?)forj = 1,2, and the bias terms are:

i, = B~ BB — B (fiy — Bf5) 1Ty e — )7,
s, = B~ BI0BY) BN (f50 — ' f1 ) Tyre — ') 75,
5= U (ndsn - BN BLL BT - 0B ) . =12,

and B§7t =pj,—E [Bﬁt ' ff is the residual of the orthogonal projection of B5 ¢ onto ff.
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From Proposition D.5 a linear transformation of vector ff (resp. ff*) estimates the common factor f{ at rate
1/4/Ny (resp. 1/4/N2) with a bias of order 1/T. The variance of the asymptotic Gaussian distribution is
the upper-left (c, c) block of matrix ¥, 11, (resp. X, 22.), i.e. the asymptotic variance of the estimation error
u1 ¢ (resp. ug ) for the PC vector in group 1 (resp. group 2). The estimation error for recovering the common
factors from the group PC’s is of order o, (V; 1/ 2), and therefore asymptotically negligible. The estimator f]st
approximates the residual of the sample projection of the group-; specific factor on the common factor, up to a
linear transformation, at rate 1/ \/ﬁ] and with an asymptotic bias of order 1/7".

Let us now derive the asymptotic distribution of the factor loadings estimators in equations (3.3) and (3.4). For
this purpose, we introduce the next assumption.

Assumption D.1. We have for any j = 1,2 and ¢ > 1:

C . . cc cs
1 L fe€jit 4 (I)j,i e 0
S
—T E fj7t5j,i,t — N |0, (I)jf:% (I)‘;i 0 )
t=1 Js : ® ff 0 0 vy
as T — oo, where:
o oo
cc c pcl CS c prs/ sc\/
Q5 = E Blff filnesitciit—nls Q5 = E E[f; fj,t—hfj,iigj,i,t—h] = ((I)j,i) )
h=—00 h=—00
o o
SS _ s psl/ . . L s ps/ c pcl
o5 = E Blf} fi—n€jit€it—nl, v, = E E[ Sl ji—n © [t t—h]-
h=—00 h=—0o0

Assumption D.1 states that time series averages of the error terms scaled by the factors, as well as time series
averages of the cross-products of common and specific factors, are asymptotically Gaussian. It is used to show
the asymptotic normality of the loadings estimators in Proposition D.6, and is implied by e.g. a mixing condition
on the individual error series jointly with the factor process. The part of Assumption D.1 concerning scaled error
terms corresponds to Assumption F.4 in Bai (2003).

PROPOSITION D.6. Under Assumption A.1 with i > 0, Assumptions A.2 - A.8 and D.1 we have:

o (ﬁg)_x:_x;:i iuv([‘(”

(‘Pﬁ + (O, ® L) U500, ® Ikc)> e
(7. ) DL ;
S,7 Jy?

SC S
Lo% Loy

) . (D.48)

The factor loadings are estimated at rate V'T. Matrix @7 is the asymptotic variance for cross-sectional OLS re-
gression of data in group j on the true values of the common factor. The additional component in the asymptotic
variance of estimator )\c is due to the fact that the true values of common and group-specific factors are not
orthogonal in-sample. Th1s fact is not taken into account by the estimator of factor loadings. Finally, there are
no bias terms at order N, -, N in the large sample distributions of factor loadings, since in our asymptotics
VT /N = o(1) and hence such bias terms are negligible.

for any j, i, where H, and 7%57 j» 3 = 1,2, are the same non-singular matrices of Proposition D.5.
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D.5.1 Proof of Proposition D.5

We use the asymptotic expansions in Proposition D.4 i). Specifically, equations (D.19) and (D.20) for j = 1
imply:

— Heff — If — 155,
N p £s s sl e 7; e\—1 fe s :u17t+0(1)'
Hs,lfl,t - (fl,t - (FllF )(F 'F ) lft) - %51,1& ?

From Assumptions A.3 and A.5 a), we have u; 4 N Y, (0, %4,11,¢), Fe-stably. Then, the asymptotic distribution
in (D.46) follows. The asymptotic distribution in (D.47) can be establish along similar lines.

D.5.2 Proof of Proposition D.6

We prove Proposition D.6 by the asymptotic expansions in Proposition D.4 i), by keeping only terms up to
0,(T~/?). Specifically, equation (D.21) implies:

VI () X = %] = whir TRV o)

T
Zf(€]1t+fjt i) +op(1)

t=1

WE

[ffejin + (AT @ Ine) (5 ® fE)] + op(1).

5= §l= s

t=1

Moreover, equation (D.22) imply:

—-1 . T
\/T|:<7:[/s’]> l)\;’z_)\iz] = Z jt8j1t+0p )

Thus, we get:
(']—A[/>_1XC..—/\C.. T s/ s c
/T c Jii T 1 Z fiejie + (AT @ Iee) (f5, © f7) 1
N -1, S ~ .. + OP( )
<Hlsj> AJi = Al VT 5 fj’tgj”’t
Then, Assumption D.1 yields (D.48). |

D.6 Asymptotic distribution of factor estimates in a mixed frequency model

For the mixed frequency factor model in equation (5.1) with flow sampling, the Assumptions A.1-A.9 are meant
. _ _Hj _ _Lg : c _ =zC
to apply with errors €1, = €, and €2, = €,”, vectors of common and group-specific factors ff = g,

fi; = gf and f5, = gk, and loadings matrices A; = [ Ac i A ] and Ay = [ Arc @ Ap ]. The cross-sectional
dimensions are N1 = Ny and No = Np. Additionally, we make the following assumption:

Assumption D.2. The variables \1 ; and eﬁ’é are such that:

d QHmm QHmm/
Z)\U[e /lt] —>N(O [Qf[} t QI/} me ]), (Fi — stably),

Am/ mit Am/ m’t
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as Ny — oo, where

Ng Ng

H Hi: H{Y /
QA,m,m/,t = plim ZZ)‘l z)\l (CO'U mt’em/t|‘/rt)v m,m =1,..., M.
NHA)OO H i=1 =1 ’

Assumption D.2 is analogous to Assumption A.5 a) expressed for the high frequency DGP of the idiosyncratic
innovation terms e:ﬂ

PROPOSITION D.7. Under the asymptotics in Assumption A.1 with p > 0, and Assumptions A.2 - A.8, D.2,
the estimators §f, gﬁ,t, gF in Section 5 are such that:

. 1
Hcgct_got_ *ﬁct
VN | e " 5 N (0,355 08 s TR1)

1
~H H Hr-C C C H
Hi,sGmt — [9me — @57 )(G7'57) gm,t]_fﬁm,t

Fi- stably, the vectors for sub-periods m and m' are jointly asymptotically Gaussian (F;-stably) with covariance
Syl >y L, and:

Amm/t
o oo o] . N
VL |:H2,sgtL —lor = (8" 5") 9] - Tﬁf] — N (0, (Z350%=3%) ) :

Fi-stably, for any m, m/’, t, where matrices 7:lc, 7:[173 and 7:12 s are such that H 7:12 = (%gc'g )~ 1+0p(N_1/2),
o, = (15™5)7 4 op(N1/%) and oy, = (1575) "+ 0 (/%) with N = max(Npg T},
we define gv —[gl,...,gT],forU:C,HL gV =3g" —g%@“g%) "1 @""gY), for U = H,L, ¥p1 =

1 Ny N,
Nlljgloo Ny Z)\l N jand ¥p 2 = Nilinw N, - ZAQZ)\Q ;» the bias terms are:
g7 = B - @ -85 — 2g!) (B - 29) )",
gl = e (Rl — S gl g — SO ), BC =80 - B85 o
Bl = ) (Bt - 2\ Elab e’ - S5,

with by ¢ = E/_\llﬁ%7th17t, and the upper index (LL) denotes the lower-right (k™ k') block of a matrix, and
similarly for (HH), (LC).

From Proposition D.7, a linear transformation of vector gf;;’t, resp. @nf{’t, estimates the common factor g%t,
resp. the residual of the low-frequency sample projection of the high-frequency factor on the common factor.
2 The estimation rate is v/Np. As an oracle property, the asymptotic variance ¥y A 19 Amom, tZX11 equals the
asymptotic variance of the infeasible estimator obtained by principal components method appheﬁ on the HF
panel and rotated with a known matrix to separate the common and frequency-specific factors (see Theorem 1
and Proposition 1 in Bai (2003) for the asymptotic distribution of principal component estimators when N <

2Matrices 7. and 7:11,5 are not feasible estimators, and thus ’zch,cn,t and 7:[1S gf,{,t are not empirically computable
quantities. From Proposition D.7, vector g,%t itself estimates a linear transformation of g,cmt for which the flow-sampled
values have identity sample variance-covariance matrix, and similarly for ggt.
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T?). It differs from the asymptotic variance in Theorem 2 in Wang (2012) since the number of groups is constant
in our asymptotic scheme. An error-in-variable problem originates both from estimation uncertainty, and asymp-
totic bias at order T, of factor loadings used in the cross-sectional regression. This error-in-variable problem
does not prevent consistency and asymptotic normality of the factor estimates in our double asymptotics, but
leads to a bias term at order 1/7". Vectors %ﬁtc and % BH are the biases at order T~! of the estimators §¢
and g of the flow-sampled common and high-frequency-specific factors.> Such biases induce biases at order
T~ in factor loadings, which in turn yield term —%B A,1h1,m ¢ in the asymptotic bias of high-frequency factor
estimates. Similarly, a linear transformation of vector g} estimates the projection residual of the flow-sampled
low-frequency factor with convergence rate /N, and asymptotic bias at order 1/7.

D.6.1 Proof of Proposition D.7

Let us first establish the asymptotic distribution of estimator g*. After replacing €9t = éf;’L and F¢ = g°,
Fy = g, Fs = g*, from the asymptotic expansion (D.20) in Proposition D.4 i) we get:

1 -
— A L1 -C\ (701 =C\—1-C (L) 1/2
g = s g — ("3 @9 gy + Usy + 5} op(N )
t 2 w — (g ) )" O N, 2t t op( )

-1
where uth) denotes the lower (k”, 1) block of vector Ugy = (ﬁ ZZ 1 A2 ) F ZN L Aoy let , and

vector 37 is given in the statement of Proposition D.7. Moreover, we have U9t 4N (O, X A’QQ A’tzh),
Fi-stably, from Assumptions A.3 and A.5 a). By rearranging terms, the asymptotic Gaussian distribution of
estimator g~ follows.

Let us now derive the asymptotic distribution of estimators g%t and g{;’t. For this purpose, let us re-write the
where m = 1,..., M andt = 1, ..., T, in equation (5.1) as:

model for the high frequency observables xﬁ}t,

e AHCgrcn,t + AHgnI—’{,t + eg,t = Mgmt+ eg,t
= Ml g — (A = M) g+ el (D.49)

~

where g, ; = [gmt,gmt I, Ay = [Agc P Ap) = [AS D AS], Ay = [Age i Ay] = [AS P A3), and matrix U; is
N A
)= (A5Ay)  Aqalt

m,t>

defined in (C.103). By substituting equation (D.49) into estimator g, + = [ gy, ’t, gf;{ ;

and rearranging terms, we get:

N | N
. AP A A oA AA
- _ -1 _ 1441 / -1 _ 141
Imi = U] Gmy (NH> NHA (A1u1 A1> Imt + ( NH) Ny —Ae mt (D.50)

From Lemma B.8 i) we have Aj Ay /Ny = U| S5 iUy + 0, (1), which implies:

A, A —1
AA . -1
( 1 1> — ur'sl <u{) + 0p(1). (D.51)

Ny

N ~ A !/
By plugging (D.51) into the third term in the r.h.s. of (D.50), using the equation A} eg,t =U (Alu;l - A1> eﬁ,t—k

3The asymptotic distributions of such factors and factor loadings estimators, can be obtained from Proposition D.5.
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Z/IlA m +» and rearranging terms, we get the asymptotic expansion:

. _ 1
Uigmt = Gmge + |:2A11 + Op(l)] N A’lefit
? H

+ [t (R Ao /)08 [_NlH (Aata) (A = ) g + NlH (At =) et ] |
(D.52)

The terms in the first line on the r.h.s. of (D.52) correspond to the (infeasible) cross-sectional regression of
observables on true factor loadings. The terms in the second line account for replacing the true factor loadings
with the estimated ones in the feasible regression. We control the latter terms by using the uniform asymptotic
expansion of the estimated factor loadings derived in Proposition D.4 i). We need to bound the remainder terms

up to order o, (N ;11/ 2) and take into account the bias terms of order 7~!. This yields the next lemma.

LEMMA D.8. Under Assumption A.1 with u > 0, Assumptions A.2 - A.8 we have:

A 1 1 e e N e o
(A A/ N | 5 (M) (A = M) g
O(rc
(kCx1) l (13 -1/2
= + — (S5 ®u + Bat ) gt + 0p (N5, (D.53)
@735 '39) g5 T< ’ )
and: )
[ul(A Ay/Nu)” 1u1] (A1u1 Al) eft s = TR i+ 0o (N 1), (D.54)

where @y, Ba 1 and 7717m7t are defined in Proposition D.7.

From (D.52) and Lemma D.8 we get:

~ 1 O(kcxl) 1 —1/2
Utgmi = gmt + [EK11 + Op(l)} [A/leH t] - [ + = Bmt +0p(Ng 7)),
7 Ng =™ @73 @ ') a5 ] T
i.e.,
H ﬁct—gct— lﬂct
cIdm m m
VNI | 1 = [Exll + Op(l)} [ /7A1€m t:| +op(1),
HLqug,t - (grlr{,t (QH/QC)(QC /QC) gm,t) - Tﬁﬁf,t Nu
where §,,; = [ﬁmb ] = — (vallcj)H + BA,l) Im,t + EX,llﬁ%,m,tgt- From Assumption D.2 we have
ﬁA’leg N(0,QF mmt)» (Fi-stably), as well as the joint asymptotic normality of FA m.¢ and
ﬁA’leg,7t for m # m’. The conclusion follows. [

D.6.2 Proof of Lemma D.§

Let us first show equation (D.53). We use the asymptotic expansions in Proposition D.4 i) with f = gtc ,
iy = g, f3p = ar, B = BE, B = BH and ey, = éfl’l. From equation (D.21) for j = 1 we have in
matrix notation:

Ai:{AC+AS<H’C><gC’gC> +jTWf+}(AiE[ fe] - [f‘gf'1>}ﬁc+op<zv;“>,
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and from (D.22) for j = 1 we get:

~

S S 1 S 1 [¢ s » —1/2
At = {5 o 4 T (CASELOER] - ATELBG) b A + 0yl

where: ] ]
Wc 7€H/ =C C/*C T —1’ WS — 7éH,~H ~H/~H T —1
el = [efl,...ell]’, g% = [g¥,....a%]", g = [g!, .. gH] and g = g — g%(5°'5%)"(g" 'g"). Note
that g¢ and G are mutually orthogonal in-sample. Thus, we have the expansion:
AR A = ——@+A LQ + 281 ) +o (N;%) (D.55)
1 1 1 - \/T 1 1 \/T 1 T A,l P H 9 .
where
[ . 1 et e - O~
G = |wriws | = et e (.56)
O CxkC Okzcka
= _ _ D.57
Ql \lng/gC(gC’/gC/T) 1 OkakH ) ( )
[ —E[5fg C’] ~E[Bg{"] ]
B = 7! ) (D.58)
A | Elg?'87 —EB!g"]
Uu = 73" 7_20 X ] . (D.59)
From equation (D.55) it follows:
1 + - A A
— (MY (At - A (D.60)
Ny
1 1 1 1 T 1 1 1 1/2
= — [Mi+—=G1+A ( +—B )] [G +A ( + —=Bx >]+0 Ny
Ni [ 1 JT 1 1 \FQl Al JT 1 1 \/TQl 7oA ( )
1 !/ / ]‘ / / /
= A A By 1AM G1+ GiA B
N /T 1G1+N 761 G1+N T(Ql 1G1+ G1MQ) + HT3/2( A1 A1G1+ G1ABa,)
1 1 1 1 1

By using A} G1/v/Ni = O,(1), Q1 = O,(1) and A Ay /Ny = Sp1 + O(N?), we get:

P 1 1 _
~ Ay <A1M1_1 - Al) = —=Y01Q1 + XA 1Bag + 77— GG+ QlEA 1Q1 + 0p(N ).

NH ﬁ’T”TN

Let us consider the matrix TN G G1. The i-th row of matrix Gy is f Zt 1€ Az G1(g'g/T)~1, where §; =
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(g€, g ") Thus, we have:
1 1 Npg 1 T 1 T /!
— G aq — ia/T -1_- - éH,i~ L _H,i~ e T ]
N, G161 = (§9/T) NH; T; (G T; G| (§9/T)
T /
= ZE Zet g | [ == e ) | +0,(vy 2 + 712
f T~

= &+ O0y(N 1/2+T1/2)

under a summability condition on the covariances. Hence, ﬁG’lGl = %@ "+ op(N 131/ 2) since T—3/2 =
o(Ny 1/2) This yields:

| R A ~1/2
— (A 1’(A 1—A):—Z Sa1B o 5 Ny
NH( Uy ) (AU 1 T A1Q1+T Al A1+T H+ Q1 A1Q1 + 0p( ).

~ A A -1,
Let us now consider term U} (%) U;. From equation (D.55), using arguments similar to Lemma B.8 and

equation (B.27), we have:

A -1
~ A Al ~ _ 1 _ 179
UI(;VH> U= B e \FEAlQl*O( e D6

Then, we get:

PN -1
Oy N e L
Uy ( ]\1[H > | - (oY (A = )

Ql Al

Ya1Q1 + EA1BA1+ <1>H+ Q1EA1Q1 + 0p(Ny 1/2)

B [27 f v “Ql} {\/T T T

= TQ1+ [EAlq)H-I-BAl]—f-Op(N 1/2),

where we use that Ny and N, grow at the same rate with Ny < T3, and matrix @ is nilpotent. By post-
multiplying times g,,, +, we get equation (D.53).
Let us now show equation (D.54). From (D.55), we have:

1 /. -
Ni(Alul —Al) emt = lleant+ Ql 1€mt+
H
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Let us consider the first term in the r.h.s. We have:

1 Ny T
G/ H — /!~ T HZ
NH\/T 1€m,t (gg/ N T;;Q gs
1 Ny 1 Ny T
o ~f~ -1 _Hji~ Hji ~f~ -1 ~ Hji
= (§9/T) NHT;et i+ 9T 7 3 12# “GsConi
= =1 s=1,s

Since \/ﬁ E ZS 1sat eig.e t = Op(1), the second term in the r.h.s. is Op(1/v/NgT'). Moreover:

Ny

1 e i B _
Ng ef gtemt ZE m:t’]:t]gt + Op(Ny V2T 2) = nt mtdt + Op(Ny
=1

1/2 T 1/2)’

since Ny < T°, and (§'§/T) " = Iy, + O,(T~1/?). Thus, we get:
| A ! 1 1/2
N7H (Alul 1 Al) 67Hn,t T771 m,t9t + Op(N 4 )-

From equation (D.62) we get:

AL A —1
~ A A1 N 1 N A /
u:[ ( ]ifH ) U{ NiH (A]_Z/{l L Al) Cgi

~1/2 —1/2 1. _ ~1/2
= [Z/m + O ( / +71 1/2)} |:Tnmtgt+0P(NH / )} = *EA,an%,m,tgt"‘Op(NH / )

T

since Ny < T°. This yields equation (D.54). |

D.7 Digression on Assumption A.7

In this section we want to show that the conditions in Assumption A.7 hold under mild primitive conditions on
the weak serial and cross-sectional dependence of the error terms and factors. We focus especially on cross-
sectional dependence. We omit the group index j since it is immaterial for the arguments in this section. Let us
denote e, = (£1,¢, ...,en,+) and assume the &, are .i.d.(0, 2) across ¢, with finite fourth-order moments. To sim-
plify the argument, take h; = 1 and \; = 1, so that & = ﬁ Zf\il girand oy = \/% Zfil Z;F:LS# €itEis
are both scalars, and ? = 7 is a constant. *

4The arguments could be generalized to the case where the errors and factors feature strong mixing serial dependence.

Online Appendix - 66



D.7.1 Check of Assumption A.7 a)

2
Under the above conditions, we have nfs = 0. Hence we have to show that & [(\;ﬁ ZZ]\L 1 5i7t5i7s) } < M, for

any s < t and a constant /. We have for s < ¢:

N 2
1 1
— 5 Eit€i,s
( N =1 )

1
= Ntr{ﬂ2}7

—E [tr(eieiesel)]

Il
=
&=
—
—~
AR
m
w
~—
(o]
[E—1
|

by the serial independence condition. Now, tr {QZ} =>.> j 024’ ;- Thus, under the weak cross-sectional
dependence condition - >, > j 0147 ;= +tr {Q%} = O(1), Assumption A.7 a) is met.

D.7.2 Check of Assumption A.7 b)
Let us first show the validity of the bound E[a?] = O(1). We have:

T T T T
1 1
Ela}] = NT Z Z Elejereiey) :ﬁ Z Z tr E[eieierel)] (D.63)
r=1,r#t u=1,u#s r=1,r#t u=1,u#t
1 T T 1 T
- LY Y w@ERd) = L Y e
NT r=1,r#t u=1,u#t NT r=1,r#t
- ( > (D.64)

Hence, E[a?] = O(1) holds under the weak cross-sectional dependence condition +tr {Q?} = O(1)
Let us now show 7 Zthl §roy = op(1). Since E[&n] = 0, the conclusion follows if E [(% Zthl gtat)Q] =

o(1). Tt is enough to prove E[(&04)?] = O(1) and E[¢auésas] = o(1) for any ¢ # s, uniformly in ¢, s.
We focus on the second bound (the first one is proved by similar arguments). Let us write & = ﬁb’ e and
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— 1 T ! ; .
at = 7o D opy o E1€r» Where ¢is a (N, 1) vector of ones. We have for ¢ 7 s:

E§aisas] = NQT Z Z E(erey|er, e5)est’ert’es]

r=1,r#t u=1,u#s

T T
1
= NoT Z Z Ele\E(erel |e, e5)est ept e
r=1,r#t,s u=1,u#t,s
1

T
NIT Z EleiesE(e),|er, e5)est’ et es]
u=1,u#s

T
e Z EleiE(erlet, e5)erest et es]
r=1,r#t

+

= ——Ele)Qest/ertes] + Eleleserest/est’es]

2
N2T
T—-2, 4 2 2
= e et (ERACE)

Under a weak cross-sectional dependence condition namely NL’ Q31 = O(1), the first term in the rh.s. is
O(N~1). Under the condition —tr {(Eleei(Ver)])*} = O(1), the second term is O(T ') (with the latter
term vanishing if the distribution of the error terms is symmetric) Hence, E[éauésas) = o(1) for any t # s,
uniformly in ¢, s.

It remains to prove that ﬁ Zthl ar = Op(1). We have:

&Y 1 1 d
Z _ 2 Z Z
(\/T 2 Oét) = TE [Oét} + T ) [Oét()és] .
The first term in the rh.s. is O(T 1) if &-¢r {Q2?} = O(1) (see (D.64)). For the second term, we have:

1
Elclescles] = Wtr(QQ)

T
1
Elaas) = Z Elelereley] = NT
2
fort # s. Hence £ [(\% Zthl at> } = O(1) under the weak cross-sectional dependence condition %tr {QQ} =

o).

D.7.3 Check of Assumption A.7 ¢)

We have to prove the bounds E[||3;]|?] = O(1) and E[|| 3¢||?] = O(1), where 8; = ﬁ >V Zsti,s# git(€isCis—
EleisCs)) and B¢ = % ZZJ\LI ZST:LS# itElei sCs], for & = (K¢, &, o). We focus on the second bound (the
first one is proved using similar arguments). In the above framework we have:

%g

N N
Br=(1- TE_:Z it | 975 |

0
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where ¢); j := Elg; e7,]. Then we have:

N N N N N N
A A5 90 99 B) DA TN IEE AL 90 B) B Bt 7

WE

i=1 j=1 k=1 I=1 i=1 j=1k=1I=1
1 1
= (1-T71? NL/(\I//Q\I/)L + NL/QSL] :
where ¥ denotes the matrix with elements v; ;. Hence, we have E[||3:]|?] = O(1) under the weak cross-

sectional dependence conditions +¢/(¥/Q¥):. = O(1) and 1¢/Q3 = O(1). Note that ¥ = 0 if the distribution
of €; ; is symmetric.

D.8 Estimators based on fixed point iteration

In this Appendix we consider the estimator for group factor models based on the Least Squares (LS) method
suggested by Wang (2012). The estimator uses fixed point iteration to solve the first-order conditions. We
discuss here some issues concerning the uniqueness of the fixed point.

The group factor model is:

Vi o= FOAS + FSAS 4o, (D.65)
Yo = FOAY + F5AS +es. (D.66)

For expository purpose, we assume N1 = No = N. The estimators of factor values and factor loadings are
defined by minimizing the LS criterion

2
Q= Tr((Y;— FAS' — FiA3 ") (Y; — FOAS  + FFAS")), (D.67)
j=1

w.r.t. arguments F', F;’, A;, A;, j = 1,2, subject to the constraints:
FCPCT = e, Fj’ ’Ff/T = Ik;;, e 'FJ-S =0, j=1,2. (D.68)

The first-order conditions (FOC) for this constrained minimization problem yield the following eigenvalue-
eigenvector problems (see the proof at the end of this section):

e [7isthe T x kj matrix of standardized eigenvectors of matrix
MFC(Yij’/N)MFC (D.69)
associated with the k7 largest eigenvalues, for j = 1,2,
e F¢isthe T x k¢ matrix of standardized eigenvectors of matrix
Mps(Y1Y]/N + Y5 Yy /N)Mps (D.70)
associated with the k€ largest eigenvalues,

where Mpe = Iy — FS(FC'FC)" F¢" and Mps = Iy — F3(FYF%)"'F%/, with F'* = [} Fs]. The
eigenvectors are normalized such that F¢'F¢/T = Ie, Fy ! Fy /T =1 ks for 7 = 1, 2, and satisfy automatically
the identification restrictions F¢'F 7 =0forj=12
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Wang (2012) suggests to solve the FOC by an iterative procedure. Given an estimate F, the estimate Fs is

computed by the spectral decomposition of the matrix in (D.69) with F ¢ = F¢, for j = 1,2. The estimate
Fs [F1 FQ] is used to compute the matrix in (D.70), whose spectral decomposition yields a new estimate Fe.
This procedure defines the (stochastic) mapping F© — Fe= \I/(FC)

Let us now investigate the properties of the mapping . For this purpose we consider the setting with scalar
factors, i.e. k¢ = kf = k5 = 1, and the next assumption.

Assumption D.3. a) The errors are €1 = €5 = 0, and the true factor values are such that F¢'F¢/T =
Fy ’F]‘?/T =1, FC’F]iS =0,forj=1,2.b) Ff'F5 =0,j=1,2.

Assumption D.3 defines a specific realization of the errors and the factors. In part a), we shut down the errors
to mimic the large N, T', setting where the impact of the idiosyncratic shocks vanishes. The factor values match
in-sample the theoretical normalization restrictions. For expository purpose, we assume that the group-specific
factors are orthogonal, and part b) matches this condition in-sample.

PROPOSITION D.9. Under Assumption D.3, any vector F, that is a linear combination of F¢, F T, FS (true
factor values), is a fixed point of the mapping V (up to a sign change).

Thus, the set of fixed points of ¥ includes the three-dimensional linear space spanned by vectors ', F}, Fy.

Proof of Proposition D.9: Define the 7' x 3 matrix H = [F° F} Fj]. Under Assumption D.3 we have
H'H/T = I3, and the data can be written as Y7 = H[A{ A 0]' and Yo = H[A§ 0 A3]’. Then, we get:

AS'AS/N  AS'A3/N 0
ViY//N=H | A5'AS/N AS'AS/N 0 | H = HIL H'.

0 0 0
Similarly, we have Y2Y, /N = HIIyH' for a suitable 3 x 3 matrix I, and Y1Y{/N + Y2Y) /N = HIIH' with
II = 1I; + Is.
Now, let

F®=F°By + F{ s + F3 3 = HP,
where the 3 x 1 vector 8 = (1, 32, 83)’ is such that '3 = 1. Then:
Mﬁc — IT_chFc/
T
= Ir-— %Hﬂﬂ/Hl =My + %HMgHI,

where Mg = I3 — B(8'8) 18" = I; — Bf3'. Therefore, the matrix in (D.69) corresponding to F can be written
as:

1 1
Mg (VY] /N)Mp. = (My +  HMH)HIGH' (My +  HMsH')
= HMgII;MzH'.
The eigenvector associated with the largest eigenvalue of matrix H MgII; MzH' is in the column space of H:
F]‘-9 = HOéj,

where the 3 x 1 vector «; is the normalized eigenvector of matrix MglI; Mg associated with the largest eigen-
value, j = 1, 2. In particular, «; is orthogonal to 3, j = 1, 2. The vectors a1 and « are not collinear.
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Let ['* = [F? F§] = Ha, where o = [ ap]. The matrix in (D.70) corresponding to F* is
Mg, (Y1Y{/N + Y2Y5 /N)M ., = HMIIM H'.

The eigenvector F'¢ of this matrix associated with the largest eigenvalue is Fe=H v, where -y is the eigenvector
of matrix M,IIM,, associated with the largest eigenvalue. This implies that vy is orthogonal to o1 and a2, and
thus is collinear to 8. By normalization we have either v = 3, or v = —f. Therefore, either F'¢ = F°, or
F¢=—F°. |

Proof of the FOC for the constrained minimization (D.67)-(D.68): The Lagrange multipliers for the identifi-
cation restrictions (D.68) are zero. The FOC for the factor loadings under the constraints yield:

A; _ }/]-/FC(FC/FC)_]',
A = Y[Fy(FP'F))TY, j=1.2.

From these equations, the residuals are
}/}_FCA§/—F]$A§/:(IT_PFC_PFJ§)}/}7 j:1,2,

where Ppe = FO(F¢'F¢)~F¢" = Iy — Mpe and Pps = F{(F7 'F7)~'F} ' = It — Mps. From the orthogo-
nality F°'F j‘? = 0 in (D.68), matrices M gc and M Fr commute, and matrices

IT*PFcfPFjs :MFJ,SMFc:MFcMFjS, j:1,2,
are idempotent. Therefore, the concentrated LS criterion becomes:
2
—_— / s .
Q= ZlTr[xijFCMFjifj]. (D.71)
]:

From the constraints (D.68) and the commutative property of the trace, the concentrated LS criterion can be
rewritten as:

2
Q = Y Tr[Mp:MpeY;Y/ M|

j=1
2
/ 1 s/ / S
= Y TrIMpeY;YMpe] = 3 ZTr[F} ' MpeY;Y] MpeF}).
j=1 j=1

For j = 1,2, the minimization of this concentrated criterion w.r.t. F7 is equivalent to the maximization of
Tr(F? ' MpeY;Y/MpeF?]. Under the constraint F'*'F? /T = Iis, this problem is solved by the matrix of
normalized eigenvectors of matrix M FchYj’ M- associated with the k7 largest eigenvalues.

Similarly, from the constraints (D.68) and the commutative property of the trace, the concentrated LS criterion
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(D.71) can be rewritten as:

2
Q = ZTT[MFCMFJ.SYJ'YJ‘/MF;]
=1
2 2
S T 3 M 5 s
=1

7j=1
2 1 2
= ) Tr[Mp:Y;Y]Mp:] - FIrlFe "Mps() YY) Mps F€.
j=1 j=1

The minimization of this concentrated criterion w.r.t. F¢ is equivalent to the maximization of
Tr[F¢' Mps (2]2.:1 Y;Y])Mps F]. Under the constraint F'*'F*°/T = I}, this problem is solved by the matrix
of normalized eigenvectors of matrix Mps( ?:1 Y]Yj’ )M ps associated with the k¢ largest eigenvalues. Bl

D.9 Practical implementation of the procedure

Let us first assume that k€, k¥, k”, i.e. the number of respectively common, high and low frequency factors in
equation (5.1), are known and are all strictly larger than zero. The identification strategy presented in Section
2 directly implies a simple three-step estimation procedure for the factor values and the factor loadings (see
Section 3), which is summarized here for practical implementation purposes:

1. PCA performed on the HF and LF panels separately
Define the (7, Ny) matrix of temporally aggregated (in our application flow-sampled) demeaned HF

observables as X = [z . 2H) and the (T, N;) matrix of demeaned LF observables as X1 =
[zF, ..., 2k]". The estimated pervasive factors of the HF data, which are collected in (7', k¢ + k) matrix

hyg = [iL Hly e h 7|, are obtained performing PCA on the HF data:

1 L
—— XX ) hy = hyV,
<TNH > i TR

where Vy is the diagonal matrix of the eigenvalues of (TNg) ' XHXxH, Analogously, the estimated
pervasive factors of the LF data, which are collected in the (T, k¢ + k%) matrix hy, = [h Lis-hrrl,
are obtained performing PCA on the LF data:

1 . .
XX )b =h
<TNL > L Vi,

where V7, is the diagonal matrix of the eigenvalues of (TN ) ! XL X%,

2. Canonical correlation analysis performed on estimated principal components
Let Wg be the (k¢ + k¥, k) matrix whose columns are the canonical directions for h .+ associated with
the k€ largest canonical correlations between h g and h 1. Then, an estimator of the (in our application
flow-sampled) common factor is f]tc = Wg 'h Hyt, fort = 1,...,T. Analogously, §tc * = Wf ! }ALLﬂg, for
t=1,...,T, where WE is the (/{:C + kL, k‘C) matrix of the canonical directions for / Lt

As explained in Subsection D.2, an alternative estimator of the flow-sampled common factor values

g¢*, t = 1,...,T, is obtained from the eigenvectors associated to the £ largest eigenvalues of matrix
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%(ﬁ Hﬁ'H +h LfL’L) > The rest of the estimation procedure can be performed replacing §& with §tc *,

The estimated loadings matrices Apre and Az are obtained from the least squares regressions of z7 and

x} on estimated factor g¢. Collect the residuals of these regressions:

&' = o' = Aucgf,
gtL = .If - ALC.étca
in the following (7', Ny7), with U = H, L, matrices:
A 2 kS /
gV = {5{1, g%] . U=H,L
Then, the estimators of the HF and LF factors, collected in the (T, kV), U = H, L, matrices:
v = [§¥,..6%), U=HIL,

are obtained extracting the first £/ and k% PCs from the matrices of residuals:

I ~pev/\ AU AU U
== G = GV U=H1L
(TNU ) S T

where VS{J , with U = H, L, are the diagonal matrices of the associated eigenvalues. Next, the estimated
loadings matrices Az and A, are obtained from the least squares regression of £/7 and £} on respectively
the estimated factors g/ and g

3. Reconstruction of the common and high frequency-specific factors
The estimates of the common and HF factors for each HF subperiod, denoted by g}%t and gg’t, for any
m = 1,..,M and t = 1,...,T, are obtained by cross-sectional regression of x,,; on the estimated

loadings [A ot A 7] obtained from the second step.

As discussed in Section 5, an alternative estimation approach consists in performing PCA prior to aggregation.
In this case, the first step in the above procedure is modified as follows:

1. PCA performed on the HF and LF panels separately prior to aggregation
Define the (7'M, Ng) matrix of HF observables as X7 = [a:fl, e xJ\HLl, ey Jfﬁj]/. We perform PCA
on the HF data: .

e XHEXHE) e = hgpV
<T MNg HF HFVHF,

where hpyp is the (T'M, k¢ + EH ) matrix of eigenvectors, and Vip is the diagonal matrix of the
eigenvalues, of matrix (T M Ng) ' XHEXHE!  Then, the estimated flow-sampled values of the per-
vasive factors in the HF panel are collected in the (7, kC + KkH ) matrix hy = [hg 1, ..., hgr] where
hut = Z%zl h HFm,t The estimated pervasive factors in the LF panel are obtained as in step 1 above.

The other steps 2 and 3 are unchanged.

Since the factors dimensions are unknown, the aforementioned procedure is implemented with estimated factors
dimensions k€, k!, and k”. Inference on the number of common, low and high-frequency-specific factors
proceeds as follows:

>As shown in Subsection D.2, we have g¢* = (g + g£'*).
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1. Estimate k1 = k© + &k and ky = k€ + kL, i.e. the numbers of pervasive factors in panels X H and XL,
by some consistent estimators, as the IC),; and ICy; criteria of Bai and Ng (2002).

2. Letk := min(l%l, 1%2). Test sequentially:
Hy=H(r): k% =r against Hy kS <7,

for any given r = k, kK — 1, ..., 1. We use the statistic §~ (r) defined in equation (4.6), which is based
on & (r) = >")_; Pe. where the py, for £ = 1,...,r, are the r largest canonical correlations between h Hit
and h L. Here, h u,+ and h ¢ are the first k yu and k vz PCs extracted from the X H and XL panels,
respectively, and the canonical correlations are the squared roots of the eigenvalues of matrix R defined
in equation (3.1). We reject Hy = H(r) if £ (r) < zanyp», Where critical value z,,, is set as in equation
(4.7), with v = 0.1 and constant ¢ = 0.95 as in the Monte Carlo study. Estimate k€ is the largest
dimension r such that Hy is not rejected, or k€ = 0if Hy is rejected for all 7.

3. The dimensions of frequency-specific factors are obtained by difference: 1 =k — k©, and kL =
koo — k€.

D.9.1 Implementation choices

The PCA in step 1 (or step 1°) in the estimation procedure is performed on demeaned and standardized data.
Hence, for step 1 the demeaned observables /% and =/ are replaced by 27? /0" and 1% /o1?, where 0" and
ol are the sample standard deviations of the HF and LF series. For step 1’ the HF observables are standardized
at high-frequency.

In the empirical analysis in Section 7, we use g©* to estimate the common factor values and perform PCA on the
flow-sampled HF data. To compute the test statistics & (r) in Theorem 2 we need the estimator Sy of matrices
Y and ¥y, The estimator proposed in Theorem 2 is valid under the assumption of uncorrelated errors within
and between each of the two panels. Another estimator which takes into account (contemporaneous) weak

cross sectional correlations in the errors is f]*U = (N /Nl)flg’:i)l + f]ff% — /N2 /Ny 21(:2?2 — /N2 /N, f]ffg)l,

where 2%“ = (N%/AX;&) ' (\/f\i'iNjA;fijAO (Nijf\;-f\j) ' for i,7 = 1,2, with estimated loadings A =
[AHO : AH] and Ay = [ALC : AL], and N; = Ny and N, = N;. Moreover, f‘zj is an estimator of the cross
sectional covariance matrix of the panels of residuals ¢’ and ¢/ with i, j = 1,2, using thresholding, where &'
(resp. €2) is the (T, Ny) (resp. (T, Np)) panel of residuals obtained by regressing each series z{’% (resp. z}%)
in panel X (resp. X) on both g¢ and g/’ (resp. gl) factors. In the empirical application we use the second
estimator 3},

D.10 Dataset description

Figure D.1 shows that the share of the Industrial Production (IP) sector in the US economy has been in decline
since the late 70’s, which marks the beginning of our sample period. We use the class of mixed frequency group
factor model as well as the test of common versus group specific factors introduced in this paper to shed light
on the key question of interest, namely whether, despite the shrinking size of the IP sectors, the factors related
to IP are still dominant determinants of US output fluctuations.
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Figure D.1: Sectoral decomposition of US nominal GDP.

100

CONSTRUCTION

90

80

70

60

50

40

Share of nominal GDP (%)

30

20

INDUSTRIAL PRODUCTION

10

| |
9 01 03 05 07 09 11

Il Il
1 93 95 97 9
Year

0 | | | | | |
77 79 81 83 85 87 89 9

The figure displays the evolution from 1977 to 2011 of the sectoral decomposition of US nominal GDP. We aggregate the
shares of different sectors available from the website of the US Bureau of Economic Analysis, according to their North
American Industry Classification System (NAICS) codes, in 5 different macro sectors: Industrial Production (yellow),
Services (red), Government (green), Construction (white), Others (grey).

D.10.1 High Frequency dataset: Industrial Production sectors

Our high frequency dataset includes the same 117 sectors constituting the aggregate Industrial Production index
considered by Foerster, Sarte, and Watson (2011) for the years 1977-2011. This sample period coincides with the
maximum number of years for which the data for the 42 non-Industrial Production sectors of our low frequency
panel were available and therefore - differently from Foerster, Sarte, and Watson (2011) - we do not consider the
entire time series available for IP data starting in 1972. We download the monthly level of the 117 IP indices
from the Board of Governors of the Federal Reserve System (FED)®. From these raw data, which are indices of
real output, we compute the corresponding quarterly growth rates.

The 117 sectors roughly correspond to a four-digit industry in the North American Industry Classification Sys-
tem (NAICS) for year 2002. The IP sectors are classified by the FED according in the following subsectors:
Manufacturing, Mining and Utilities. Manufacturing comprises those industries included in NAICS definition
of manufacturing plus the logging and newspaper, periodical, book, and directory publishing industries that have
traditionally been considered manufacturing, and is divided in Durable, Nondurable and Other manufacturing.
Durable manufacturing includes three-digit NAICS codes 321, 327, 331-337, and 339. Nondurable manufactur-
ing includes three-digit NAICS codes 311-316 and 322-326. Other manufacturing includes NAICS codes 1133
and 5111. Mining includes three-digit NAICS codes 211-213. Utilities include electric utilities and natural gas
distribution, corresponding to NAICS codes 2211 and 2212.7 We refer to Foerster, Sarte, and Watson (2011),

%See http://www.federalreserve.gov/releases/Gl7/default .htm.
"For a detailed description of the IP constituents see http://www.federalreserve.gov/releases/gl7/
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and especially to their Appendix A, for a list of the names of the 117 sectors, and the methodology used to
approximate the missing data for some sectors.

Table D.1: List of non-Industrial Production sectors. (Source: BEA)

Sector NAICS 2002 codes
Farms 111,112
Forestry, fishing, and related activities 113,114, 115
Construction 23
Wholesale trade 42

Retail trade 44, 45

Air transportation 481

Rail transportation 482

Water transportation 483

Truck transportation 484

Transit and ground passenger transportation 485

Pipeline transportation 486

Other transportation and support activities 487, 488, 492
Warehousing and storage 493
Publishing industries (includes software) 511,516
Motion picture and sound recording industries 512
Broadcasting and telecommunications 515,517
Information and data processing services 518,519
Federal Reserve banks, credit intermediation, and related activities 521, 522
Securities, commodity contracts, and investments 523
Insurance carriers and related activities 524

Funds, trusts, and other financial vehicles 525

Real estate 531

Rental and leasing services and lessors of intangible assets 532,533
Legal services 5411
Computer systems design and related services 5415

Miscellaneous professional, scientific, and technical services

5412-5414, 5416-5419

Management of companies and enterprises 55
Administrative and support services 561
Waste management and remediation services 562
Educational services 61
Ambulatory health care services 621
Hospitals and nursing and residential care facilities 622, 623
Social assistance 624
Performing arts, spectator sports, museums, and related activities 711,712
Amusements, gambling, and recreation industries 713
Accommodation 721
Food services and drinking places 722
Other services, except government 81
Federal Government - General government -
Federal Government - Government enterprises - (includes 491)

State and Local Government - General government
State and Local Government - Government enterprises

D.10.2 Low Frequency dataset: non-Industrial Production sectors

The US Bureau of Economic Analysis (BEA) publishes at yearly frequency the growth rates for the real Gross
Domestic Product and real Gross Output for all the sectors of the US economy, not only for the sectors included
in the IP index. We use the Release Date November 13, 2012 dataset as downloaded for the BEA website®. The
period 1977-2011 coincides with the maximum number of years for which the data for the 42 non-Industrial

About.htm.
8See http://www.bea.gov/industry/gdpbyind_data.htm.
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Production sectors in our low frequency panel were available at the date of download of the dataset. © Our origi-
nal BEA dataset includes the time series for the output growth rates of 65 mutually exclusive sectors constituting
the entire US economy, for the sample period 1977-2011. These sectors are aggregates of either 2 or 3 digits
2002 NAICS codes. Out of these 65 sectors, 19 are Manufacturing sectors (NAICS 2002 codes: 31-33), 3 are
Mining sectors (NAICS 2002 codes: 211-213) and one is Utilities (NAICS 2002 code: 22). These 23 sectors are
all included in the IP dataset, and therefore are excluded from our LF panel to avoid duplication of sectors in the
two panels. The IP sectors Logging, Newspaper Publishers and Periodical, Book, and Other Publishers (NAICS
1133, 5111, 5112) are subsectors of the 2 BEA sectors Publishing industries (includes software) and Forestry,
fishing, and related activities. We keep these 2 sectors in the low frequency panel. Therefore our non-IP low
frequency panel includes the 42 sectors listed in Table D.1 together with the corresponding NAICS 2002 codes.
In Table D.2 we report the names of the sectors corresponding to the aggregated version of the yearly indices
used in Table 3, and in the analogous tables in the subsample analysis (Section D.11.4), together with their
corresponding first or first two NAICS 2002 codes. The yearly growth rates of these real aggregated indices are
downloaded from the BEA website.

Table D.2: List of aggregates of non-Industrial Production sectors. (Source: BEA)

Sector NAICS 2002 codes
GDP (all sectors) all sectors included
Manufacturing 31, 32,33
Agriculture, forestry, fishing, and hunting 11

Construction 23

Wholesale trade 42

Retail trade 44, 45
Transportation and warehousing 48, 49 (except 491)
Information 51

Finance, insurance, real estate, rental, and leasing 52,53

Professional and business services 54

Educational services, health care, and social assistance 6

Arts, entertainment, recreation, accommodation, and food services 7

Government - (includes 491)

D.11 Additional empirical results

This section collects supplemental empirical results to the ones presented in Section 7 of the paper. It is divided
into four parts: Subsection D.11.1 gives the results of a “Granularity analysis” analogous to the one in Section
IL.B of Foerster, Sarte, and Watson (2011) - performed on our dataset. Subsection D.11.2 covers empirical
results analogous to Section 7.2 obtained with an alternative estimation and inference method, in which PCs are
extracted from the HF panel prior to aggregation. Subsection D.11.3 provides additional tables and figures to
the ones in Section 7.2. Subsection D.11.4 reports the results of the empirical analysis performed on different
sub-samples of the one considered in Section 7.

Time series for 22 aggregates of our 42 sectors are also available from the BEA website since 1947, and time series
for a more disaggregated version of our 42 indices, but only for Gross Output, is available only from 1997.
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D.11.1 Granularity analysis

In this section we report the results of the same analysis, performed on our dataset, as the one in Section II.B of
Foerster, Sarte, and Watson (2011). Our objective is to rule out the possibilities that a) sectoral weights in GDP
and IP aggregate indexes are the major determinants in explaining the variability of the indexes themselves,
and b) that their aggregate variability is driven mainly by sector-specific variability. Specifically, we replicate
the analysis of Tables 1, 2, and 3 in Foerster, Sarte, and Watson (2011) for the growth rates of the sectoral
components of the following four different indices:

1. The quarterly IP index, decomposed in the same 117 different sectoral indices as in Foerster, Sarte, and
Watson (2011). The weights of each sector used in the share-weight decomposition correspond to the
sectoral weights in the IP index. Results are displayed in Tables D.3 - D.5.

2. The annual GDP index, decomposed in all the 65 different sectoral indices produced by the BEA. The
weights of each sector used in the share-weight decomposition correspond to the sectoral weights in the
GDP index as produced by the BEA. Results are displayed in Tables D.6 - D.8.

3. A new synthetic annual Manufacturing index, which we created from the 19 different sectoral GDP in-
dices labeled as “Manufacturing” (NAICS 2002 code: 22), produced by the BEA. The weights of each
sector used in the share-weight decomposition correspond to the sectoral weights in the GDP index as
produced by the BEA. Results are displayed in Tables D.9 - D.11.

4. A new synthetic annual non-IP index, which we created from the 42 different sectoral non-IP indices listed
in Table D.1, produced by the BEA. The weights of each sector used in the share-weight decomposition
correspond to the sectoral weights in the GDP index as produced by the BEA. Results are displayed in
Tables D.12 - D.14.

The notation, and the formulas used to produce the results in Tables D.3 - D.14, are the same as those used
in Tables 1, 2, and 3 in Foerster, Sarte, and Watson (2011). The time series of the four components of the
share-weight decomposition of Tables D.3, D.6, D.9, and D.12, are displayed in Figures D.2, D.3, D.4, and
D.5, respectively. Finally, Figures D.6 and D.7 display the histograms of the standard deviations of the growth
rates of the 117 IP indices (quarterly), and 42 non-IP indices (annual), computed over the four different sample
periods considered in the empirical analysis. In the captions of Figures D.6 and D.7 we report tables displaying
the 25%, 50%, and 75% quantiles of the empirical distributions represented by the histograms.

Overall, the results support our objectives and provide evidence to rule out the aforementioned possibilities a)
and b), as mentioned above.
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Quarterly IP Index

Table D.3: Share weight decomposition of quarterly Industrial Production index.

Series 1977-2011 1977-1983  1984-2007 2008-2011
(1/N) S @i 73 9.9 42 13.7
S (@; — (1/N))aa 22 33 1.5 2.9
S (wie — ;)2 1.0 1.0 0.5 2.1

Entries are the sample standard deviations of the quarterly growth rates of the quarterly Industrial Production index growth
(g¢) and its components (x; ;). Percentage points are at annual rates. The table corresponds to Table 1 in Foerster, Sarte,
and Watson (2011).

Table D.4: Average pairwise correlations of sectoral Industrial Production indices.
1977-2011  1977-1983  1984-2007 2008-2011
0.21 0.25 0.12 0.34

Entries are the average pairwise sample correlations of the quarterly growth rates of the 117 Industrial Production indices
considered in the paper. The table corresponds to Table 2 in Foerster, Sarte, and Watson (2011).

Table D.5: Standard deviation of aggregate Industrial Production indices constructed with and without
sectoral covariance

1977-2011 1977-1983  1984-2007 2008-2011

A. Using Actual w;; Share Weights

With sectoral covariation 5.7 7.9 3.6 9.7
Without sectoral covariation 1.9 2.5 1.6 2.5
B. Using Equal (1/N) Share Weights
With sectoral covariation 7.3 9.9 4.2 13.7
Without sectoral covariation 1.9 2.7 1.4 2.4

The entries for rows labeled “with sectoral covariation” are sample standard deviations of > w;;2;; (Panel A) and
N~15" 24 (Panel B). The entries labeled “without sectoral covariation” are computed as: \/ T3, > W2 (z — 7)2,
where h;; = w;; in panel A and h;; = N~ in panel B. Percentage points are at annual rates. The table corresponds to
Table 3 in Foerster, Sarte, and Watson (2011).
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Annual GDP sectoral indices (all sectors)

Table D.6: Share weight decomposition of annual GDP index.

Series (GDP) 1977-2011  1977-1983  1984-2007 2008-2011
(1/N) Y 2y 2.7 34 1.7 5.2
S (w; — (1/N))zi 0.9 1.0 0.8 1.8
S (wiy — W) 0.4 0.2 0.2 12

Entries are the sample standard deviations of the annual growth rates of annual GDP index growth (g;) and its components
(2,+). The index is constructed using weights of nominal GDP. The table is the analogous of Table 1 in Foerster, Sarte, and
Watson (2011) for GDP data.

Table D.7: Average pairwise correlations of sectoral GDP indices.
1977-2011  1977-1983  1984-2007 2008-2011
0.18 0.29 0.11 0.19

Entries are the average pairwise sample correlations of the annual growth rates of the 65 sectoral GDP indices. The table
is the analogous of Table 2 in Foerster, Sarte, and Watson (2011) for GDP data.

Table D.8: Standard deviation of aggregate GDP indices constructed with and without sectoral covari-
ance

1977-2011  1977-1983  1984-2007 2008-2011

A. Using Actual w;; Share Weights

With sectoral covariation 2.1 2.6 1.4 2.3
Without sectoral covariation 0.8 0.9 0.7 1.0
B. Using Equal (1/N) Share Weights
With sectoral covariation 2.7 3.4 1.7 52
Without sectoral covariation 1.2 1.1 1.0 1.9

The entries for rows labeled “with sectoral covariation” are sample standard deviations of > wj;x;; (Panel A) and
N~13"z;; (Panel B). The entries labeled “without sectoral covariation” are computed as: /71>, > h2 (v — ;)2,
where h;; = w;; in panel A and h;; = N ~Lin panel B. The table is the analogous of Table 3 in Foerster, Sarte, and Watson
(2011) for GDP data.
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Annual Manufacturing sectors in GDP index

Table D.9: Share weight decomposition of aggregate Manufacturing index.

Series(GDP) 1977-2011  1977-1983  1984-2007 2008-2011
(1/N) S @i 5.3 6.9 3.4 10.9
S (s — (1/N))ase 1.2 0.9 11 22
S (wie — ;)2 1.6 0.6 0.4 48

Entries are the sample standard deviations of the annual growth rate and the components of the annual index (g;) created
from the 19 Manufacturing sectors in the GDP index. The index is constructed using weights of nominal GDP. The table
is the analogous of Table 1 in Foerster, Sarte, and Watson (2011) for Manufacturing data.

Table D.10: Average pairwise correlations of sectoral Manufacturing indices.
1977-2011  1977-1983  1984-2007 2008-2011
0.35 0.48 0.27 0.29

Entries are the average pairwise sample correlations of the annual growth rates of the 19 Manufacturing sectors in the GDP
index. The table is the analogous of Table 2 in Foerster, Sarte, and Watson (2011) for Manufacturing data.

Table D.11: Standard deviation of aggregate Manufacturing indices constructed with and without
sectoral covariance

1977-2011  1977-1983  1984-2007 2008-2011

A. Using Actual w;; Share Weights

With sectoral covariation 4.5 5.8 3.5 7.6
Without sectoral covariation 2.7 2.6 2.3 3.9
B. Using Equal (1/N) Share Weights
With sectoral covariation 53 6.9 3.4 10.9
Without sectoral covariation 2.8 29 1.9 53

The entries for rows labeled “with sectoral covariation” are sample standard deviations of > w;;x;; (Panel A) and
N~13" 2 (Panel B). The entries labeled “without sectoral covariation” are computed as: /71>, >, h2, (v — 74)%,
where h;; = w;; in panel A and h;y = N —Lin panel B. The table is the analogous of Table 3 in Foerster, Sarte, and Watson
(2011) for Manufacturing data.
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Annual non-IP sectors in GDP sectoral indices

Table D.12: Share weight decomposition of aggregate index of non-IP sectors.

Series(GDP) 1977-2011 1977-1983  1984-2007 2008-2011
(1/N) S zi 2.1 2.6 1.3 3.4
(@i — (1/N))zs 0.9 0.5 1.0 15
S (wye — @) 0.2 0.3 0.2 0.2

Entries are the sample standard deviations of the annual growth rate and the components of the annual index (g;) created
from the 42 non-IP sectors in the GDP index considered in our paper. The index is constructed using weights of nominal
GDP. The table is the analogous of Table 1 in Foerster, Sarte, and Watson (2011) for non-IP data.

Table D.13: Average pairwise correlations of sectoral non-IP indices.
1977-2011  1977-1983  1984-2007 2008-2011
0.18 0.32 0.10 0.21

Entries are the average pairwise sample correlations of the annual growth rates of the 42 non-IP sectors in the GDP index
considered in our paper. The table is the analogous of Table 2 in Foerster, Sarte, and Watson (2011) for non-IP data.

Table D.14: Standard deviation of aggregate indices of non-IP sectors constructed with and without
sectoral covariance

1977-2011 1977-1983  1984-2007 2008-2011

A. Using Actual w;; Share Weights

With sectoral covariation 1.7 2.1 1.3 1.9
Without sectoral covariation 0.9 0.9 0.8 0.9

B. Using Equal (1/N) Share Weights

With sectoral covariation 2.1 2.6 1.3 3.4
Without sectoral covariation 1.2 0.9 1.1 1.4

The entries for rows labeled “with sectoral covariation” are sample standard deviations of > w;;x;; (Panel A) and
N~15" 244 (Panel B). The entries labeled “without sectoral covariation” are computed as: \/ T3, 3 k2 (w — 7)2,
where h;; = wy in panel A and h;; = N ! in panel B. The table is the analogous of Table 3 in Foerster, Sarte, and Watson
(2011) forn non-IP data.
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Figure D.2: Share weight decomposition of quarterly IP index.
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The figure displays the share weight decomposition of quarterly IP index growth rates. Percentage points are at annual rates.
This figure corresponds to Figure 3 in Foerster, Sarte, and Watson (2011). The bold solid line corresponds to Y w;;x;;
(i.e. the aggregate IP index). The bold dash-dotted line corresponds to > (1/N)x;;. The thin solid line corresponds to
> (w; — (1/N))a;¢. The thin dotted line corresponds to Y (w;¢ — W; )T iz.
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Figure D.3: Share weight decomposition of annual GDP index.
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The figure displays the share weight decomposition of annual GDP index. The index is constructed using weights (w;;) of
nominal GDP. This figure corresponds to Figure 3 in Foerster, Sarte, and Watson (2011). The bold solid line corresponds
to > wirx;t (i.e. the aggregate real GDP index). The bold dash-dotted line corresponds to Y (1/N)x;;. The thin solid line
corresponds to Y (w; — (1/N))x;;. The thin dotted line corresponds to Y (w;; — ;).
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Figure D.4: Share weight decomposition of annual Manufacturing sectors in GDP indices.
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The figure displays the share weight decomposition of annual GDP index of Manufacturing sectors. The index is con-
structed using weights (w;;) of nominal GDP. This figure corresponds to Figure 3 in Foerster, Sarte, and Watson (2011).
The bold solid line corresponds to > w;+x;+ (i.e. the aggregate real GDP index for IP sectors). The bold dash-dotted line
corresponds to Y (1/N)xz;;. The thin solid line corresponds to Y (w; — (1/N))x;;. The thin dotted line corresponds to

D (wip — W)@y
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Figure D.5: Share weight decomposition of annual non-IP sectors in GDP indices.
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The figure displays the share weight decomposition of annual GDP index of non-IP sectors . The index is constructed using
weights (w;) of nominal GDP growth rates. This figure corresponds to Figure 3 in Foerster, Sarte, and Watson (2011).
The bold solid line corresponds to > w;x;+ (i.e. the aggregate real GDP index for non-IP sectors). The bold dash-dotted
line corresponds to Y (1/N)x;;. The thin solid line corresponds to Y (w; — (1/N))x;¢. The thin dotted line corresponds

to Z(wit - ’lf)z).’blt
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Figure D.6: Standard deviations of quarterly growth rates of sectoral Industrial Production indices.
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Each panel displays the histogram of the standard deviations of quarterly growth rates of sectoral IP indices. Percentage
points are at annual rates. The graphs correspond to Figure 2 in Foerster, Sarte, and Watson (2011).

Panel 25th Percentile Median 75th Percentile
(a) 1977.Q1-2011.Q4 10.77 14.19 19.71
(b) 1977.Q1-1983.Q4 10.60 15.92 25.29
(c) 1984.Q1-2007.Q4 8.32 11.48 16.71
(d) 2008.Q1-2011.Q4 14.40 18.91 25.65
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Figure D.7: Standard deviations of annual growth rates of non-IP sectoral GDP indices.
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indices. The graphs correspond to Figure 2 in Foerster, Sarte, and Watson (2011).

Panel 25th Percentile Median 75th Percentile
(a) 1977-2011 3.92 491 6.39
(b) 1977-1983 3.65 4.89 7.05
(c) 1984-2007 3.22 431 6.19
(d) 2008-2011 3.22 5.47 8.39
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D.11.2 Tables and figures with PCA prior to aggregation

In this subsection we report the empirical results analogous to Section 7.2 obtained with an alternative estimation
and inference method, in which PCs are extracted from the HF panel prior to aggregation (see Section D.9). The
results are displayed in Figure D.8, Tables D.15, D.16 and D.17. By comparing with Figure 2, Tables 1, 2 and
3 we see that the empirical results are substantially unchanged, whether aggregation is performed prior or post
PCA on the HF data.

Figure D.8: Sample paths of the estimated factors, 1977 - 2011 (PCA first)

3 S S S
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Date

(a) Common factor

4 L L L L L L L L L L L L L L L L 1 4 L L L L L L L L L L L L L L L L 1
77 79 81 83 85 87 89 91 93 95 97 99 01 03 05 07 09 11 77 79 81 83 85 87 89 91 93 95 97 99 01 03 05 07 09 11
Date Date
(b) High Frequency-specific factor (c) Low Frequency-specific factor

Panel (a) displays the path of the estimated common factor. Panel (b) displays that of the HF-specific factor and Panel (c)
that of the LF-specific factor. The factors are estimated from the panels of 42 annual non-IP GDP sectoral series and 117
quarterly IP indices using a mixed frequency group factor model with k¢ = kf = kL = 1.
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Table D.15: Adjusted R? and percentage values of BIC of the regressions with common and/or
frequency-specific factors from economic activity indices growth rates (PCA first)

R2: Quantiles

Factors 10% 25% 50% 75% 90% % BIC

Observables: Gross Domestic Product, 1977-2011

common -2.3 -0.4 11.1 285 43.0 38.1
common, LF-specific ~ -0.6 102 254 351 60.8 28.6
LF-specific 2.9 2.2 5.0 16.1  23.1 33.3
Observables: IP, 1977.01-2011.04

common 0.4 6.0 20.2 364  59.1 43.6
common, HF-specific 1.4 8.0 29.9 454 632 46.2
HF-specific -0.7 -0.1 2.3 8.2 19.3 10.3

The regressions in the first three lines involve the growth rates of the 42 non-IP sectors as dependent variables, while those
in the last three lines involve the growth rates of the 117 IP indices as dependent variables. The explanatory variables are
factors estimated from the same indices using a mixed frequency factor model with k¢ = k¥ = kL = 1. The sample
period for the estimation of both the factor model and the regressions is 1977-2011. For both the IP and the non-IP panels,
the sectoral growth rates are regressed on either the common factor only, or both the common and the frequency-specific
factors, or the frequency-specific factor only.
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Table D.17: Adj. R? of aggregate IP and selected GDP indices growth rates on estimated factors (PCA

first)

Panel A Quarterly observations, 1977.Q1-2011.04

o B 3
Sector R*C) R?*(H) R?*(C+H) BIC
Industrial Production 89.93 1.21 91.30 1.37 CH
Panel B Yearly observations, 1977-2011

FOR e O RO R
Sector R*C) R*L) R?(C+H+L)
GDP 61.28 8.97 75.01 13.73 CL
GDP - Manufacturing 82.67 -3.03 82.33 -0.34 C
GDP - Agriculture, forestry, fishing, and hunting 1.48 -2.35 -1.04 -2.52 C
GDP - Construction 44.97 11.38 60.52 15.55 CL
GDP - Wholesale trade 20.07 8.98 31.47 11.40 CL
GDP - Retail trade 30.29 -2.91 28.12 -2.17 C
GDP - Transportation and warehousing 62.95 -2.97 61.80 -1.15 C
GDP - Information 12.35 21.50 36.69 24.33 CL
GDP - Finance, insurance, real estate, rental, and leasing -1.34 21.65 21.56 22.90 L
GDP - Professional and business services 30.22 31.17 66.38 36.16 CL
GDP - Educational services, health care, and social assistance -1.09 16.48 16.45 17.53 L
GDP - Arts, entertainment, recreation, accommodation, and food serv.  52.50 -2.01 52.83 0.33 C
GDP - Government -2.32 21.09 19.03 21.36 L

In the table we report the adjusted R2, denoted RR2, of the regression of growth rates of the aggregate IP index and selected
aggregated sectoral GDP non-IP output indices on the common factor (column R?(C)), the specific HF and LF factors
only (columns R?(H) and R?(L)), and the common and frequency-specific factors together (column (3)). The last column
displays the difference between the values in the third and first columns. The factors are estimated from the panel of 42
GDP non-IP sectors and 117 IP indices using a mixed frequency factor model with k¢ = kf = kL = 1. The sample
period for the estimation of both factor model and regressions is 1977-2011.

D.11.3 Supplementary tables and figures to Section 7.2

In Table D.18 we report the estimated number of pervasive factors k; and kg, selected in each of the panels of
data considered in Section 7.2 according to the /()1 and ICpy information criteria of Bai and Ng (2002).
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Table D.18: Estimated number of factors: results for /C),; and /C),» information criteria

Xur XH Xk
IP data: 1977.Q1-2011.Q. Non-IP data: Gross Domestic Product, 1977-2011
1Cy 2 2 1
IC, 1 2 1

The number of latent pervasive factors selected by the IC),; and ICy2 information criteria is reported for different subpan-
els. Subpanels X and X correspond to IP data sampled at quarterly and yearly frequency, respectively. Panels X*
correspond to non-IP data. We use k;,q, = 15 as maximum number of factors when computing IC),’s criteria. In the first
line the quarterly IP data are for sample period 1977.Q1-2011.Q4, and the annual non-IP data are GDP growth rates for the
sample period 1977-2011.

In Table D.19 we report the four eigenvalues of the sample variance-covariance matrix of the stacked PC’s
estimated in each subpanel of IP data (X') and non-IP data (X ). The two largest eigenvalues are equal to 1
plus the largest canonical correlations, as implied by Lemma D.2. We find an eigenvalue close to two, which
is consistent with the presence of one common factor in each of the two different mixed frequency dataset
considered. The asymptotic theory developed for the number of canonical correlations equal to one among the
PC’s extracted separately from the two panels, could be used to derive a test statistic for the number of common
factors among the two panels, based on the number of eigenvalues equal to 2 of the sample variance-covariance
matrix of the stacked PC’s.

Table D.19: Eigenvalues of the variance-covariance matrix of the stacked PC’s (Aggregation first)

1% eig. 2"eig. 3" eig. 4 eig.

IP data: 1977.Q1-2011.Q4. Non-IP data: Gross Domestic Product, 1977-2011

1.84 1.06 0.94 0.16

In this table we report the eigenvalues of the sample variance-covariance matrix of the stacked PC’s estimated in each
subpanel of IP (X *7) and non-IP data (X%). We extract the first 2 PC’s in each subgroup, and compute the variance-
covariance matrix of these 4 stacked PC’s.
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Figure D.9 provides an alternative representation of the estimates of the common, HF-specific and LF-specific
factors displayed in Figure 2, Panels (b) - (d), where the three factor paths are superposed. The values of the
three factors are computed for the two mixed frequency panels of 42 GDP sectors and 117 IP indices.

Figure D.9: Trajectories of the estimated common, HF-specific and LF-specific factors (Aggregation

,“ F“t Y, 6'9 ﬁ““f‘v‘

_5%

I I O e o e Iy I S

77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12
Date

The Figure displays the time series of estimated values of the common factor (blue circles), the LF-specific factor (red
squares) and the HF-specific factor (green diamonds). For each year we represent the LF factor as 4 squares corresponding
to the 4 quarters, assuming the same value. The factors are estimated from the panel of real output growth rates of 42
GDP sectors and 117 Industrial Production indices, using a mixed frequency factor model with k¢ = kff = kI = 1. The
sample period for the estimation of the factor model is 1977.Q1-2011.Q4.
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In Table D.20 we report the empirical correlation matrix of the estimated factors, computed at yearly frequency.
In Table D.21 we display the sample correlations among the quarterly estimates of the common and HF-specific
factors and the yearly estimates of the LF-specific factor.

Table D.20: Correlation matrix of the estimated factors, computed at annual frequency. (Aggregation
first)

g e gt
¢ 1.00
ge 000 1.00
Gk 000 -025 1.00

In the table we display the sample correlation matrix of the stacked vector of estimated factors (5, g, gF). The factors
are estimated from the panel of 42 GDP sectors and 117 IP indices using a mixed frequency factor model with k¢ = kf =
kL = 1. The sample period for the estimation of both the factor model and the regressions is 1977.Q1-2011.Q4.

Table D.21: Correlation matrix of the estimated common, HF-specific and LF-specific factors: quar-
terly observations (Aggregation first)

| 9% 9eh G5 G| gT. g3 g3 9ih | gr
g%, | 100 075 041 020 | 0.2 -038 -0.53 -029| 028
¢, | 075 100 077 030| 035 011 -041 -026 | -005
o, | 041 077 100 066 | 040 023 -019 -0.03|-035
3%, | 020 030 066 100| 034 003 011 043 |-0.16

g, | 012 035 040 034 | 1.00 056 044 041 | -0.01
ggﬂ -038 0.11 023 -0.03| 056 1.00 065 047 | -0.27
gft -0.53 -041 -0.19 0.11 | 044 065 1.00 0.79 | -0.12
gft -029 -026 -003 043 | 041 047 079 1.00 | -0.06

Gk | 028 005 -035 -0.16|-001 -027 -0.12 -0.06| 1.00

In the table we display the correlation matrix of the stacked vector of estimated factors
(94,954,954, 050, 014, G54, G54 944, gF).  The factors are estimated from the panel of 42 GDP sectors and 117
IP indices using a mixed frequency factor model with k¢ = kI = kI = 1. The sample period for the estimation of both
the factor model and the regressions is 1977-2011.
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Figure D.10 displays the sample autocorrelations functions for the estimated common, HF-specific and LF-
specific factors.

Figure D.10: Autocorrelation functions of the estimated common and specific factors. (Aggregation
first)

COMMON FACTOR HF-specific FACTOR
0.8 ] 08F
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(a) Common factor: autocorrelation function. (b) HF factor: autocorrelation function.
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(c) LF factor: autocorrelation function.

Panel (a) displays the sample autocorrelation function of the estimated values of the common factor at high frequency.
Panel (b) displays the sample autocorrelation function of the estimated values of the HF factor at high frequency. Panel
(c) displays the sample autocorrelation function of the estimated values of the LF factor at low frequency. The horizontal
lines are asymptotic 95% confidence bands. The factor values are estimated from the panel of 42 GDP sectors and 117
Industrial Production indices using a mixed frequency factor model with k¢ = k = k¥ = 1. The sample period for the
estimation of the factor model is 1977.Q1-2011.Q4.
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The histograms in Figure D.11, Panels (a) and (b), represent the empirical distribution of the R? corresponding
to the first and second lines of Table 1, respectively. Moreover, the histograms in Panels (c) and (d), represent
the empirical distribution of the R? corresponding the fourth and fifth lines of Table 1.

Figure D.11: Adj. R? of the regression of yearly sectoral GDP growth rates on estimated factors
(Aggregation first)
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(c) IP sectors vs. common factor (d) IP sectors vs. common & HF factors

In Panel (a) we show the histogram of the adjusted R2, denoted R2, of the regressions of the yearly growth rates of sectoral
GDP indices on the estimated common factor. In Panel (b) we show the histogram of the adjusted R? of the regressions of
the same growth rates on the estimated common and LF-specific factors. In Panel (c) we show the histogram of the adjusted
R2, of the regressions of the quarterly growth rates of the IP indices on the estimated common factor. In Panel (d) we show
the histogram of the adjusted R? of the regressions of the same growth rates on the estimated common and HF-specific
factors. The factors are estimated from the panel of 42 GDP sectors and 117 IP indices using a mixed frequency factor
model with k¢ = kf = kI = 1. The sample period for the estimation of both the factor model and the regressions is
1977-2011.
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In the following Table D.22 we list the top and bottom ten IP sectors in terms of R? when regressed on the
common factor only, and both the common and HF-specific factors. We also report the top and bottom ten
IP sectors with the highest and lowest absolute increments in k2 when the HF-specific factor is added to the
common one. The factors are estimated from the panel of 42 GDP sectors and 117 Industrial Production indices
using a mixed frequency factor model with k¢ = kf = kL = 1. PCA is performed on the flow-sampled HF
data (PCA post aggregation). The sample period for the estimation of both the factor model and the regressions
is 1977-2011. Table D.23 provides the same results when PCA is perfomed on the quarterly HF data (PCA prior
to aggregation).

Tables D.24, D.25, D.26 display the entire lists of 42 non-IP sectors ranked by the three criteria considered in
Table 2, Panels A, B, and C, respectively. Specifically, Table D.24 displays the full list of non-IP sectors ranked
according to the value of their R? when regressed on the common factor only, Table D.25 displays the full list of
non-IP sectors ranked according to the value of their R? when regressed on the common and LF-specific factors,
Table D.26 displays the full list of non-IPsectors ranked according to the value of the increment in R? when the
LF-specific factor is added to the common one.
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Table D.24: Adjusted R? of the regression of yearly sectoral GDP growth on the common factor.
(Aggregation first)

Sector R2
Truck transportation 63.10
Accommodation 62.43
Construction 44.05
Other transportation and support activities 43.31
Administrative and support services 42.69
Other services, except government 42.53
Warehousing and storage 40.95
Air transportation 31.58
Retail trade 30.70
Amusements, gambling, and recreation industries 29.17
Government enterprises (federal) 28.91
Rail transportation 24.84
Performing arts, spectator sports, museums, and related activities 22.63
Publishing industries (includes software) 22.02
Computer systems design and related services 21.24
Food services and drinking places 20.59
Wholesale trade 20.35
Miscellaneous professional, scientific, and technical services 16.98
Waste management and remediation services 14.79
Social assistance 12.91
General government (federal) 11.97
Government enterprises (state & local) 11.10
Real estate 10.39
Legal services 10.19
Federal Reserve banks, credit intermediation, and related activities 9.74
Educational services 3.97
Rental and leasing services and lessors of intangible assets 2.81
Broadcasting and telecommunications 1.24
Ambulatory health care services 1.01
Farms 0.93
Hospitals and nursing and residential care facilities 0.64
Management of companies and enterprises -0.45
Funds, trusts, and other financial vehicles -1.23
Motion picture and sound recording industries -1.68
Pipeline transportation -1.74
Information and data processing services -1.84
Transit and ground passenger transportation -2.05
General government (state & local) -2.12
Forestry, fishing, and related activities -2.33
Water transportation -2.94
Securities, commodity contracts, and investments -2.99
Insurance carriers and related activities -3.03

In the table we display the adjusted R2, denoted R?, for the time series regressions of each of the 42 GDP sectors on
the estimated common factor. The factors are estimated from the panel of 42 GDP sectors and 117 Industrial Production
indices using a mixed frequency factor model with k¢ = k¥ = kI = 1. The sample period for the estimation of both
factor model and regressions is 1977.Q1-2011.Q4. The regressions in this table are restricted MIDAS regressions.
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Table D.25: Adjusted R? of the regression of yearly sectoral GDP growth on the common and LF-
specific factors. (Aggregation first)

Sector R2
Miscellaneous professional, scientific, and technical services 66.67
Administrative and support services 62.63
Truck transportation 62.51
Accommodation 61.48
Construction 59.75
Warehousing and storage 52.53
”Government enterprises (STATES AND LOCAL)” 45.78
Other services, except government 41.75
Other transportation and support activities 41.71
”Government enterprises (FEDERAL)” 37.78
Legal services 34.51
Social assistance 32.82
Rental and leasing services and lessors of intangible assets 32.32
Wholesale trade 30.83

Performing arts, spectator sports, museums, and related activities 30.49
Federal Reserve banks, credit intermediation, and related activities  30.05

Air transportation 29.81
Retail trade 28.56
Real estate 28.53
Computer systems design and related services 27.07
Amusements, gambling, and recreation industries 27.02
Publishing industries (includes software) 23.85
Rail transportation 23.68
”General government (STATES AND LOCAL)” 22.78
Food services and drinking places 21.67
Motion picture and sound recording industries 21.10
Hospitals and nursing and residential care facilities 17.47
Broadcasting and telecommunications 14.46
Waste management and remediation services 14.24
Pipeline transportation 14.13
”General government (FEDERAL)” 11.11
Transit and ground passenger transportation 9.18
Ambulatory health care services 7.76
Management of companies and enterprises 7.52
Funds, trusts, and other financial vehicles 6.15
Information and data processing services 1.96
Educational services 1.35
Insurance carriers and related activities 0.36
Water transportation -0.64
Farms -1.87
Forestry, fishing, and related activities -5.31
Securities, commodity contracts, and investments -5.99

In the table we display the adjusted R?, denoted R?, for the time series regressions of each of the 42 GDP sectors on the
estimated common and LF-specific factors. The factors are estimated from the panel of 42 GDP sectors and 117 Industrial
Production indices using a mixed frequency factor model with k¢ = k = k' = 1. The sample period for the estimation
of both factor model and regressions is 1977.Q1-2011.Q4. The regressions in this table are restricted MIDAS regressions.
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Table D.26: Change in adjusted R? of the regression of yearly sectoral GDP growth on the common
and LF-specific factors vs. the regression on the common factor only. (Aggregation first)

Sector change in R?
Miscellaneous professional, scientific, and technical services 49.69
Government enterprises (STATES AND LOCAL) 34.69
Rental and leasing services and lessors of intangible assets 29.52
General government (STATES AND LOCAL) 24.90
Legal services 24.32
Motion picture and sound recording industries 22.77
Federal Reserve banks, credit intermediation, and related activities 20.31
Administrative and support services 19.95
Social assistance 19.91
Real estate 18.14
Hospitals and nursing and residential care facilities 16.84
Pipeline transportation 15.87
Construction 15.70
Broadcasting and telecommunications 13.23
Warehousing and storage 11.58
Transit and ground passenger transportation 11.23
Wholesale trade 10.48
Government enterprises (federal) 8.87
Management of companies and enterprises 7.98
Performing arts, spectator sports, museums, and related activities 7.87
Funds, trusts, and other financial vehicles 7.39
Ambulatory health care services 6.76
Computer systems design and related services 5.83
Information and data processing services 3.80
Insurance carriers and related activities 3.39
Water transportation 2.30
Publishing industries (includes software) 1.83
Food services and drinking places 1.07
Waste management and remediation services -0.54
Truck transportation -0.60
Other services, except government -0.78
General government (federal) -0.86
Accommodation -0.96
Rail transportation -1.16
Other transportation and support activities -1.59
Air transportation -1.77
Retail trade -2.15
Amusements, gambling, and recreation industries -2.15
Educational services -2.62
Farms -2.80
Forestry, fishing, and related activities -2.98
Securities, commodity contracts, and investments -3.00

In the table we display the difference in the adjusted R? (R?) from the regressions of each industrial production index
growth on the common and LF-specific estimated factors, and on the HF factor only. The factors are estimated from the
panel of 42 GDP sectors and 117 Industrial Production indices using a mixed frequency factor model with k¢ = kH =
kL = 1. The sample period for the estimation of both factor model and regressions is 1977.Q1-2011.Q4. The regressions
in this table are restricted MIDAS regressions.
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Figure D.12 displays the trajectories of the fitted values of some of the regressions in Table 3, i.e. the regressions
of aggregated indexes on the estimated common factors only, and on the common and frequency-specific factors
together. As already remarked for Table 3, adding the frequency-specific factor in the regressions improves the
fit for some non-IP service series such as the Professional and Business Services Index (panel (d) in Figure
D.12).

Figure D.12: Regression of LF and HF indices on estimated factors. (Aggregation first)

IP INDEX growth GDP growth
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(a) HF Index: Industrial Production Index growth.  (b) LF Index: Aggregate GDP Index growth.
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(¢) LF Index: GDP-Construction Index growth. (d) LF Index: Prof. and Busn. Serv. Index growth.

Each panel displays the time series of the growth rate of an observed index (solid blue line) and its fitted value obtained
from a regression on the common factor (dotted red line). Fitted values from a regression on multiple factors (dashed
black line) are also displayed. In the first panel we regress the IP index on both the common and HF-specific factors, in
the second panel we regress the aggregate GDP Index (LF) on g&, gff and gF. In the third and fourth panels we regress
the growth rates of the LF Construction Index and of Professional and Business Services Index, respectively, on both the
common and LF-specific factors. The indices considered in the first, second and fourth panels are aggregates of the indices
used to estimate the factors. The factors are estimated from the panel of 42 GDP sectors and 117 Industrial Production
indices using a mixed frequency factor model with k¢ = £k = kL = 1. The sample period for the estimation of both the
factor model and the regressions is 1977.Q1-2011.Q4.
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In Table D.27 we report the results of regressions of aggregated indices on the estimated factors. In particular,
we regress the output of each aggregate index either on the estimated common factor only, the LF-specific factor
only, the HF-specific factor only, and all the three estimated factors together. We report the adjusted R?s of
these four types of regressions, and the increment in the adjusted R? when the two frequency-specific factors
are added as regressors to the common factor. This table completes the information in Table 3 of the paper.

Table D.27: Adj. R? of selected GDP and IP indices growth rates on the estimated factors

Yearly observations, 1977-2011

IO I ) N ) - (1)
Sector R?*(C) R*(L) R*H) R)C+L+H)
LF observations
GDP 60.54 8.59 -2.04 73.39 12.85
GDP - Manufacturing 81.88 -3.03 0.22 82.90 1.02
GDP - Agriculture, forestry, fishing, and hunting 1.43 -2.52 -0.85 -2.16 -3.59
GDP - Construction 44.05 11.22 -2.84 58.70 14.64
GDP - Wholesale trade 20.35 7.90 -2.94 29.77 9.41
GDP - Retail trade 30.70 -2.86 2.67 33.71 3.00
GDP - Transportation and warehousing 62.14  -2.95 0.19 61.95 -0.19
GDP - Information 12.14  22.28 -3.03 36.53 24.39
GDP - Finance, insurance, real estate, rental, and leasing -1.42 21.22 -2.19 18.58 20.00
GDP - Professional and business services 30.02 30.21 -1.98 64.52 34.50
GDP - Educational services, health care, and social assistance  -1.38 18.38 -0.60 16.25 17.63
GDP - Arts, entert., recreat., accommodation, and food serv. 53.51 -2.23 -0.50 57.00 3.49
GDP - Government -2.12 22.37 -2.95 18.96 21.08

In the table we display the adjusted R2, denoted R?, of the regression of growth rates of selected HF and LF indices
on the common factor (column R?(C)), the specific HF and LF factors (columns R?(L) and R?(H)) and on these
three factors together (column (4)). The last column displays the difference between the values in the fourth and the
first columns, i.e. the increment in the adjusted R? when both specific factors are added as regressors to the common factor.

D.11.4 Supplementary tables for subsample analysis.

Our sample covers what is known as the Great Moderation, which refers to a reduction in the volatility of
business cycle fluctuations starting in the mid-1980s. In this section we consider different subsamples. We
start by selecting the number of pervasive factors in each subpanel, using the IC)2 information criteria, and
report the results in Table D.28. In Table D.29 we report the canonical correlation analysis common factor tests.
We consider two subsample configurations: 1984.Q1-2007.Q4 and 1984.Q1-2011.Q4. The former is the Great
Moderation sample considered by Foerster, Sarte, and Watson (2011), whereas the second is an augmented
subsample including the Great Depression. In light of the results in Tables D.28 and D.29 we select a model
with k¢ = k¥ = kI = 1, for both subsamples. The factors for both datasets are obtained using the estimation
procedure described in Section D.9 (performing PCA on the flow-sampled HF data).!®

19For both subsamples 1984.Q1-2007.Q4 and 1984.Q1-2011.Q4, when we selecting a model with k; = ky = 1 pervasive
factor in each subpanel, we do not reject the null hypotheses of 1 common factor. On the other hand, when we select
k1 = ko = 2 we reject the null of both 1 and 2 common factors for the subsample 1984.Q1-2011.Q4, and we cannot reject
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Table D.28: Estimated number of factors for different subsamples

Xpr  XH Xt

IP data: 1984.Q1-2007.Q4. Non-IP data: Gross Domestic Product, 1984-2007
IC,y 1 2 1

IP data: 1984.Q1-2011.Q4. Non-IP data: Gross Domestic Product, 1984-2011

1C,s 1 2 1

The number of latent pervasive factors selected by the IC),2 information criteria is reported for different subpanels and
different sample periods. Subpanels X and X ¥ correspond to IP data sampled at quarterly and yearly frequency,
respectively. Panel X* corresponds to non-IP data. We use k4, = 15 as maximum number of factors when computing
IC)p,.

Table D.29: Canonical correlations and test statistics for common factors (Aggregation first)

o b €(2) £(1)
IP data: 1984.Q1-2007.Q4. Non-IP data: Gross Domestic Product, 1984-2007
0.58 - - -1.48
0.70 0.33 -1.50 -2.55
IP data: 1984.Q1-2011.Q4. Non-IP data: Gross Domestic Product, 1984-2011
0.76 - - -0.92
0.81 0.13 -4.01 -2.81

For each subsample, the first line reports the canonical correlation of the first PCs computed in each subpanel of IP and
non-IP data (i.e. when we select k1 = ko = 1), and the values of the test statistic é (r), for the null hypothesis of » = 1
common factors. The second line reports the canonical correlation of the first two PCs computed in each subpanel of IP
and non-IP data (i.e. when we select k1 = ko = 2), and the values of the test statistic §~ (r), for the null hypotheses of
r = 1,2 common factors.

In Table D.30 we report the results of regressions of aggregated indices on the estimated factors for the two
subsamples. This allows us to understand if, and to what extent, the most important sectors of the US economy
comoved over the different subsamples. Again, we regress the output of each aggregate index either on the
estimated common factor only, or on the frequency-specific factor, or both, and concentrate our attention on the
adjusted R%s of these regressions. The results in Table D.30 indicate that in general there is a deterioration of
the overall fit of approximate factor models during the Great Moderation, i.e. during the sample starting in 1984
and ending 2007 — a finding also reported by Foerster, Sarte, and Watson (2011) — and that the common factor
plays a lesser role during the Great Moderation. According to the results in Panel A, the common factor only
explains roughly 72 % of the variation across IP sectors, but interestingly when the financial crisis is added to
the Great Moderation subsample, we see again a pattern closer to the full sample results reported in Table 3 of
the paper. This also transpires from Panels B and C, when examining the total GDP variations projected on the

the null of 2 common factors for the subsample 1984.Q1-2007.Q4. We impute these instabilities to the small time-series
dimensions of the subsamples.
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common factor. During the Great Moderation the common factor only explains around 30 %, which goes to 56
% when we add the Great Depression. The other findings, i.e. the exposure of the various subindices, appear to
be similar to those in the full sample.
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Table D.30: Adj. R? of aggregate IP and selected GDP indices growth rates on estimated factors
(Aggregation first)

(1) 2 3) 3 -

R(C) RX(H) RX(C+H)

Panel A Quarterly observations, aggregate IP index

1984.Q1-2007.Q4 72.48 10.58 80.02 7.54
1984.Q1-2011.Q4 80.11 16.83 88.87 8.76
(D) (@) 3) 3 -

R(C) R¥L) RXC+L)

Panel B Yearly observations, 1984-2007

GDP 29.22 39.24 76.71 47.49
GDP - Manufacturing 70.69 -3.85 71.18 0.50
GDP - Agriculture, forestry, fishing, and hunting 0.81 -0.87 0.51 -0.30
GDP - Construction 13.02 50.30 70.39 57.37
GDP - Wholesale trade -4.40 21.36 18.09 22.49
GDP - Retail trade -0.44 58.14 62.65 63.09
GDP - Transportation and warehousing 41.43 11.16 52.02 10.59
GDP - Information -4.37 -4.10 -8.83 -4.46
GDP - Finance, insurance, real estate, rental, and leasing ~ -3.78 -0.60 -4.78 -1.00
GDP - Professional and business services 4.89 56.09 67.06 62.18
GDP - Educational serv., health care, and social assist. -3.81 3.31 -0.20 3.61

GDP - Arts, entert., recreat., accomm., and food serv. 13.66 37.32 57.01 43.35
GDP - Government 0.74 14.51 14.83 14.09
Panel C Yearly observations, 1984-2011

GDP 56.33 14.88 77.87 21.55
GDP - Manufacturing 83.78 -3.85 83.37 -0.41
GDP - Agriculture, forestry, fishing, and hunting -3.64 -2.65 -6.59 -2.95
GDP - Construction 40.54 21.76 68.61 28.07
GDP - Wholesale trade 23.62 10.48 37.71 14.09
GDP - Retail trade 20.70 6.76 30.39 9.69

GDP - Transportation and warehousing 65.17 1.10 67.14 1.97

GDP - Information 6.20 9.23 17.35 11.14
GDP - Finance, insurance, real estate, rental, and leasing  -1.95 5.04 3.68 5.64

GDP - Professional and business services 27.59 30.75 64.39 36.80
GDP - Educational serv., health care, and social assist. -0.73 -0.90 -2.00 -1.27
GDP - Arts, entert., recreat., accomm., and food serv. 56.94 1.56 62.97 6.03

GDP - Government 0.50 18.75 19.03 18.53

In the table we report the adjusted R?, denoted R?, of the regressions of growth rates of the aggregate IP index and
selected aggregated sectoral GDP non-IP output indices on the common factor (column R?(C)), the specific HF and LF
factors only (columns RQ(H ) and R? (L)), and the common and frequency-specific factor together (column (3)). The last
column displays the difference between the values in the third and first columns. The factors are estimated from the panel
of 42 GDP non-IP sectors and 117 IP indices using a mixed frequency factor model with k¢ = kf = kI = 1. The sample
periods for the estimation of both factor model and regressions are 1984-2007 (Great Moderation), and 1984-2011.
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E Monte Carlo experiments

Appendix E describes the Monte Carlo simulation study used to assess the small sample properties of the test
statistics proposed in Theorems 1 and 2, and those of the sequential testing procedure for the selection of k¢
introduced in Proposition 2. Our selection procedure is also compared with the one based on penalized informa-
tion criteria for group-factor models proposed in Chen (2012), and the three-steps procedure of Wang (2012).
This appendix is composed of seven parts.

Section E.1 defines the model design used for the simulations. Section E.2 gives the values of simulation design
parameters and the sample sizes. Section E.3 describes the content of the tables summarizing the results of MC
simulations, and how they have been obtained. Section E.4 includes a discussion of all simulation results. Sec-
tion E.5 displays the tables of results relative to size and power properties of the test for the number of common
factors k* based on the test statistics of Theorems 1 and 2. Section E.6 displays the tables of results comparing
the performance of the sequential testing procedure for the selection of k¢ introduced in Proposition 2 with al-
ternative procedures adapted from earlier literature. These results are summarized also in Section 6 of the main
body of the paper. Finally, in Section E.7 we display and discuss the quantiles of the cross-sectional distribution
of R? and adjusted R? for regressions of simulated observables on factors when the number of common factors
is either correctly specified, or overestimated, for a DGP in which specific factors at high and low frequency are
highly correlated.

E.1 Simulation design model

We consider simulation designs characterized by different numbers of common (k) and group-specific (£, k%)
factors in different data generating processes (DGPs). We assume that k7 = k%, The number of Monte Carlo
(MC) simulations for each design is 4000. In each MC experiment, mixed frequency panels of observations are
generated from the high frequency DGP defined in equation (5.1):

H _ C H H
Tt = AHcgm,t + AHgm,t + Cm,t>

L _ C L L
xmft - Achm,t + ALgm,t + Cm,ts

where m = 1,..., M and t = 1,...,T. Loading matrices are defined as Agc = [Agc.1,..., \aoNg s Ag =
[)\H,la "'7)\H7NH]/’ ALC = [)\LC,b "'7)‘LCJVL]/’ AL = [)\L,la "")‘L,NL]/' Vectors /\HC,Z' and )\H,i, have di-
mensions k¢ and k¥, respectively, for i = 1,..., Ng. Vectors Arc; and Ay, j, have dimensions k¢ and kL,
respectively, for j = 1, ..., N1.. We consider the case of flow-sampled low frequency observable variables:
M *
zf = Zm:l x%’L,t'

Therefore xﬁyt and z} constitute the panels of mixed-frequency observables. Subsections E.1.1, E.1.2, and
E.1.3 describe the DGPs for the latent factors, idiosyncratic innovations, and loadings, respectively. These
designs extend the ones in Bates, Plagborg-Moller, Stock, and Watson (2013). Table E.1 in Section E.2 displays
the different values of £, k7, k¥, while Table E.2 displays the values of Ny, Ny, and T

E.1.1 Common and group-specific factors

The vectors of latent factors g%t, ggt, and g,’;;’t have dimensions k¢, k¥, and k”, respectively. We define the

new (k© + k¥ + k)-dimensional vector g = (95, 95;, g%/ ], and assume the following high-frequency

autoregressive dynamics as DGP:

Imt = OFGm—1t+ VS Mmyt, (E.1)
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where the scalar a " is an AR(]) coefficient common to all factors and g = (1 —a%)/(M?r), with
k=1-— M2 Zm 1 m(l — aF ). The innovations 7, ; = [nmi, nm’t, nm,t] are such that:

Lie 0 0
Nt ~ 1.0.N(0,%,), Y= 0 Lim @ |, (E.2)
0 (I)/ Ik.L

where ® = ¢ n. The scalar parameter ¢ € (—1, 1) generates correlation between the first HF-specific factor
and the first LF-specific factor, the second HF-specific factor and the second LF-specific, and so on. The term
/s in equation (E.1) implies that the flow-sampled factor vector g; := E%:l 9m,¢ satisfies the normalization in
equation (2.2). This can be shown by noting that we have:

M-1 M-1
M?%k = M? (1_1\422 1—a¥—m)> =M+2> (M~-m)ag,

m=1

and from (E.1)-(E.2):

L [Le 0 0
|4 0 I P
kL

Then, we get:

M M M M M
V@) = > Vigme)+ Y. > Cov(gms gni) = MV (gmy) Z Z A"V (gim.2)
m=1 m=1n=1,n#m m=1n=1,n#
Ik
= ( M—m)a?> V(gmt) = IkH
(b, IkL

which yields equation (2.2) written for the flow-sampled factor values.
The initial values of the factors are drawn from their stationary distributions. Table E.1 in Section E.2 displays
the different values of parameters ar and ¢ used in each design.

E.1.2 Idiosyncratic innovations

H

The idiosyncratic innovations vectors e, ;

and eﬁ%t have dimensions N, and Ny, respectively. We define the

new (Ng + Np)-dimensional vector e, = [e/l/;, ek ]', and assume the following DGP for the innovations:
Emt = QeCm—1t + Um,t, (E3)

where the scalar a. is a common AR(1) coefficient for the innovations. The innovations vy, ; are such that:
Ut ~ .0.N(0, (1 —a?)%,), S ={8"Ny,  i,j=1,..,Ny+Ng.

The scalar 8 induces cross-sectional dependence among the idiosyncratic innovations, as in Bates, Plagborg-
Moller, Stock, and Watson (2013). The initial values of the idiosyncratic innovations are drawn from their
stationary distributions. We consider different values of parameter (5 as reported in Table E.2, and keep a. = 0
for all simulation designs.
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E.1.3 Factor loadings

The simulation designs for the factor loadings adapt the designs of Bates, Plagborg-Moller, Stock, and Watson
(2013) to our set-up with common and frequency-specific factors. The rows of the loading matrices Agc,
Arc, Ag, and Ap are simulated from Gaussian distributions with parameters chosen to match the R2s for
the regressions of :z:H i, and :cfni’t on the factors observed in the empirical analysis. More specifically, for each

i =1,..., Ny, let R2 Hz denote a measure which is akin to the population R? of the regression of xTant on all

2,.Hi

k¢ common and kH spemﬁc factors and is defined below. Let also R denote the same measure for the

regression of wH i, on the k¢ common factors only. For each i we draw a value of Rzth uniformly from the
interval [0.1, R2,,,], where R>

mal,] < ax 18 @ parameter in (0.1, 1). We also draw a value of P%Hi uniformly from the

interval [0.2 - Rzlfh 0.8- R2 H’] Analogously, for each j =1, ..., N, we denote with R2 LJ a measure which is
akin to the populatlon R? of the regression of zk t on all k¢ common and k” specific factors as defined below.

Let also R 7 denote the same measure for the population R? of the regression of zk t on the k¢ common

2,Lj

factors only. For each j, we draw a value of R* » l umformly from the interval [0.1, R? and a value of R~

Js
max
uniformly from the interval [0.2 - RzllLJ , 0.8 - R?IHLJ |. In every MC simulation, for each i = 1,..., Ny, and
7 =1,..., N, the loadings are drawn from the following independent Gaussian distributions:

Agci ~ 4N (0, 12 I ),

i~ i.4.N (0, 21 T ),
ALy ~ ZZN( Ikc),
AL ~ @iN (0, AjF L), (E4)

where the scalars A} ; = A, (R, R5™"), and X\, = A5 Z-(Ri;fh, R%™) are chosen such that:

E [()\/I{C,igrcr;,t + g, g )2 AT i 1:|

2,Hi
5 = Rall
B ()2 | 1,03, ]
E [( /HC' igvcr;,t)2 ’ )‘T,z} 2 Hi
= Rd 5

E [(Hi)? | M0 05,

for i = 1,..., Ny, and the scalars \} ; = A:*)),j(RZhLJ, R%™M), and Nij = )\Z‘Lj(Rz}lLJ,Rz L7y are chosen such
that:

M M ]
E [( ,LC,j 2 m=t Qr%,t + )‘/L,j > m=1 Qan,t) | )‘3]7 4.5 oL
9 B i} = Rail ! ’
E (@) | Ag, 0]
) -
M *
E [( L 2am=1 gg’t) | A3 ,
i _ R27LJ
= RZY,

E @) x,]

for j = 1,..., N;. Hence, RQZfM is the ratio of factor-explained variance to total variance of the HF data,

accounting for randomness in factors, loadings and errors, and similarly for the other R? measures. From (E.1)-
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(E.4) we have:

1 RQ,Hi M-—1
Xlkzz = kicl%RzHl <M+2 Z(M—m)a}?)
ol m-l if k¢ £ 0
1 RZ,Lj M-1
Nij o= cch-'<M+2 (M—m)a’e”>,
k 1 - Razl ! m=1
| RXHI _ p2Hi M-1
NP = gt (M2 Y (M —ma | iR #£0
1 - Rail m=1
1 RLi _ p2Li M-1
Nf = qr e (M2 —mal )RR £ 0
1 o Rall m=1

and:

AP = X5 =0, ifk¢ =0,
X5 =0, if k" =0,
AiZ =0, ifk" =0,

fori = 1,...,Npy, j = 1,...,Nr. The draws of innovations in factors and errors, the loadings and the R?
measures are all mutually independent.

E.2 Simulation design parameters and sample sizes

Table E.1 displays the values of the parameters kO, kH | kL B, ar, and ¢ associated to each simulation design:

Table E.1: Parameters £, k¥, kX, B, ar, and ¢, for each simulation design

Design # / Parameter | k¢ | kT =kl | B | ap | ¢
Design 1 1 1 0 0 0
Design 2 2 0 0 0 0
Design 3 2 1 0] 0 0
Design 4 1 1 02| 0 0
Design 5 1 1 0 06| O
Design 6 1 1 0] 0|07
Design 7 1 1 0] 0 |095
Design 8 1 5 0] O 0
Design 9 1 5 0] 0| 05
Design 10 1 5 0] 0|07
Design 11 1 5 0 0 | 095

In this appendix we report results fixing a. = 0, R2,,. = 0.8, and the number of HF sub-periods M = 4 for
all designs. Results for B2 = 0.6 and 0.95, M = 1,12, 21 are available upon request, and produce results

qualitatively similar to the one presented here. For each design we consider the following sample sizes:
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Table E.2: Sample sizes considered in each simulation design

Ny | Ng T
50 50 | 35
100 | 50 | 35
100 | 100 | 35
100 | 100 | 50
200 | 100 | 50
200 | 200 | 50

200 | 200 | 100
500 | 500 | 100
500 | 500 | 200
500 | 500 | 300
800 | 800 | 500
1000 | 1000 | 600

Design 5, corresponding to the case k¢ = kf = kI = 1, with [Ny, Nz, T] = [ 100, 50, 35], 6 = 0.0,
arp = 0.6, and M = 4, is the most similar to the setting of the empirical application in terms of sample sizes
and parameter values. Tables E.3 and E.4 show that the values of the parameter R2,,, = 0.8,0.6 produce cross-
sectional distributions of adjusted- R?s for the regressions of observables on the factors in line with those found

in the empirical application of the paper (see Table 1).

Table E.3: Sample averages over 2000 MC simulations of the quantiles of adjusted R? of regressions
on true and estimated factors, with R? = 0.8, Ny = 100, N, = 50, T = 35, M = 4, ar = 0.6,
5=0,a.=0.0,¢=0.0.

Panel A: R2, = 0.8, true factors Panel B: B2, = 0.8, estimated factors
R2: Quantile R2: Quantile

Factors 10% 25% 50% 75% 90% Factors 10% 25% 50% 75% 90%
Observables: LF variables Observables: LF variables

common -2.4 0.1 9.4 29.1 52.0 common -2.4 0.0 9.3 288 515
common, LF-spec. 0.9 11.4 31.8 56.7 74.5 common, LF-spec. 1.5 12.6 33.5 57.7 74.3
LF-spec. 2.4 0.1 9.4 28.6 513 LF-spec. 2.4 0.2 9.8 294 513
Observables: HF variables Observables: HF variables

common -0.3 1.7 9.8 283 50.8 common -0.3 1.9 104 292 517
common, HF-spec. 4.0 13.1 32.0 56.2 74.1 common, HF-spec. 4.5 14.1 33.6 57.4 74.2
HF-spec. -0.3 1.7 9.7 28.0 50.6 HF-spec. -0.3 1.7 9.7 28.1  50.0

In each line we report the sample averages, computed over 2000 MC simulations, of the quantiles of adj. R? of regressions
on true and estimated factors. In both Panels A and B, the regressions in the first three lines involve the growth rates of
the 50 LF observables as dependent variables, while those in the last three lines involve the growth rates of the 100 HF
observables as dependent variables. In Panel A the explanatory variables are the true simulated factors. In Panel B the
explanatory variables are the estimated factors, assuming that the true numbers of factors in the DGP (k¢ = kH = kL = 1)
are known.
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Table E.4: Sample averages over 2000 MC simulations of the quantiles of adj. R? of regressions on
true and estimated factors, with Rfmx = 0.6, Ny =100, N, =50,T =35, M =4,ar = 0.6, 3 =0,
a. =0.0,0=0.0.

Panel A: RZ,,, = 0.6, true factors Panel B: R2, .. = 0.6, estimated factors
R?: Quantile R?: Quantile

Factors 10% 25% 50% 75% 90% Factors 10% 25% 50% 75% 90%
Observables: LF variables Observables: LF variables

common -2.6 -0.6 6.8 22.6 41.8 common -2.6 -0.6 6.7 22.3 41.2
common, LF-spec. -0.8 7.4 234  41.1 61.8 common, LF-spec. -0.2 8.6 25.3 45.7 62.3
LF-spec. -2.6 -0.6 6.7 223 415 LF-spec. -2.5 -0.4 7.4 235 424
Observables: HF variables Observables: HF variables

common -0.4 1.1 7.2 21.3  40.0 common -0.4 1.3 7.8 225 412
common, HF-spec. 2.7 9.5 23.5 43.2 60.4 common, HF-spec. 3.1 10.5 252 448 61.2
HF-spec. -0.4 1.1 7.2 213 399 HF-spec. -0.4 1.2 7.5 21.7  40.0

In each line we report the sample averages, computed over 2000 MC simulations, of the quantiles of adj. 2 of regressions
on true and estimated factors. In both Panels A and B, the regressions in the first three lines involve the growth rates of
the 50 LF observables as dependent variables, while those in the last three lines involve the growth rates of the 100 HF
observables as dependent variables. In Panel A the explanatory variables are the true simulated factors. In Panel B the
explanatory variables are the estimated factors, assuming that the true numbers of factors in the DGP (k¢ = kf = kL = 1)
are known.

E.3 Description of content of tables of results
Size and power properties, Section E.S (p. 120 - 130)

The simulation designs described above allow to study the small sample size and power properties of the feasible
test statistic £(k©) in equation (4.6) in Theorem 2, and the size of the infeasible test statistics &(kC) of Theorem
1. The upper panel in each table corresponds to cases in which the feasible and infeasible statistics are computed
from factors estimated by PCA from HF data directly, and then flow-sampled in order to compute the test
statistics. The lower panel in each table corresponds to cases in which HF observables are first flow-sampled,
and then factors are estimated by PCA on this flow-sampled panel of HF data before computing the test statistics.
We refer to Section D.9 for details on the practical implementation. Data are simulated under the DGP with
parameters listed in the title of the corresponding page. Each of the tables on p. 120 - 130 displays in the first
three columns the values of Ny, N, and T'. Moreover:

e columns 4 - 6 display the empirical size of the infeasible test statistic f (k) defined in Theorem 1, and
computed under the null hypothesis of a number of common factors k¢ equal to the one specified in the
title of the corresponding page;

e columns 7 - 9 display the empirical size of the feasible test statistic £(k) defined in Theorem 2, and
computed under the null hypothesis of a number of common factors k¢ equal to the one specified in the
title of the corresponding page;

e columns 10 - 12 display the empirical power of the feasible test statistic é (k) defined in Theorem 2. The
number of common factors in the DGP is k¢ and is specified in the title of the corresponding page. The
empirical power is computed as the empirical frequency of rejection of the test of the null hypothesis of
k¢ 4+ 1 common factors, against the alternative of a number strictly smaller than k¢ + 1. !!

"For Design 2 the power has not been computed because k; = ko = k¢ = 2 and thus the null hypothesis of k¢ +1 = 3
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The feasible statistic is computed as in (4.6), i.e. assuming conditionally heteroschedastic and serially as well
as cross-sectionally independent errors. Design 4 with 3 = 0.2 allows us to investigate the robustness of the
statistic computed as in (4.6) to small levels of cross-sectional correlation. In all tests we consider nominal sizes
of 1%, 5%, 10%. All empirical size and power are computed as the empirical rejection frequencies of the tests
obtained over 4000 MC simulations from the same DGP. The null of each test is rejected when the value of the
test statistic computed on simulated data is strictly smaller than the 1%, 5%, 10% quantiles of the asymptotic
distribution of the test statistic, which is a standard Gaussian.

In each simulation we draw new random samples of the factors, the loadings and the idiosyncratic innovations. In
unreported experiments we fix the same values for the factors and the loadings in all the 4000 MC simulations,
and draw new random samples only for the idiosyncratic innovations. Also in this case, we obtain results
analogous to the ones presented in this Online Appendix.

Selection of number of factors, Section E.6 (p. 131 - 141)

MC simulations are used to evaluate the accuracy of the estimators for the number of common factors k¢
provided by i) our consistent sequential testing procedure defined in Proposition 2, ii) the selection procedure
based on the penalized information criterion of Theorem 3.7 in Chen (2012), and iii) the three-steps selection
procedure proposed by Wang (2012).

The estimators are evaluated by comparing the average estimated number of common (k¢), high-frequency-
specific (k), and low-frequency-specific (k) factors, computed across the 4000 simulations for each DGP
described in the title of the corresponding page. For all the competing estimators we consider both the case in
which the true numbers of pervasive factors k; = k¢ + & and ky = k¢ + k” in the two panels are known, and
only k€ needs to be estimated (lower panel in each table), and also the case in which k; and k, are estimated
(upper panel in each table). Each of the tables on p. 131 - 141 displays in the first three columns the values of
Ny, Ni, and T. Moreover:

e columns 4-6 display the average number of estimated factors for our sequential testing procedure of
Proposition 2. The feasible statistics in the sequential testing procedure are computed from factors esti-
mated by PCA from HF data directly, and then flow-sampled in order to compute the test statistics. These
columns are labelled “AGGR (2016), HF data: PCA first”;

e columns 7-9 display the average number of estimated factors for our sequential testing procedure of
Proposition 2 for the number of common factors. The feasible statistics in the sequential testing procedure
are computed from factors estimated by PCA on flow-sampled HF data. These columns are labelled
“AGGR (2016), HF data: flow samp. first”;

e columns 10-12 display the average number of estimated factors by the selection procedure based on the
information criterion of Theorem 3.7 in Chen (2012). These columns are labelled “CHEN (2012)”;

e columns 13-15 display the average number of estimated factors by the following three-steps procedure
to determine k' (1) estimate the number of pervasive factors in each of the two panels separately, and
denote them as ]2:1 and 1%2, (2) estimate the number R of pervasive factors in the stacked panel of HF
(ﬂow sampled) and LF data'?, and denote it as R, (3) determine the number of common factors k€ as
k1 + ko — R.'3 This procedure is a special case of the one suggested by Wang (2012). These last three
columns are labeled “WANG (2012)”.

common factors cannot be considered in that setting.
"Note that R = k¢ + k™ + k~.
13N()te that kl + k2 —R= (k‘c + kH) + (kc + kL) _ (kc + kH + kL) — kC.
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The critical values zq,, .. for our sequential testing procedure - AGGR (2016) - are determined by assigning the
values v = 0.1, and ¢ = 0.95 to the functional form z , = —c(N VT)? given in equation (4.7). This choice
of the functional form satisfies the conditions (i) and (ii) in Proposition 2. Moreover, the values of ¢ and v imply
that that 2, , = —1.64 ~ 2005 when N = min(Ni, No) = 40, and T' = 35, which are analogous to the
smallest cross-sectional and time series dimensions in our empirical application. This choice of the functional
form for zq ., and the parameters  and ¢ proved to work well in all our MC simulation experiments.

The estimation of k; and ks, which is a necessary first step in all the three procedures described above, is based
on the information criteria I Cps or ICp3 of Bai and Ng (2002), and thoroughly discussed in Section E.4.2.

E.4 Discussion of results
E.4.1 Size and power properties

We are interested in verifying whether the Gaussian asymptotic distribution provides a good small sample ap-
proximation for the left tail of the re-centered and re-scaled infeasible statistic (kC), and the feasible £(k©). We
compute the empirical size of the test for the null hypothesis of ¢ common factors corresponding to nominal
sizes of 1%, 5% and 10%. We also report the empirical power of the feasible statistic for the null hypothe-
sis of k¢ + 1 common factors, when the true number of common factors is k€, for the same nominal sizes.
Following the discussion in Section 5 and Subsection D.9, we consider both (1) factors estimated via PCA
applied to HF data, and then flow sampled in order to compute the test statistic, and (2) factors estimated on
flow sampled HF data. For case (1) the variance of the flow sampled HF innovations residuals, denoted by
Y4 = V(elly = M V(egft), is estimated from the HF residuals €1 ; ,,, + obtained from the regressions of the

M T
1
HF data on the estimated common and HF factors. The estimator is: 71 ;; = T Z Z é2 For sample

1,.,m,t -
m=1 t=1
sizes (1" < 200) this estimator improved by an amount of 0.01 - 0.08 all the empirical sizes with respect to an
estimator using the residuals from regressions of flow sampled HF data on flow sampled factors.

Infeasible statistic: size

The tables in Section E.5 show that the asymptotic Gaussian distribution provides a very good approximation
for the left tail of the infeasible test statistic & (k) under the null, even for sample sizes as small as Ny =
Ny = 50, and T' = 35. For the vast majority of sample sizes, and simulation designs, the size distortions for
aforementioned case (1) are in the order of 1% to maximum 3%. Analogous results hold for case (2) PCA is
performed on flow sampled HF data, with the exception of Designs 2 and 3, where the number of common
factors is k¢ = 2 (see discussion below). For instance, in the baseline Design 1 in which k¢ = kff = kL =1
and all factors and idiosyncratic innovations are i.i.d. in cross-section and over time, the maximum size distortion
is 0.02 and is observed only when T" < 50. The same results hold for DGPs with the same number of factors
as in Design 1, but featuring a moderate level of cross-sectional correlation among the idiosyncratic innovations
as measured by the coefficient 5 = 0.2 in Design 4, or a moderately high level of correlation (¢ = 0.7) among
the specific factors in the two panels for Design 6. Analogous results hold also when the factors feature an
autocorrelation coefficient similar to the one in the empirical analysis, that is ay = 0.6. This can be seen in the
tables for Design 5, where the only notable difference compared to the baseline case ar = 0 is an increase in
the empirical size of a maximum of 0.05 for the smaller sample sizes.

For Design 2 (resp. Design 3) in which k¢ = 2 and kff = k¥ = 0 (resp. k¥ = k% = 1), for sample sizes
as small as 7' < 50 and max(Ng, N1) < 200, the size distortions increase to a maximum of 6% (resp. 10%),
which occurs when PCA is performed post aggregation. This result is due to the fact that, by construction,
the signal-to-noise ratio for each of the two common factors in these designs is halved compared to those with
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k¢ = 1. In unreported simulation results, available upon request, we increased the signal-to-noise ratio of the
common factors and - as expected - we noticed a reduction in all size distortions, for all designs and sample
sizes. This reduction is more pronounced for smaller sample sizes, and is discussed below also for the feasible
statistics. We finally note that in the two designs with k¢ = 2 performing PCA on HF data has the effect of
approximately halving the size distortions, compared to the case in which PCA is performed on flow-sampled
HF data.

Moreover, we note that the infeasible test seems to be undersized for sample sizes as small as 7" < 200 only
when the number of specific factors is high in both panels. As shown by the values close to O for the empirical
sizes of the infeasible statistic for Designs 8 - 11, where k¥ = k% = 5, this effect is independent of the level of
the correlation among the specific factors. Importantly, this fact does not affect significantly the performance of
the sequential procedure for the selection of the number of common factors (see Section E.4.2).

The size distortions disappear in all simulation designs for large values of Ny, Ny, and T', which corroborates
our asymptotic theory of Theorem 1. In Particular, for all the Designs 1 - 7, that is when k¢ = 1 or 2, and
EH = kL = 1 or 0, the size distortions of all feasible statistics are not larger than 0.01 when 7" > 200.

Feasible statistics: size and power

Turning to the feasible statistic & (k¢), we note that the size distortions are larger than those of the feasible
statistic, when max(Ng, Np) < 200, and 7' < 50. As the feasible and infeasible statistics use the same
estimates of the canonical correlation py, the increase in the size distortion is due to the fact that the matrix
>y appearing in both the bias and the variance of the test statistics is replaced by its estimator Sy defined in
Theorem 2, and matrix S, is replaced by Irc. Nevertheless, as the sample sizes increase all size distortions
vanish, consistently with the asymptotic theory developed in Theorem 2. For instance, in the baseline Design 1
we note that when PCA is performed on HF data first, the size distortions increase by a maximum of 0.08 when
T < 50, and by a maximum of 0.02 when 7" < 300. The same holds for Designs 4 and 6 where cross-sectional
correlation among residuals and autocorrelation in the factors are introduced. As it was the case for the infeasible
statistic, performing PCA prior to aggregation yields smaller size distortions than the approach performing PCA
post aggregation, by amounts in the range of 0.01 - 0.10, when T" < 50.

Designs 2 and 3, where k¢ = 2, and £ = k' = 0 or 1, feature the largest size distortions among all the
designs when 7" < 200, and max(Ng, N,) < 200 for the same reason discussed above for the infeasible
statistic. In these two designs, performing PCA first instead of PCA on the flow sampled HF data, drastically
reduces the size distortion: for sample sizes with 7' < 100, for instance, the size distortions are halved. As
expected, when the signal-to-noise ratio of the common factors is increased, the size distortions monotonically
improve for all sample sizes, and especially for the very small ones. More specifically, in unreported simulation
results, available upon request, we increased the signal-to-noise of all factors by simulating RZ}ZHZ and Riif]
uniformly in the interval [0.1,0.95], instead of simulating from our baseline interval [0.1,0.8]. Moreover we
also increased the signal-to-noise of common factors only, simulating R%HZ and RéL] uniformly in the inter-

vals [0.5Rzzfﬁ, O.QORiﬁqi] and [0.5R221Lj , O.QOR?ZEZLJ' |, respectively. This last case generated the most evident
improvements in all empirical sizes, and especially for the designs in which k¢ = 2.

The power of the feasible test statistic is always equal, or very close to 1, for all designs with the exception of
the cases in which min(Ng, N,) < 50, and 7' = 35. This is a remarkable result as our simulation designs
include cases in which the specific factors in the different panels are highly correlated. In Design 7, for instance,
the correlation coefficient among the specific factors in the two panels is ¢ = 0.95. This value is the same for
the correlations among the 5 specific factors in each of the two panels in Design 12, and implies that in both
these designs the specific factors could be confounded with at least 1 additional common factor. This explains
the lower power e.g. in Design 7 for the smallest sample sizes. It is also important to note that in the case of
many specific factors as in Designs 8-11, where k7 = kI = 5 and k¢ = 1, the test is less undersized when
performed using the feasible statistic than it is with the infeasible statistics.
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Finally, in unreported simulation results, we note that the above results are almost exactly the same when M
increases from 4 to 12, and to 21. Conversely, we find a slight increase in size distortions when M = 1.

E.4.2 Estimation of the number of factors

We are interested in comparing the following three procedures to determine the number of common factors
k€ : (i) our consistent sequential testing procedure defined in Proposition 2, which is based on the feasible
test statistics of Theorem 2, and uses the critical values as described in Section E.3, (ii) the selection procedure
based on the penalized information criterion of Theorem 3.7 in Chen (2012), and (iii) the three-steps selection
procedure proposed by Wang (2012).

The estimators are evaluated by comparing the average, computed across the 4000 MC simulations, estimated
number of common, high-frequency-specific, and low-frequency-specific factors. For all the estimators of
kS, kM kT we consider the case in which the true numbers of pervasive factors k; = k¢ + &k and ky = k¢ + kL
in the two panels are known, and only k€ needs to be estimated, and also the case in which k; and k- are esti-
mated using the /C), information criteria proposed by Bai and Ng (2002). More specifically, we present estima-
tion results for k1 and ko where we used the /C)3 criterion for all designs in which EH = kL = 0 or 1, and the
ICy3 criterion when kEH = kL = 5. The same criteria are used to estimate the number of pervasive factors in the
stacked panel of HF (flow-sampled) and LF data in the second step of the procedure suggested by Wang (2012).
In line with the results of Bai and Ng (2002), we noted that for small sample sizes (1" < 50, and especially for
T = 35) and in the case of many pervasive factors in the LF panel (that is k3 > 5) the IC), criterion tends to
severely underestimate the values of ko, while the IC)3 produces better estimates. Underestimating ko affects
considerably the estimates of k€ for all the three procedures considered. In unreported results available upon
request we have estimated ki, k2, and also R (that is the number of pervasive factors in the panel formed by
stacking together both the flow-sampled HF data, and the LF data), using the ER and GR ratios of Ahn and
Horenstein (2013), and noted that they perform similarly or worse than the /C), criterion. 14 The first thing to
note is that for all the simulation designs considered, the results for the estimation of the number of factors are
very similar both in the cases in which k; and ko are known (lower panels in all the tables in Section E.6), and
when they are estimated as we have just described (upper panels in same tables).

We also remark that across all our designs, performing PCA first on HF data instead of performing PCA on the
flow-sampled HF data, produces consistently better estimation of the number of factors for all the sample sizes
in which T' > 50. The same holds true also for sample sizes as small as T' = 35, with the exception of Designs
7 - 11 when N = min(Ng, Nz) = 50. For the same small value of 7', as soon as N > 50, PCA on HF data
is always preferred to PCA on flow-sampled HF data, with the exception of Design 11, where this happens only
for T" > 100.

In all the designs with k¢ = 1 common factor, and k¥ = kL = 1, zero or moderate values for the correlation
of specific factors - that is when ¢ = 0 (Designs 1, 4, and 5) or 0.7 (Design 7) - the average estimated number
of common factors obtained with our procedure ranges between 0.90 and 1, that is below but close to the true
value k¢ = 1. Analogous results hold for the designs in which k¢ = 2 (Designs 2 and 3), where the estimated
number of common factors is always below 2. These results confirm both the ones on the very good empirical
power of the test statistics, and are also compatible with the fact that the statistic is slightly oversized in (very)
small samples, for these designs.

As predicted by the consistency result for our sequential testing procedure in Proposition 2, and by the empirical
size and power properties of the feasible statistics, the average estimated number of common factors for our
selection procedure approaches quickly the true value £ as the sample sizes increase in all our designs. This is
true also for the most challenging Designs 7 and 12, in which the specific factors in the different panels feature
an extremely high value of correlation, that is ¢ = 0.95.

14 Alternative estimators, such as the one proposed by Onatski (2010), could also be considered.
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In cases with a small number, say 1 or 3, of uncorrelated specific factors (that is when ¢ = 0), the penalized
information criterion proposed in Chen (2012) yields the correct number of factors in almost all Monte Carlo
simulations for any sample size, confirming the results in Chen (2012). To save space only the tables of results
for the case k¢ = 1 (or 2) and k¥ = k’ = 1 have been reported, and correspond to Designs 1 - 5. On the other
hand, the tables for the case k! = k = 3 are available upon request, and are analogous to the ones for the
case k! = kL = 1. For the same DGPs our selection procedure has comparable performance as that in Chen
(2012), and it is less accurate than Chen (2012)’s one only for sample sizes as small as max(Ng, Nz) < 200,
and T' < 50, where the average estimated number of common factors ranges between 0.85 and 1 if ¥ = 1. In
particular, for the baseline Design 1 in which k¢ = & = k’ = 1, and all factors and idiosyncratic errors are
uncorrelated both in cross-section and over time, the average estimated value of k' is between 0.89 and 0.94
when T' < 50. The same holds for a moderate value of cross-sectional correlation among residuals as in Design
4. When ap = 0.6, k¢ = k! = k' = 1, and for small sample sizes, we note a moderate deterioration of the
performance of our sequential testing procedure compared to the case ar = 0.0, that is when we compare the
results in Designs 1 and 5, respectively. In this case our procedure tends to slightly underestimate the number
of common factors as expected from the increase of the empirical size discussed in Section E.4.1, with the
minimum average estimated value for k¢ equal to 0.84 only when 7" < 35.

The procedure of Chen (2012) tends to overestimate the number of common factors when the correlation ¢
among the specific factors increases from 0 (see Designs 1 and 8 for the cases k¢ = 1 and k¥ = kI = 5,
respectively) to 0.5 (Design 9 for the cases k¢ = 1 and k¥ = k’ = 5 only'3), 0.7 (Designs 6 and 10, for
the cases k¢ = 1 and k7 = kI = 5, respectively) and 0.95 (Designs 7 and 11, for the cases k¢ = 1 and
k" = kL = 5, respectively). This deterioration in the performance is much less dramatic for our sequential
testing procedure. As expected from our results on the empirical power in the previous section, in Designs 8 -
11 we also observe a monotonic decrease in the precision across all the estimators when the number of specific
factors becomes relatively large, namely k7 = k¥ = 5. In this case all the three procedures considered tend
to overestimate the true number of common factors, namely k¢ = 1. Nevertheless, in all Designs 8 -11 when
T < 50 our procedure consistently outperforms Chen (2012). Importantly, this result holds true also when
the specific factors in the two panels are not correlated, as in Design 8 where ¢ = 0. For larger values of the
correlation coefficient ¢, the better performance of our procedure is even more evident also in larger sample sizes
(see Designs 9 - 11). It is noteworthy that as ¢ increases the deterioration for our sequential procedure is much
less dramatic than in Chen (2012), suggesting that it is preferable in these more general cases. Furthermore, our
sequential testing procedure also exhibits a faster improvement in performance as the sample size increases.
Finally, the consistent three-steps selection procedure of Wang (2012) performs similarly, or worse than the one
of Chen (2012) in DGPs with a small number of uncorrelated specific factors. More specifically, when k¢ = 1
as in Designs 1, and 4 - 11, Wang (2012) procedure tends to overestimate the true value of kS for sample sizes
as small as T" < 50. Moreover, as either the number of specific factors increases (Design 8), or ¢ increases from
0 to 0.7 (see Designs 6 and 10) or 0.95 (see Designs 7 and 11) the procedure overestimates k€ also for sample
sizes as large as NV = 500 and 7" = 100 (Design 6), or N = 800 and 7" = 500 (Designs 10 and 11), and clearly
becomes the worse among the three considered.

15Dye to space limitations the results for the case ¢ = 0.5, when k€ = kL = k¥ = 1 have not been reported, but are
available upon request.
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E.5 Tables: Size and Power

DESIGN 1: k¢ =1, k% =kl =1,3=10.0,ar = 0.0, ¢ = 0.0, a, = 0.0, k%, = 0.8
SIZE POWER
Infeasible \ Feasible Feasible
Nominal size Nominal size
Ny  Np T |10.01 0.05 0.10 \ 0.01 0.05 0.10 \ 0.01 0.05 0.10
HF data: PCA first, then flow sample the factors
50 50 35 1002 0.05 0.08|0.03 008 0.14 093 098 0.99
100 50 35 | 003 0.06 0.10|0.04 0.12 0.18|0.95 098 0.99
100 100 35 | 0.02 0.05 0.09 |0.04 0.10 0.15|1.00 1.00 1.00
100 100 50 | 0.02 0.05 0.09|0.03 0.08 0.14|1.00 1.00 1.00
200 100 50 |0.02 0.06 0.10]0.04 0.11 0.18 | 1.00 1.00 1.00
200 200 50 | 0.02 0.05 0.09]0.03 0.09 0.15|1.00 1.00 1.00
200 200 100 | 0.01 0.05 0.09 | 0.02 0.07 0.12 | 1.00 1.00 1.00
500 500 100 | 0.01 0.05 0.080.02 007 0.13|1.00 1.00 1.00
500 500 200 |0.01 0.05 0.090.02 006 0.12|1.00 1.00 1.00
500 500 300|001 0.05 0.090.02 006 0.12|1.00 1.00 1.00
800 800 500 | 0.01 0.05 0.09 001 005 0.10|1.00 1.00 1.00
1000 1000 600 [ 0.01 0.05 0.10|0.01 0.06 0.11 | 1.00 1.00 1.00
HF data: flow sample first, then PCA

50 50 35 1003 0.06 0.10|0.06 0.15 0.23 094 098 0.99
100 50 35 {003 0.07 0.11|0.07 0.17 0.25|0.95 098 0.99
100 100 35 | 0.03 0.07 0.11|0.08 0.18 0.26 | 1.00 1.00 1.00
100 100 50 | 0.02 0.06 0.100.05 0.13 0.22|1.00 1.00 1.00
200 100 50 | 0.03 0.07 0.12 ]0.06 0.15 0.24 | 1.00 1.00 1.00
200 200 50 |0.03 0.07 0.11]0.06 0.15 0.23|1.00 1.00 1.00
200 200 100 | 0.02 0.06 0.100.03 0.10 0.17 | 1.00 1.00 1.00
500 500 100 |0.02 0.06 0.100.04 0.11 0.18 | 1.00 1.00 1.00
500 500 200 |0.01 0.06 0.100.02 008 0.15|1.00 1.00 1.00
500 500 300|002 0.05 0.100.02 008 0.14|1.00 1.00 1.00
800 800 500 | 0.01 0.05 0.09 002 006 0.12|1.00 1.00 1.00
1000 1000 600 [ 0.01 0.06 0.10|0.01 0.07 0.12 | 1.00 1.00 1.00

Online Appendix - 120



DESIGN 2: k¢ =2,k = kL' =0, 8 =0.0, ar = 0.0, ¢ = 0.0, a, = 0.0, R? . = 0.8

SIZE POWER
Infeasible \ Feasible Feasible
Nominal size Nominal size
Ny N, T |0.01 005 0.10 \ 0.01 0.05 0.10 \ 0.01 0.05 0.10
HF data: PCA first, then flow sample the factors
50 50 35 (003 0.07 0.11]0.03 0.10 0.17| - - -
100 50 35 003 007 0.12]0.05 0.15 023 | - - -
100 100 35 | 0.03 0.08 0.12]0.06 0.15 023 | - - -
100 100 50 | 0.02 0.06 0.10|0.03 0.10 0.17 | - - -
200 100 50 | 0.03 0.07 0.11|0.05 0.14 022 | - - -
200 200 50 |0.02 0.07 0.10]0.05 0.13 020 | - - -
200 200 100 | 0.01 0.05 0.10|0.02 0.08 0.14| - - -
500 500 100 |0.01 0.05 0.10|0.03 0.09 0.16 | - - -
500 500 200|001 0.05 0.09|0.02 007 012 | - - -
500 500 300 |0.01 0.05 0.09]|0.01 006 O0.11 - - -
800 800 500 | 0.01 0.05 0.09]0.02 006 0.12| - - -
1000 1000 600 | 0.01 0.05 0.10|0.02 0.06 0.12| - - -
HF data: flow sample first, then PCA

50 50 35 (004 009 0.15]0.10 023 034 | - - -
100 50 35 | 0.04 0.09 0.14]0.10 024 034 | - - -
100 100 35 | 0.05 0.10 0.16 | 0.15 030 0.41 - - -
100 100 50 | 0.03 0.08 0.12|0.08 020 0.30| - - -
200 100 50 | 0.03 0.08 0.13]|0.09 021 032 - - -
200 200 50 |0.03 008 0.13]0.11 023 033| - - -
200 200 100 |0.02 0.06 0.11]0.04 0.13 022 | - - -
500 500 100 |0.02 0.07 0.12]0.05 0.15 025| - - -
500 500 200|001 0.05 0.10|0.03 0.10 0.17 | - - -
500 500 300 |0.01 006 0.10]0.02 009 0.14| - - -
800 800 500 | 0.01 0.05 0.10]0.02 0.08 0.15| - - -
1000 1000 600 | 0.01 0.05 0.10|0.02 0.08 0.14| - - -
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DESIGN 3: k¢ =2,k = kL' =1, 3= 0.0, ar = 0.0, ¢ = 0.0, a, = 0.0, R2,,, = 0.8
SIZE POWER
Infeasible \ Feasible Feasible
Nominal size Nominal size
Ny N, T |0.01 005 0.10 \ 0.01 0.05 0.10 \ 0.01 0.05 0.10
HF data: PCA first, then flow sample the factors
50 50 35 ]0.03 0.07 0.10]0.09 022 032|091 096 0.98
100 50 35 |0.06 0.11 0.150.18 0.32 042|094 098 0.99
100 100 35 | 0.03 0.07 0.12|0.13 027 038 | 1.00 1.00 1.00
100 100 50 | 0.02 0.06 0.10|0.07 0.18 0.28 | 1.00 1.00 1.00
200 100 50 | 0.03 0.08 0.13]0.11 026 037|100 1.00 1.00
200 200 50 |0.03 0.07 0.11]0.09 022 031|100 1.00 1.00
200 200 100 | 0.01 0.05 0.09 | 0.04 0.11 0.19 | 1.00 1.00 1.00
500 500 100 | 0.02 0.06 0.10|0.05 0.14 0.23 | 1.00 1.00 1.00
500 500 200 |0.01 0.04 0.090.02 009 0.17 | 1.00 1.00 1.00
500 500 300 |0.01 0.05 0.09]0.02 008 0.14|1.00 1.00 1.00
800 800 500 | 0.01 0.04 0.09|0.02 0.07 0.14|1.00 1.00 1.00
1000 1000 600 | 0.01 0.04 0.08 | 0.02 0.06 0.12 | 1.00 1.00 1.00
HF data: flow sample first, then PCA

50 50 35 (008 0.14 0.19]029 048 0.59]093 097 0.99
100 50 35 | 0.08 0.14 020 0.30 049 0.60 | 0.94 0.98 0.99
100 100 35 | 0.07 0.14 0.20|0.35 0.55 0.65|1.00 1.00 1.00
100 100 50 | 0.04 0.10 0.16 | 0.21 0.41 0.53|1.00 1.00 1.00
200 100 50 | 0.05 0O.11 0.17 022 041 052|100 1.00 1.00
200 200 50 |0.05 0.13 0.18] 026 044 0.55|1.00 1.00 1.00
200 200 100 | 0.03 0.07 0.12]0.09 023 0.34 | 1.00 1.00 1.00
500 500 100 | 0.03 0.09 0.14]0.12 027 0.38 | 1.00 1.00 1.00
500 500 200 |0.02 0.07 0.120.05 0.17 0.26 | 1.00 1.00 1.00
500 500 300 |0.01 006 O0.11]0.04 0.13 020 | 1.00 1.00 1.00
800 800 500 | 0.01 0.05 0.11|0.03 0.10 0.18 | 1.00 1.00 1.00
1000 1000 600 | 0.01 0.05 0.10|0.03 0.09 0.16 | 1.00 1.00 1.00
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DESIGN 4 : k¢ = 1,k = kP =1,3=0.2,ar = 0.0, ¢ = 0.0, a, = 0.0, R2,,, = 0.8
SIZE POWER
Infeasible \ Feasible Feasible
Nominal size Nominal size
Ny N, T |0.01 005 0.10 \ 0.01 0.05 0.10 \ 0.01 0.05 0.10
HF data: PCA first, then flow sample the factors
50 50 35 (002 0.05 0.08]0.03 0.09 0.14 093 098 0.9
100 50 35 |0.03 0.06 0.100.04 0.11 0.17 | 0.94 0.98 0.99
100 100 35 | 0.02 0.05 0.09|0.04 0.10 0.17 | 1.00 1.00 1.00
100 100 50 | 0.02 0.05 0.08|0.03 0.08 0.14|1.00 1.00 1.00
200 100 50 | 0.02 0.06 0.10|0.04 0.11 0.17 | 1.00 1.00 1.00
200 200 50 |0.02 0.06 0.09|0.03 009 0.15|1.00 1.00 1.00
200 200 100 | 0.02 0.05 0.09 | 0.02 0.07 0.13 | 1.00 1.00 1.00
500 500 100 | 0.02 0.05 0.09 | 0.03 0.07 0.13|1.00 1.00 1.00
500 500 200 |0.02 0.05 0.100.02 007 0.12|1.00 1.00 1.00
500 500 300 |0.01 0.04 0.09]|001 006 0.11|1.00 1.00 1.00
800 800 500 | 0.01 0.05 0.10|0.01 0.06 0.11|1.00 1.00 1.00
1000 1000 600 | 0.01 0.05 0.09 | 0.01 0.06 0.11 | 1.00 1.00 1.00
HF data: flow sample first, then PCA

50 50 35 ]0.03 0.07 0.10]0.07 0.16 0.23 094 098 0.9
100 50 35 |0.03 0.07 0.110.07 0.16 0.25|0.95 098 0.99
100 100 35 | 0.03 0.07 0.11]0.09 0.19 0.28 | 1.00 1.00 1.00
100 100 50 | 0.02 0.06 0.10|0.05 0.14 0.21 | 1.00 1.00 1.00
200 100 50 | 0.03 0.07 0.11]0.06 0.15 0.22|1.00 1.00 1.00
200 200 50 |0.03 0.06 O0.11]0.07 0.16 023 |1.00 1.00 1.00
200 200 100 | 0.02 0.06 0.10|0.03 0.10 0.18 | 1.00 1.00 1.00
500 500 100 | 0.02 0.06 0.10|0.04 0.11 0.18 | 1.00 1.00 1.00
500 500 200 |0.02 006 O0.11]0.03 009 0.15|1.00 1.00 1.00
500 500 300 |0.01 005 0.10]0.02 007 0.13|1.00 1.00 1.00
800 800 500 | 0.01 0.05 0.10|0.02 0.07 0.13|1.00 1.00 1.00
1000 1000 600 | 0.01 0.06 0.10|0.02 0.07 0.13|1.00 1.00 1.00
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DESIGN 5: k¢ = 1,k = kP =1,3= 0.0, ar = 0.6, ¢ = 0.0, a, = 0.0, R2,,, = 0.8
SIZE POWER
Infeasible \ Feasible Feasible
Nominal size Nominal size
Ny N, T |0.01 005 0.10 \ 0.01 0.05 0.10 \ 0.01 0.05 0.10
HF data: PCA first, then flow sample the factors
50 50 35 (004 009 0.13]0.05 0.13 0.20]095 098 0.9
100 50 35 |0.04 0.09 0.13|0.07 0.15 023|095 098 0.99
100 100 35 | 0.04 0.08 0.13|0.06 0.14 0.20 | 1.00 1.00 1.00
100 100 50 | 0.03 0.07 0.120.03 0.11 0.19 | 1.00 1.00 1.00
200 100 50 | 0.04 0.08 0.13]0.05 0.14 0.21 | 1.00 1.00 1.00
200 200 50 |0.03 0.07 0.12]0.04 0.11 0.19 | 1.00 1.00 1.00
200 200 100 | 0.02 0.06 0.11]0.03 0.08 0.15|1.00 1.00 1.00
500 500 100 |0.02 0.06 0.11]0.03 0.09 0.15|1.00 1.00 1.00
500 500 200 |0.01 0.06 0.100.01 007 0.13|1.00 1.00 1.00
500 500 300 |0.01 005 0.10]0.01 006 0.11|1.00 1.00 1.00
800 800 500 | 0.01 0.05 0.09|0.01 0.06 0.11|1.00 1.00 1.00
1000 1000 600 | 0.01 0.05 0.10|0.02 0.06 0.12|1.00 1.00 1.00
HF data: flow sample first, then PCA

50 50 35 (004 0.09 0.12]0.06 0.15 0.22]095 098 0.9
100 50 35 |0.04 0.09 0.13|0.07 0.16 024|095 098 0.99
100 100 35 | 0.04 0.08 0.12|0.07 0.16 0.23 | 1.00 1.00 1.00
100 100 50 | 0.03 0.07 0.120.04 0.13 0.20 | 1.00 1.00 1.00
200 100 50 | 0.04 0.08 0.12]0.06 0.15 0.22|1.00 1.00 1.00
200 200 50 |0.03 0.07 0.12]0.05 0.13 0.20 | 1.00 1.00 1.00
200 200 100 | 0.02 0.06 0.11]0.03 0.09 0.16 | 1.00 1.00 1.00
500 500 100 |0.02 0.06 0.11]0.03 0.10 0.17 | 1.00 1.00 1.00
500 500 200 |0.01 0.05 0.100.02 008 0.14| 1.00 1.00 1.00
500 500 300 |0.01 005 0.10]0.02 007 0.12|1.00 1.00 1.00
800 800 500 | 0.01 0.05 0.09|0.01 0.06 0.11|1.00 1.00 1.00
1000 1000 600 | 0.01 0.05 0.10|0.01 0.06 0.12|1.00 1.00 1.00
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DESIGN 6: k¢ =1,k = kL' =1, 3= 0.0, ar = 0.0, ¢ = 0.70, a. = 0.0, k%, = 0.8
SIZE POWER
Infeasible \ Feasible Feasible
Nominal size Nominal size
Ny N, T |0.01 005 0.10 \ 0.01 0.05 0.10 \ 0.01 0.05 0.10
HF data: PCA first, then flow sample the factors
50 50 35 (0.02 0.04 0.07]003 008 0.13|1.00 1.00 1.00
100 50 35 |/ 0.03 006 0.09|0.04 0.11 0.18 | 1.00 1.00 1.00
100 100 35 | 0.02 0.05 0.09|0.04 0.10 0.17 | 1.00 1.00 1.00
100 100 50 | 0.02 0.05 0.08 0.02 0.08 0.14|1.00 1.00 1.00
200 100 50 | 0.02 0.06 0.10|0.04 0.11 0.17 | 1.00 1.00 1.00
200 200 50 |0.02 0.05 0.08|0.03 009 0.15|1.00 1.00 1.00
200 200 100 | 0.01 0.05 0.09 | 0.02 0.07 0.12 | 1.00 1.00 1.00
500 500 100 | 0.02 0.06 0.09 | 0.02 0.08 0.14 | 1.00 1.00 1.00
500 500 200 |0.02 005 0.09]|0.02 006 0.11|1.00 1.00 1.00
500 500 300 |0.01 0.04 0.08]|001 005 0.11|1.00 1.00 1.00
800 800 500 | 0.01 0.05 0.09|0.01 0.05 0.11|1.00 1.00 1.00
1000 1000 600 | 0.01 0.04 0.09 | 0.01 0.05 0.10 | 1.00 1.00 1.00
HF data: flow sample first, then PCA

50 50 35 (003 0.06 0.09]0.07 015 023|100 1.00 1.00
100 50 35 /0.03 007 0.10]0.07 0.16 0.25|1.00 1.00 1.00
100 100 35 | 0.03 0.07 0.10|0.08 0.19 0.27 | 1.00 1.00 1.00
100 100 50 | 0.02 0.06 0.10|0.05 0.14 0.23 |1.00 1.00 1.00
200 100 50 | 0.03 0.07 0.10|0.06 0.14 0.22 | 1.00 1.00 1.00
200 200 50 |0.03 0.06 0.10]0.06 0.15 0.23|1.00 1.00 1.00
200 200 100 | 0.02 0.06 0.10|0.04 0.10 0.17 | 1.00 1.00 1.00
500 500 100 |0.02 0.07 0.11]0.04 0.12 0.19 | 1.00 1.00 1.00
500 500 200 |0.02 005 0.09]|0.03 008 0.14|1.00 1.00 1.00
500 500 300 |0.01 0.05 0.09]|0.02 007 0.13|1.00 1.00 1.00
800 800 500 | 0.01 0.05 0.10|0.02 0.07 0.12 | 1.00 1.00 1.00
1000 1000 600 | 0.01 0.05 0.09 | 0.02 0.06 0.12 | 1.00 1.00 1.00
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DESIGN 7: k¢ = 1,k = kL' =1, 3= 0.0, ap = 0.0, ¢ = 0.95, a. = 0.0, k%, = 0.8
SIZE POWER
Infeasible \ Feasible Feasible
Nominal size Nominal size
Ny N, T |0.01 005 0.10 \ 0.01 0.05 0.10 \ 0.01 0.05 0.10
HF data: PCA first, then flow sample the factors
50 50 35 (001 0.02 0.03]0.04 0.10 0.15{0.53 0.72 0.81
100 50 35 | 0.00 0.02 0.04|0.06 0.12 0.18 |0.75 0.87 0.92
100 100 35 | 0.01 0.03 0.05|0.05 0.11 0.18 | 0.93 098 0.98
100 100 50 | 0.01 0.03 0.06|0.03 0.09 0.14 098 0.99 1.00
200 100 50 | 0.02 0.05 0.07|0.04 0.11 0.16 | 1.00 1.00 1.00
200 200 50 | 0.01 0.04 0.08|0.03 0.09 0.15|1.00 1.00 1.00
200 200 100 | 0.01 0.04 0.08 | 0.02 0.07 0.12 | 1.00 1.00 1.00
500 500 100 | 0.02 0.05 0.09 | 0.03 0.08 0.13|1.00 1.00 1.00
500 500 200 |0.01 0.05 0.090.02 007 0.12| 1.00 1.00 1.00
500 500 300 |0.01 005 0.08]0.01 006 0.10|1.00 1.00 1.00
800 800 500 | 0.01 0.05 0.10|0.01 0.07 0.12 | 1.00 1.00 1.00
1000 1000 600 | 0.01 0.05 0.09 | 0.01 0.05 0.11 | 1.00 1.00 1.00
HF data: flow sample first, then PCA

50 50 35 (001 0.02 0.04]0.08 0.17 0.24 | 0.68 0.84 0.90
100 50 35 |0.01 003 005|008 0.17 024 0.81 091 0095
100 100 35 | 0.01 0.04 0.07|0.09 0.19 027|097 0.99 0.99
100 100 50 | 0.02 0.04 0.07 |0.06 0.14 0.220.99 1.00 1.00
200 100 50 | 0.02 0.05 0.09|0.06 0.14 0.21 | 1.00 1.00 1.00
200 200 50 |0.02 0.06 0.10]0.06 0.15 023 |1.00 1.00 1.00
200 200 100 | 0.01 0.05 0.09 | 0.03 0.10 0.17 | 1.00 1.00 1.00
500 500 100 |0.02 0.06 0.10|0.04 0.12 0.19 | 1.00 1.00 1.00
500 500 200 |0.02 006 0.10]0.03 009 0.15|1.00 1.00 1.00
500 500 300 |0.01 0.05 0.09]|0.02 007 0.13|1.00 1.00 1.00
800 800 500 | 0.01 0.06 0.11|0.02 0.08 0.14 | 1.00 1.00 1.00
1000 1000 600 | 0.01 0.05 0.10|0.02 0.06 0.13|1.00 1.00 1.00
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DESIGN 8 : k¢ = 1,k = kL' =5, 3= 0.0, ar = 0.0, ¢ = 0.00, a. = 0.0, k%, = 0.8
SIZE POWER
Infeasible \ Feasible Feasible
Nominal size Nominal size
Ny N, T |0.01 005 0.10 \ 0.01 0.05 0.10 \ 0.01 0.05 0.10
HF data: PCA first, then flow sample the factors
50 50 35 [0.00 0.00 0.01]0.00 0.01 0.03]027 056 0.72
100 50 35 | 0.00 0.00 0.010.01 0.04 008|075 092 097
100 100 35 | 0.00 0.01 0.01|0.01 0.03 0.05|1.00 1.00 1.00
100 100 50 | 0.00 0.01 0.02|0.01 0.04 0.06 | 1.00 1.00 1.00
200 100 50 | 0.00 0.01 0.02]0.02 0.04 0.08 | 1.00 1.00 1.00
200 200 50 | 0.00 0.01 0.02]0.01 003 006|100 1.00 1.00
200 200 100 | 0.00 0.01 0.03 | 0.01 0.04 0.07 | 1.00 1.00 1.00
500 500 100 | 0.01 0.02 0.03|0.01 0.04 0.07|1.00 1.00 1.00
500 500 200 |0.01 0.02 0.05|0.01 004 0.08]|1.00 1.00 1.00
500 500 300 |0.00 0.02 0.05]|0.01 004 0.08 /| 1.00 1.00 1.00
800 800 500 | 0.01 0.03 0.06 | 0.01 0.05 0.09|1.00 1.00 1.00
1000 1000 600 | 0.01 0.03 0.06 | 0.01 0.04 0.09 | 1.00 1.00 1.00
HF data: flow sample first, then PCA

50 50 35 |0.00 0.01 0.01]0.02 009 0.14|0.60 085 093
100 50 35 | 0.00 0.01 0.02|0.04 0.11 0.17 | 0.86 0.97 0.99
100 100 35 | 0.00 0.01 0.02|0.05 0.12 0.16 | 1.00 1.00 1.00
100 100 50 | 0.00 0.01 0.03|0.04 0.10 0.16 | 1.00 1.00 1.00
200 100 50 | 0.00 0.02 0.03|0.03 0.09 0.14|1.00 1.00 1.00
200 200 50 | 0.00 0.01 0.03]0.03 009 0.15|1.00 1.00 1.00
200 200 100 | 0.00 0.02 0.03|0.02 0.08 0.13|1.00 1.00 1.00
500 500 100 | 0.01 0.02 0.04 |0.02 0.07 0.12|1.00 1.00 1.00
500 500 200 |0.01 003 0.05]|0.02 007 0.13|1.00 1.00 1.00
500 500 300 |0.00 0.03 0.06|0.01 006 0.12|1.00 1.00 1.00
800 800 500 | 0.01 0.03 0.06 | 0.02 0.06 0.11 | 1.00 1.00 1.00
1000 1000 600 | 0.01 0.03 0.06 | 0.01 0.06 0.11 | 1.00 1.00 1.00
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DESIGN9: k¢ =1,k = kL' =5,3= 0.0, ar = 0.0, ¢ = 0.5, a, = 0.0, R2,,, = 0.8
SIZE POWER
Infeasible \ Feasible Feasible
Nominal size Nominal size
Ny N, T |0.01 005 0.10 \ 0.01 0.05 0.10 \ 0.01 0.05 0.10
HF data: PCA first, then flow sample the factors
50 50 35 {0.00 0.00 0.01]0.00 0.01 0.03]0.14 036 0.51
100 50 35 | 0.00 0.01 0.010.01 0.04 0.07 055 0.80 0.89
100 100 35 | 0.00 0.00 0.01 | 0.01 0.02 0.04|0.96 098 0.99
100 100 50 | 0.00 0.01 0.01 |0.01 0.03 0.05|0.99 1.00 1.00
200 100 50 | 0.00 0.01 0.02]0.01 0.04 0.08 | 1.00 1.00 1.00
200 200 50 | 0.00 0.01 0.02]0.01 004 0.06|1.00 1.00 1.00
200 200 100 | 0.00 0.01 0.03 | 0.01 0.03 0.06 | 1.00 1.00 1.00
500 500 100 | 0.00 0.02 0.03|0.01 0.04 0.07 | 1.00 1.00 1.00
500 500 200 |0.00 0.02 0.040.01 003 0.07]|1.00 1.00 1.00
500 500 300 |0.01 0.02 0.05]|0.01 004 0.08/|1.00 1.00 1.00
800 800 500 | 0.00 0.03 0.05]0.01 0.04 0.08|1.00 1.00 1.00
1000 1000 600 | 0.01 0.03 0.06 | 0.01 0.04 0.09 | 1.00 1.00 1.00
HF data: flow sample first, then PCA

50 50 35 [0.00 0.01 0.01]0.02 007 0.12]043 0.73 0.84
100 50 35 | 0.00 0.01 0.01]0.04 0.10 0.14|0.77 092 0.96
100 100 35 | 0.00 0.01 0.02|0.04 0.10 0.15|0.99 1.00 1.00
100 100 50 | 0.00 0.01 0.02|0.03 0.09 0.15|1.00 1.00 1.00
200 100 50 | 0.00 0.01 0.02]0.03 0.09 0.15|1.00 1.00 1.00
200 200 50 | 0.00 0.01 0.03]0.04 009 0.15|1.00 1.00 1.00
200 200 100 | 0.00 0.02 0.03|0.02 0.07 0.13|1.00 1.00 1.00
500 500 100 | 0.00 0.02 0.04 | 0.03 0.08 0.13|1.00 1.00 1.00
500 500 200 |0.01 0.02 0.04 001 006 0.11 ]| 1.00 1.00 1.00
500 500 300 |0.01 003 0.05]|002 006 0.11|1.00 1.00 1.00
800 800 500 | 0.01 0.03 0.06 | 0.01 0.06 0.11 | 1.00 1.00 1.00
1000 1000 600 | 0.01 0.03 0.06 | 0.01 0.06 0.11 | 1.00 1.00 1.00
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DESIGN 10: k¢ = 1,k = k¥ =5,83=0.0,ar = 0.0, = 0.7,a. = 0.0, B2 = 0.8

max

SIZE POWER
Infeasible \ Feasible Feasible
Nominal size Nominal size
Ny N, T |0.01 005 0.10 \ 0.01 0.05 0.10 \ 0.01 0.05 0.10
HF data: PCA first, then flow sample the factors
50 50 35 [0.00 0.00 0.00]0.00 0.01 0.02]0.04 0.16 0.28
100 50 35 | 0.00 0.00 0.01]0.01 0.02 0.05|027 054 0.66
100 100 35 | 0.00 0.00 0.01|0.01 0.02 0.04|0.76 0.88 0.92
100 100 50 | 0.00 0.01 0.01 |0.01 0.02 0.05|093 098 0.99
200 100 50 | 0.00 0.01 0.02]0.02 0.04 0.08 | 1.00 1.00 1.00
200 200 50 | 0.00 0.01 0.01]0.01 003 0.05|1.00 1.00 1.00
200 200 100 | 0.00 0.01 0.02|0.01 0.03 0.06 | 1.00 1.00 1.00
500 500 100 | 0.00 0.02 0.03|0.01 0.04 0.08 | 1.00 1.00 1.00
500 500 200 |0.00 0.02 0.05|0.01 004 0.09]|1.00 1.00 1.00
500 500 300 |0.00 0.02 0.05]|0.01 004 0.09|1.00 1.00 1.00
800 800 500 | 0.01 0.03 0.05]0.01 0.04 0.08|1.00 1.00 1.00
1000 1000 600 | 0.01 0.03 0.06 | 0.01 0.04 0.09 | 1.00 1.00 1.00
HF data: flow sample first, then PCA

50 50 35 [0.00 0.00 0.01]0.01 0.05 0.09]024 052 0.67
100 50 35 |0.00 0.00 0.01|0.02 006 0.12|0.53 0.77 0.85
100 100 35 | 0.00 0.01 0.01|0.03 0.09 0.13 092 097 0.98
100 100 50 | 0.00 0.01 0.02|0.03 0.08 0.13 098 099 1.00
200 100 50 | 0.00 0.01 0.02]0.03 008 0.13|1.00 1.00 1.00
200 200 50 | 0.00 0.01 0.02]0.03 008 0.13|1.00 1.00 1.00
200 200 100 | 0.00 0.02 0.03|0.02 0.07 0.12|1.00 1.00 1.00
500 500 100 | 0.00 0.02 0.04 | 0.03 0.08 0.13|1.00 1.00 1.00
500 500 200|001 0.03 0.05|0.02 007 0.12| 1.00 1.00 1.00
500 500 300 |0.00 0.03 0.06|0.02 007 0.12|1.00 1.00 1.00
800 800 500 | 0.01 0.03 0.06 | 0.01 0.05 0.11 | 1.00 1.00 1.00
1000 1000 600 | 0.01 0.03 0.07 | 0.01 0.06 0.11 | 1.00 1.00 1.00
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DESIGN 11: k¢ =1,k = kL =5, 3= 0.0, ar = 0.0, ¢ = 0.95, a, = 0.0, R2,,, = 0.8
SIZE POWER
Infeasible \ Feasible Feasible
Nominal size Nominal size
Ny N, T |0.01 005 0.10 \ 0.01 0.05 0.10 \ 0.01 0.05 0.10
HF data: PCA first, then flow sample the factors
50 50 35 [0.00 0.00 0.01]0.00 0.01 0.03]027 056 0.72
100 50 35 | 0.00 0.00 0.010.01 0.04 008|075 092 097
100 100 35 | 0.00 0.01 0.01|0.01 0.03 0.05|1.00 1.00 1.00
100 100 50 | 0.00 0.01 0.02|0.01 0.04 0.06 | 1.00 1.00 1.00
200 100 50 | 0.00 0.01 0.02]0.02 0.04 0.08 | 1.00 1.00 1.00
200 200 50 | 0.00 0.01 0.02]0.01 003 006|100 1.00 1.00
200 200 100 | 0.00 0.01 0.03 | 0.01 0.04 0.07 | 1.00 1.00 1.00
500 500 100 | 0.01 0.02 0.03|0.01 0.04 0.07|1.00 1.00 1.00
500 500 200 |0.01 0.02 0.05|0.01 004 0.08]|1.00 1.00 1.00
500 500 300 |0.00 0.02 0.05]|0.01 004 0.08 /| 1.00 1.00 1.00
800 800 500 | 0.01 0.03 0.06 | 0.01 0.05 0.09|1.00 1.00 1.00
1000 1000 600 | 0.01 0.03 0.06 | 0.01 0.04 0.09 | 1.00 1.00 1.00
HF data: flow sample first, then PCA

50 50 35 |0.00 0.01 0.01]0.02 009 0.14|0.60 085 093
100 50 35 | 0.00 0.01 0.02|0.04 0.11 0.17 | 0.86 0.97 0.99
100 100 35 | 0.00 0.01 0.02|0.05 0.12 0.16 | 1.00 1.00 1.00
100 100 50 | 0.00 0.01 0.03|0.04 0.10 0.16 | 1.00 1.00 1.00
200 100 50 | 0.00 0.02 0.03|0.03 0.09 0.14|1.00 1.00 1.00
200 200 50 | 0.00 0.01 0.03]0.03 009 0.15|1.00 1.00 1.00
200 200 100 | 0.00 0.02 0.03|0.02 0.08 0.13|1.00 1.00 1.00
500 500 100 | 0.01 0.02 0.04 |0.02 0.07 0.12|1.00 1.00 1.00
500 500 200 |0.01 003 0.05]|0.02 007 0.13|1.00 1.00 1.00
500 500 300 |0.00 0.03 0.06|0.01 006 0.12|1.00 1.00 1.00
800 800 500 | 0.01 0.03 0.06 | 0.02 0.06 0.11 | 1.00 1.00 1.00
1000 1000 600 | 0.01 0.03 0.06 | 0.01 0.06 0.11 | 1.00 1.00 1.00
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E.6 Tables: Selection of number of factors

DESIGN 1: k¢ =1, k% =kl =1,3=10.0,ar = 0.0, ¢ = 0.0, a, = 0.0, k%, = 0.8
AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first
Average number of estimated factors over 4000 MC sim.
Ny N, TR R k| R R R | RS R R | RO R R
Estimated k; and k-
50 50 35 (092 1.08 1.04 085 1.15 1.11 098 1.02 098 | 1.37 0.63 0.59
100 50 35 089 1.11 1.08 083 1.17 1.13 098 1.02 099|152 048 045
100 100 35 092 1.08 1.08 |0.85 1.15 1.15|1.00 1.00 1.00 | 1.12 0.88 0.88
100 100 50 | 094 1.06 1.06|0.89 1.11 1.11 |1.00 1.00 1.00 | 1.01 0.99 0.99
200 100 50 {091 1.09 1.09 | 0.87 1.13 1.13|1.00 1.00 1.00 | 1.09 091 091
200 200 50 [094 1.06 1.06 090 1.10 1.10| 1.00 1.00 1.00 | 1.00 1.00 1.00
200 200 100|097 103 103095 105 1.05]|1.00 1.00 1.00 | 1.00 1.00 1.00
500 500 100|097 1.03 1.03 096 104 1.04|1.00 1.00 1.00 | 1.00 1.00 1.00
500 500 200|098 1.02 1.02]098 102 1.02]|1.00 1.00 1.00 | 1.00 1.00 1.00
500 500 300|098 1.02 1.02 098 1.02 1.02|1.00 1.00 1.00 | 1.00 1.00 1.00
800 800 500099 101 1.01|099 1.01 1.01|1.00 1.00 1.00 | 1.00 1.00 1.00
1000 1000 600 | 0.99 1.01 1.01 099 1.01 1.01|1.00 1.00 1.00 | 1.00 1.00 1.00
True k; and k-

50 50 35 (095 105 105|088 1.12 1.12|1.00 1.00 1.00 | 141 0.59 0.59
100 50 35 091 1.09 109|085 1.15 1.15|1.00 1.00 1.00 | 1.55 045 045
100 100 35 092 1.08 1.08 | 0.85 1.15 1.15|1.00 1.00 1.00 | 1.12 0.88 0.88
100 100 50 | 094 1.06 1.06|0.89 1.11 1.11 |1.00 1.00 1.00 | 1.01 0.99 0.99
200 100 50 ({091 1.09 1.09 |0.87 1.13 1.13|1.00 1.00 1.00 | 1.09 091 091
200 200 50 [094 1.06 1.06 090 1.10 1.10| 1.00 1.00 1.00 | 1.00 1.00 1.00
200 200 100|097 1.03 1.03 095 105 1.05]|1.00 1.00 1.00 | 1.00 1.00 1.00
500 500 100|097 1.03 1.03 096 104 1.04|1.00 1.00 1.00 | 1.00 1.00 1.00
500 500 200|098 1.02 1.02]098 102 1.02]|1.00 1.00 1.00 | 1.00 1.00 1.00
500 500 300|098 1.02 1.02 098 102 1.02|1.00 1.00 1.00 | 1.00 1.00 1.00
800 800 500099 101 1.01|099 1.01 1.01|1.00 1.00 1.00 | 1.00 1.00 1.00
1000 1000 600 | 0.99 1.01 1.01 099 1.01 1.01|1.00 1.00 1.00 | 1.00 1.00 1.00

The numbers of pervasive factors k; and ky in the first step of all the four estimation procedures
considered are estimated using the /() information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;

in this case kmax = 16.
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DESIGN 2: k¢ =2,k = kL' =0, 8= 0.0, ar = 0.0, ¢ = 0.0, a, = 0.0, R? . = 0.8
AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first

Average number of estimated factors over 4000 MC sim.

Ny N, T | RS RORE | RS R R | RO RH R | RO R R
Estimated £, and k,
50 50 35 | 1.87 0.13 0.10 | 1.73 0.27 024|197 0.03 0.00 197 0.03 -0.00
100 50 35 [ 1.83 0.17 0.15| 1.73 0.27 025|198 0.02 0.00 | 1.98 0.02 0.00
100 100 35 | 1.86 0.14 0.14 | 171 0.29 0.29 | 2.00 0.00 0.00 | 2.00 0.00 -0.00
100 100 50 {191 0.09 009|182 0.18 0.18 |2.00 0.00 0.00 |2.00 0.00 0.00
200 100 50 | 1.88 0.12 0.12|1.81 0.19 0.19 | 200 0.00 0.00 [ 2.00 0.00 0.00
200 200 50 | 191 0.09 009|182 0.18 0.18 200 0.00 0.00|2.00 0.00 0.00
200 200 100|196 0.04 0.04 | 193 0.07 0.07|2.00 0.00 0.00 200 0.00 0.00
500 500 100|197 0.03 003|193 0.07 0.07 |2.00 0.00 0.00|2.00 0.00 0.00
500 500 200|198 0.02 002|197 0.03 0.03 200 0.00 0.00(2.00 000 0.00
500 500 300|199 0.01 001|198 0.02 0.02 200 0.00 0.00(2.00 000 0.00
800 800 500 1.99 0.01 0.01]1.99 0.01 0.01|200 0.00 000|200 0.00 0.00
1000 1000 600 | 1.99 0.01 0.01 | 1.99 0.01 0.01 [ 2.00 0.00 0.00 [ 2.00 0.00 0.00
True k; and &,

50 50 35 1 1.89 0.11 0.11]175 0.25 025|200 0.00 0.00|2.00 -0.00 -0.00
100 50 35 [ 1.85 0.15 0.15|1.74 0.26 0.26 | 200 0.00 0.00 | 2.00 0.00 0.00
100 100 35 | 1.86 0.14 0.14 | 171 0.29 0.29 | 2.00 0.00 0.00 | 2.00 -0.00 -0.00
100 100 50 {191 0.09 009|182 0.18 0.18 | 2.00 0.00 0.00 [ 2.00 0.00 0.00
200 100 50 | 1.88 0.12 0.12 | 1.81 0.19 0.19 | 200 0.00 0.00 [ 2.00 0.00 0.00
200 200 50 | 191 0.09 009|182 0.18 0.18 |2.00 0.00 0.00|2.00 0.00 0.00
200 200 100|196 0.04 0.04 | 193 0.07 0.07|2.00 0.00 0.00 200 0.00 0.00
500 500 100|197 0.03 003|193 0.07 0.07 |2.00 0.00 0.00|2.00 0.00 0.00
500 500 200|198 0.02 002|197 0.03 0.03 200 0.00 0.00(2.00 000 0.00
500 500 300|199 0.01 001|198 0.02 0.02|200 0.00 0.00(2.00 000 0.00
800 800 500 1.99 0.01 0.01|199 0.01 0.01|200 0.00 000|200 0.00 0.00
1000 1000 600 | 1.99 0.01 0.01 | 1.99 0.01 0.01 [ 2.00 0.00 0.00 [ 2.00 0.00 0.00

The numbers of pervasive factors k; and ks, in the first step of all the four estimation procedures
considered are estimated using the /() information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmaz = 16.
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DESIGN 3: k¢ =2, kT =kl =1,3=0.0, ar = 0.0, ¢ = 0.0, a.

=0.0, R?

=0.8

max

AGGR(2016)
HF data:
PCA first

AGGR(2016)
HF data:
flow samp. first

CHEN (2012)

WANG (2012)

Average number of estimated factors over 4000 MC sim.

Ny N, T | RCR O RE| RS BB |RC R RE | RC R
Estimated k; and k-
50 50 35 | 1.16 1.81 1.07 |1.00 198 124|128 170 096 |2.03 095 0.21
100 50 35 | 1.17 183 1.09|1.05 195 121129 171 098 | 199 1.01 0.27
100 100 35 |1.61 1.39 121|132 1.68 150|182 1.18 0.99 | 2.10 090 0.72
100 100 50 | 1.81 1.19 1.14 158 142 137 (195 1.05 1.00|2.00 1.00 0.96
200 100 50 | 1.74 126 122|158 142 137195 1.05 1.00|2.07 093 0.88
200 200 50 [1.83 1.17 117160 140 139|200 1.00 1.00| 200 1.00 1.00
200 200 100|193 1.07 107|185 1.15 1.15]200 1.00 1.00| 200 1.00 1.00
500 500 100|194 106 1.06|18 1.14 1.14|2.00 1.00 1.00| 200 1.00 1.00
500 500 200|197 1.03 103|194 1.06 1.06|2.00 1.00 1.00|2.00 1.00 1.00
500 500 300|198 1.02 102|196 1.04 1.04 200 1.00 1.00|2.00 1.00 1.00
800 800 500|199 101 101|198 102 1.02]200 1.00 1.00|200 1.00 1.00
1000 1000 600|199 1.01 1.01|199 1.01 1.01|200 1.00 1.00| 200 1.00 1.00
True k; and k-
50 50 35 | 1.81 1.19 1.19 149 151 151199 1.01 1.01 283 0.17 0.17
100 50 35 | 1.68 132 132|146 154 1541199 101 1.01 273 027 027
100 100 35 | 174 126 126|141 159 159|200 1.00 1.00|2.28 0.72 0.72
100 100 50 | 1.85 1.15 1.15|161 139 139200 1.00 1.00 | 2.04 096 0.96
200 100 50 | 1.76 124 124|160 140 140|200 1.00 1.00 |2.12 0.88 0.88
200 200 50 [ 1.83 1.17 1.17 (161 139 139|200 1.00 1.00| 200 1.00 1.00
200 200 100|193 1.07 107|185 1.15 1.15|200 1.00 1.00| 200 1.00 1.00
500 500 100|194 106 106|186 1.14 1.14|2.00 1.00 1.00| 200 1.00 1.00
500 500 200|197 1.03 103|194 1.06 1.06|2.00 1.00 1.00|2.00 1.00 1.00
500 500 300|198 1.02 102|196 1.04 1.04|2.00 1.00 1.00|2.00 1.00 1.00
800 800 500|199 101 101|198 1.02 1.02]200 1.00 1.00|200 1.00 1.00
1000 1000 600|199 1.01 1.01|199 1.01 1.01|200 1.00 1.00| 200 1.00 1.00

The numbers of pervasive factors k; and ks, in the first step of all the four estimation procedures
considered are estimated using the /() information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;

in this case kmax = 16.
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DESIGN 4 : k¢ =1,k =kl =1,3=0.2, ar = 0.0, ¢ = 0.0, a.

=0.0, R?

=0.8

max

AGGR(2016)
HF data:
PCA first

AGGR(2016)
HF data:
flow samp. first

CHEN (2012)

WANG (2012)

Average number of estimated factors over 4000 MC sim.

Ny N, T | RCR O RE| RS BB |RC R RE | RC R
Estimated k; and k-
50 50 35 1092 1.08 1.04 (085 1.15 1.12 1098 1.02 098 | 1.37 0.63 0.60
100 50 35 1090 1.10 1.07 {085 1.15 1.12 1098 1.02 099|152 048 045
100 100 35 {092 1.08 108|084 1.16 1.16 |1.00 1.00 1.00 | 1.12 0.88 0.88
100 100 50 {094 1.06 106|089 1.11 1.11 [ 1.00 1.00 1.00 | 1.01 0.99 0.99
200 100 50 [ 092 1.08 108|088 1.12 1.12|1.00 1.00 1.00 | 1.09 091 0.91
200 200 50 [094 106 106|090 1.10 1.10|1.00 1.00 1.00| 1.00 1.00 1.00
200 200 100 | 096 1.04 1.04 094 106 1.06|1.00 1.00 1.00| 1.00 1.00 1.00
500 500 100|097 1.03 103|095 1.05 105|100 1.00 1.00 | 1.00 1.00 1.00
500 500 200|098 1.02 102|097 1.03 1.03|1.00 1.00 1.00 | 1.00 1.00 1.00
500 500 300|099 1.01 101|098 1.02 1.02|1.00 1.00 1.00 | 1.00 1.00 1.00
800 800 500|099 101 101099 101 1.01]1.00 1.00 1.00|1.00 1.00 1.00
1000 1000 600|099 101 1.01|099 101 1.01|1.00 1.00 1.00| 1.00 1.00 1.00
True k; and k-
50 50 35 1095 1.05 105|087 1.13 1.131.00 1.00 1.00| 140 0.60 0.60
100 50 35 1092 1.08 1.08 086 1.14 1.14]1.00 1.00 1.00| 155 045 045
100 100 35 {092 1.08 108|084 1.16 1.16 |1.00 1.00 1.00 | 1.12 0.88 0.88
100 100 50 {094 1.06 106|089 1.11 1.11 [ 1.00 1.00 1.00 | 1.01 0.99 0.99
200 100 50 [ 092 1.08 108|088 1.12 1.12|1.00 1.00 1.00 | 1.09 091 0.91
200 200 50 [094 106 106|090 1.10 1.10|1.00 1.00 1.00| 1.00 1.00 1.00
200 200 100 | 096 1.04 1.04 094 106 1.06|1.00 1.00 1.00| 1.00 1.00 1.00
500 500 100|097 1.03 103|095 1.05 105|100 1.00 1.00 | 1.00 1.00 1.00
500 500 200|098 1.02 102|097 1.03 1.03|1.00 1.00 1.00 | 1.00 1.00 1.00
500 500 300|099 1.01 101|098 1.02 1.02|1.00 1.00 1.00 | 1.00 1.00 1.00
800 800 500|099 101 101099 101 101 ]1.00 1.00 1.00|1.00 1.00 1.00
1000 1000 600|099 1.01 1.01|{099 101 1.01|1.00 1.00 1.00| 1.00 1.00 1.00

The numbers of pervasive factors k; and ks, in the first step of all the four estimation procedures
considered are estimated using the /() information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;

in this case kmax = 16.
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DESIGN5: k¢ =1,k =kl =1,3= 0.0, ar = 0.6, ¢ = 0.0, a.

=0.0, R?

=0.8

max

AGGR(2016)
HF data:
PCA first

AGGR(2016)
HF data:
flow samp. first

CHEN (2012)

WANG (2012)

Average number of estimated factors over 4000 MC sim.

Ny N, T | RCR O RE| RS BB |RC R RE | RC R
Estimated k; and k-
50 50 35 1087 1.13 1.08 |0.85 1.15 1.10]098 1.02 098 | 1.08 092 0.87
100 50 35 1084 1.16 1.11 [0.84 1.16 1.12 096 1.04 099 | 1.26 0.74 0.70
100 100 35 | 088 1.12 1.11 |0.87 1.13 1.13|1.00 1.00 1.00 | 1.03 097 0.96
100 100 50 {092 1.08 108|090 1.10 1.10 | 1.00 1.00 1.00 | 1.00 1.00 1.00
200 100 50 | 089 1.11 1.11|0.89 1.11 1.11 |1.00 1.00 1.00 [ 1.02 098 0.98
200 200 50 {093 107 107092 108 1.08|100 1.00 1.00|1.00 1.00 1.00
200 200 100|095 105 105|095 105 1.05|100 1.00 1.00|1.00 1.00 1.00
500 500 100|097 1.03 103|096 1.04 1.04|1.00 1.00 1.00 | 1.00 1.00 1.00
500 500 200|098 1.02 102|098 1.02 1.02|1.00 1.00 1.00 | 1.00 1.00 1.00
500 500 300|099 1.01 101|098 1.02 1.02|1.00 1.00 1.00 | 1.00 1.00 1.00
800 800 500|099 101 101099 101 1.01]1.00 1.00 1.00|1.00 1.00 1.00
1000 1000 600|099 101 1.01|099 101 1.01|1.00 1.00 1.00| 1.00 1.00 1.00
True k; and k-

50 50 35 1090 1.10 1.10 0.88 1.12 1.12|1.00 1.00 1.00 | 1.13 0.87 0.87
100 50 35 1087 1.13 1.13 086 1.14 1.14 | 1.00 1.00 1.00 | 1.30 0.70 0.70
100 100 35 {089 1.11 1.11 087 1.13 1.13 | 1.00 1.00 1.00 | 1.04 096 0.96
100 100 50 {092 1.08 108|090 1.10 1.10 | 1.00 1.00 1.00 | 1.00 1.00 1.00
200 100 50 | 089 1.11 1.11|0.89 1.11 1.11 |1.00 1.00 1.00 | 1.02 098 0.98
200 200 50 {093 107 107092 108 1.08|100 1.00 1.00|1.00 1.00 1.00
200 200 100|095 105 105|095 105 1.05|1.00 1.00 1.00|1.00 1.00 1.00
500 500 100|097 1.03 103|096 1.04 1.04|1.00 1.00 1.00 | 1.00 1.00 1.00
500 500 200|098 1.02 102|098 1.02 1.02|1.00 1.00 1.00 | 1.00 1.00 1.00
500 500 300|099 1.01 101|098 1.02 1.02|1.00 1.00 1.00 | 1.00 1.00 1.00
800 800 500|099 101 101099 101 101 ]1.00 1.00 1.00|1.00 1.00 1.00
1000 1000 600|099 1.01 1.01|{099 101 1.01|1.00 1.00 1.00| 1.00 1.00 1.00

The numbers of pervasive factors k; and ks, in the first step of all the four estimation procedures
considered are estimated using the /() information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;

in this case kmax = 16.
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DESIGN6: k¢ =1,k =kl =1,3=0.0, ar = 0.0, » = 0.7, a.

=0.0, R?

=0.8

max

AGGR(2016)
HF data:
PCA first

AGGR(2016)
HF data:
flow samp. first

CHEN (2012)

WANG (2012)

Average number of estimated factors over 4000 MC sim.

Ny N, T | RCR R RS R RE | RO RH R | RO R
Estimated £, and k,
50 50 35 1090 1.10 1.07 [ 0.83 1.17 1.13]1.02 098 095|196 0.04 -0.00
100 50 35 1087 1.13 1.10 082 1.18 1.14 098 1.02 098 | 1.96 0.04 -0.00
100 100 35 {092 1.08 108|084 1.16 1.16 | 1.04 096 096 |2.00 0.00 0.00
100 100 50 {094 1.06 106|089 1.11 1.11 |1.00 1.00 1.00 | 1.99 0.01 0.01
200 100 50 [ 092 1.08 108|089 1.11 1.11 |1.00 1.00 1.00 |2.00 0.00 0.00
200 200 50 [095 105 105|090 1.10 1.10|1.00 1.00 1.00| 199 0.01 0.01
200 200 100|097 1.03 103|094 106 106|100 1.00 1.00|1.67 0.33 0.33
500 500 100|097 1.03 103|095 1.05 105|100 1.00 1.00 | 1.34 0.66 0.66
500 500 200|098 1.02 102|097 1.03 103|100 1.00 1.00 | 1.00 1.00 1.00
500 500 300|099 1.01 101|098 1.02 102|100 1.00 1.00 | 1.00 1.00 1.00
800 800 500099 101 101]099 101 1.01]1.00 1.00 1.00|1.00 1.00 1.00
1000 1000 600|099 101 1.01{099 1.01 1.01]|1.00 1.00 1.00| 1.00 1.00 1.00
True k; and k-

50 50 35 1092 1.08 1.08 085 1.15 1.15]1.03 097 097|200 -0.00 -0.00
100 50 35 1089 1.11 1.11 [0.84 1.16 1.16 | 1.00 1.00 1.00 | 2.00 -0.00 -0.00
100 100 35 {092 1.08 108|084 1.16 1.16 |1.04 096 096 |2.00 0.00 0.00
100 100 50 {094 1.06 106|089 1.11 1.11 |1.00 1.00 1.00 | 1.99 0.01 0.01
200 100 50 [ 092 1.08 108|089 1.11 1.11 |1.00 1.00 1.00 |2.00 0.00 0.00
200 200 50 [095 105 105|090 1.10 1.10|1.00 1.00 1.00| 199 0.01 0.01
200 200 100|097 1.03 103|094 106 106|100 1.00 1.00]|1.67 033 0.33
500 500 100|097 1.03 103|095 1.05 105|100 1.00 1.00 | 1.34 0.66 0.66
500 500 200|098 1.02 102|097 1.03 103|100 1.00 1.00 | 1.00 1.00 1.00
500 500 300|099 1.01 101|098 1.02 102|100 1.00 1.00 | 1.00 1.00 1.00
800 800 500099 101 101]099 101 101 ]1.00 100 1.00|1.00 1.00 1.00
1000 1000 600|099 101 1.01{099 1.01 1.01]|1.00 1.00 1.00| 1.00 1.00 1.00

The numbers of pervasive factors k; and ks, in the first step of all the four estimation procedures
considered are estimated using the /() information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;

in this case kmax = 16.
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DESIGN 7: k¢ = 1,k = kL' =1, 3= 0.0, ap = 0.0, ¢ = 0.95, a. = 0.0, k%, = 0.8
AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first
Average number of estimated factors over 4000 MC sim.
Ny No T | K¢ RORE | RS R R | RO R R | RO R
Estimated £, and k,
50 50 35 [ 1.17 0.83 0.79 1099 1.01 098|196 0.04 0.00| 1.96 0.04 -0.00
100 50 35 | 1.00 1.00 096|092 1.08 1.04 |18 0.11 0.07 196 0.04 0.00
100 100 35 | 094 1.06 1.06|0.85 1.15 1.14|2.00 0.00 0.00 | 2.00 0.00 0.00
100 100 50 [ 095 1.05 1.05|0.89 1.11 1.11|2.00 0.00 0.00 | 2.00 0.00 0.00
200 100 50 {092 1.08 1.08|0.88 1.12 1.12|1.97 0.03 0.03 |2.00 0.00 0.00
200 200 50 [ 094 1.06 1.06|090 1.10 1.10|2.00 0.00 0.00 | 2.00 0.00 0.00
200 200 100 [ 097 1.03 1.03 095 1.05 1.05]2.00 0.00 0.00|200 0.00 0.00
500 500 100|097 1.03 1.03 095 1.05 1.05]2.00 0.00 0.00|200 0.00 0.00
500 500 200|098 1.02 1.02|097 103 1.03|1.38 0.62 0.62|200 0.00 0.00
500 500 300|099 1.01 1.01 098 102 1.02|1.00 1.00 1.00|2.00 0.00 0.00
800 800 500|099 1.01 1.01]0.99 1.01 1.01|1.00 1.00 1.00|2.00 0.00 0.00
1000 1000 600 [ 0.99 1.01 1.01 | 099 1.01 1.01 | 1.00 1.00 1.00|2.00 0.00 0.00
True k; and k-

50 50 35 (119 081 081|100 1.00 1.00|2.00 0.00 0.00|2.00 -0.00 -0.00
100 50 35 | 1.02 098 098|093 1.07 1.07 |193 0.07 0.07 | 2.00 0.00 0.00
100 100 35 | 094 1.06 1.06|0.86 1.14 1.14|2.00 0.00 0.00 | 2.00 0.00 0.00
100 100 50 [ 095 1.05 1.05|0.89 1.11 1.11|2.00 0.00 0.00 | 2.00 0.00 0.00
200 100 50 {092 1.08 1.08|0.88 1.12 1.12|1.97 0.03 0.03 |2.00 0.00 0.00
200 200 50 [ 094 1.06 1.06|090 1.10 1.10|2.00 0.00 0.00 | 2.00 0.00 0.00
200 200 100 [ 097 1.03 1.03 095 1.05 1.05]2.00 0.00 0.00|200 0.00 0.00
500 500 100|097 1.03 1.03 095 1.05 1.05]2.00 0.00 0.00|200 0.00 0.00
500 500 200|098 1.02 1.02|097 103 1.03|1.38 0.62 0.62|200 0.00 0.00
500 500 300|099 1.01 1.01 098 102 1.02|1.00 1.00 1.00|2.00 0.00 0.00
800 800 500|099 1.01 1.01]0.99 1.01 1.01|1.00 1.00 1.00|2.00 0.00 0.00
1000 1000 600 | 0.99 1.01 1.01 | 099 1.01 1.01 | 1.00 1.00 1.00|2.00 0.00 0.00

The numbers of pervasive factors k; and ks, in the first step of all the four estimation procedures
considered are estimated using the /() information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmaz = 16.
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DESIGN 8 : k¢ = 1,k = kL =5, 3= 0.0, ar = 0.0, ¢ = 0.0, a, = 0.0, R2,,, = 0.8
AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first

Average number of estimated factors over 4000 MC sim.

~

Ny N, T | RCRRE | RS R ORE | RO R R | RO W
Estimated k; and k-
50 50 35 | 1.79 3.07 8.11 | 1.35 351 855|257 229 1733|1297 -8.12 -3.07
100 50 35 | 1.33 4.67 855 |1.13 487 875|223 377 7765|1436 -8.36 -4.48
100 100 35 [ 093 5.06 322|082 517 333|196 4.04 220 | 9.06 -3.07 -491
100 100 50 {096 5.03 439|090 5.09 445|151 448 385| 9.78 -3.79 -4.42
200 100 50 | 095 5.05 441|091 509 445|104 496 432 | 9.55 -355 -4.20
200 200 50 [ 095 505 400|090 5.10 405|145 455 350| 979 -3.79 -4.85
200 200 100 | 098 5.02 5.02 096 504 504|100 500 5.00]| 628 -0.28 -0.28
500 500 100 | 0.99 5.01 501|097 5.03 503|100 500 5.00| 732 -1.32 -1.32
500 500 200|099 501 501|098 5.02 502|100 500 5.00]| 1.01 499 499
500 500 3001|099 501 501|099 501 501|100 500 500 1.00 5.00 5.00
800 800 500|099 501 501]099 501 501|100 500 500| 1.00 500 5.00
1000 1000 600 | 1.00 5.00 5.00| 099 5.01 5.01|1.00 5.00 500| 1.00 5.00 5.00
True k; and k-

50 50 35 | 1.66 434 434|117 483 483|214 386 3.86| 1022 -422 -422
100 50 35 | 1.07 493 493 (096 504 504|147 453 4531049 -449 -449
100 100 35 [ 098 5.02 502|090 5.10 5.10 (266 334 3341091 -491 -491
100 100 50 {098 5.02 502|092 508 508|172 428 428 | 1043 -443 -443
200 100 50 | 096 5.04 504|093 507 507|108 492 4921020 -420 -4.20
200 200 50 | 098 5.02 502|094 506 506|177 423 423]1085 -4.85 -4.85
200 200 100 | 098 5.02 5.02|096 504 504|100 500 5.00]| 628 -0.28 -0.28
500 500 100 | 0.99 5.01 501|097 5.03 503|100 500 5.00| 732 ~-1.32 -1.32
500 500 200|099 5.01 501|098 5.02 502|100 500 5.00]| 1.01 499 499
500 500 3001|099 501 501|099 5.01 501|100 500 500 1.00 5.00 5.00
800 800 500|099 501 501]099 501 501|100 500 500| 1.00 500 5.00
1000 1000 600 | 1.00 5.00 5.00| 099 5.01 5.01|1.00 5.00 500| 1.00 5.00 5.00

The numbers of pervasive factors k; and ks, in the first step of all the four estimation procedures
considered are estimated using the /() information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmaz = 16.
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DESIGN 9: k¢ =1,k = k' =5, 3=10.0, ar = 0.0, » = 0.5, a, = 0.0, R? . = 0.8
AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first

Average number of estimated factors over 4000 MC sim.

Ny N, T | RCRRE | RS R ORE | RO R R | RO W
Estimated k; and k-
50 50 35 | 232 255 758 (1.68 319 823 |3.06 181 6.85 1226 -740 -2.36
100 50 35 | 1.65 434 822|130 470 858|274 326 7.14|13.82 -7.82 -394
100 100 35 [ 095 504 321|085 514 331|290 3.10 1.26| 855 -2.55 -4.38
100 100 50 {097 5.02 434|091 508 440|268 331 2.63| 846 -246 -3.14
200 100 50 | 095 505 441|091 509 445|156 444 380 | 851 -2.51 -3.15
200 200 50 [ 095 505 397|090 5.10 4.03|295 305 197| 868 -2.68 -3.76
200 200 100 | 099 5.01 501|096 504 504|121 479 479| 620 -020 -0.20
500 500 100 | 0.99 501 501|097 5.03 503|117 483 483 | 625 -0.25 -0.25
500 500 200|099 501 501|099 501 501|100 500 500/ 491 1.09 1.09
500 500 3001|099 501 501|098 5.02 502|100 500 500 1.388 4.62 462
800 800 500|099 501 501]099 501 501|100 500 500| 1.00 500 5.00
1000 1000 600 | 1.00 5.00 5.00| 099 5.01 5.01|1.00 5.00 500| 1.00 5.00 5.00
True k; and k-
50 50 35 1199 401 401|131 469 469|270 330 330| 949 -349 -349
100 50 35 | 1.20 4.80 4.80 | 1.00 5.00 5.00 (201 399 399 | 994 -394 -394
100 100 35 | 1.00 5.00 500|092 5.08 508|365 235 2351038 -438 -4.38
100 100 50 {098 5.02 502|093 507 507292 3.08 3.08| 9.14 -3.14 -3.14
200 100 50 | 097 5.03 503|093 507 507|168 432 432 9.15 -3.15 -3.15
200 200 50 | 098 5.02 502|094 506 506|339 261 261| 976 -3.76 -3.76
200 200 100 | 099 5.01 501|096 504 504|121 479 479| 620 -020 -0.20
500 500 100 | 0.99 501 501|097 5.03 503|117 483 483 | 625 -0.25 -0.25
500 500 200|099 501 501|099 501 501|100 500 5.00]| 491 1.09 1.09
500 500 3001|099 501 501|098 5.02 502|100 500 500 1.388 4.62 462
800 800 500|099 501 501]099 501 501|100 500 500| 1.00 500 5.00
1000 1000 600 | 1.00 5.00 5.00| 099 5.01 5.01|1.00 5.00 500| 1.00 5.00 5.00

The numbers of pervasive factors k; and ks, in the first step of all the four estimation procedures
considered are estimated using the /C),3 information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmaz = 16.
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DESIGN 10: k¢ =1,k = kL' =5, 3= 0.0, ar = 0.0, » = 0.7, a. = 0.0, k%, = 0.8
AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first
Average number of estimated factors over 4000 MC sim.
Ne No T | B¢ R R | RS R B | RO R R | RO R
Estimated k; and k-
50 50 35 (3.00 1.88 6.89 209 279 7.80/|359 129 6.31]11.62 -6.73 -1.72
100 50 35 222 378 7.66|1.66 434 822|341 258 646 | 1321 -7.21 -3.33
100 100 35 | 1.02 498 3.15]0.89 510 327|370 229 046 | 793 -1.94 -3.77
100 100 50 | 1.00 5.00 437|094 506 443|412 187 124 | 763 -1.63 -2.26
200 100 50 [ 096 5.04 439|093 507 443|282 3.18 253 | 7.72 -1.72 -2.37
200 200 50 [ 097 5.03 395|092 508 4.00|450 150 042 ] 7.64 -1.64 -2.72
200 200 100 [ 098 5.02 5.01 | 097 503 5.03|322 278 278 | 6.04 -0.04 -0.04
500 500 100|099 5.01 5.01 097 503 5.03]|350 250 250 6.03 -0.03 -0.03
500 500 200|099 501 5.01 098 502 502|101 499 499 | 6.00 0.00 0.00
500 500 300|099 501 5.01)|098 502 5.02|1.00 500 500| 591 0.09 0.09
800 800 500|099 501 5.01]099 501 501|100 500 500 1.80 420 4.20
1000 1000 600 | 1.00 5.00 5.00 | 0.99 5.01 5.01 |1.00 5.00 5.00]| 1.01 499 499
True k; and k-

50 50 35 | 252 348 348|157 443 443|334 266 266 | 884 -2.84 -2.84
100 50 35 | 1.55 445 445|121 479 479|270 330 330 | 933 -333 -3.33
100 100 35 | 1.13 487 487|097 503 503|475 125 125|977 -3.77 -3.77
100 100 50 | 1.01 499 499|095 505 5.05|442 158 158 | 827 -2.27 -2.27
200 100 50 [ 097 5.03 503|094 506 5.06|298 3.02 3.02| 837 -237 -237
200 200 50 [ 098 5.02 502|095 505 505|526 074 074 872 -2.72 -2.72
200 200 100 [ 098 5.02 5.02 097 503 5.03|322 278 278 | 6.04 -0.04 -0.04
500 500 100|099 5.01 5.01 097 503 503|350 250 250 | 6.03 -0.03 -0.03
500 500 200|099 501 5.01 098 502 502|101 499 499 | 6.00 0.00 0.00
500 500 300|099 501 5.01)|098 502 5.02|1.00 500 500| 591 0.09 0.09
800 800 500|099 501 5.01]099 501 501|100 500 500 1.80 420 4.20
1000 1000 600 | 1.00 5.00 5.00 | 0.99 5.01 5.01|1.00 5.00 5.00| 1.01 499 499

The numbers of pervasive factors k; and ks, in the first step of all the four estimation procedures
considered are estimated using the /C),3 information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmaz = 16.
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DESIGN 11 : k¢ =1, k¥ = k' =5,3=10.0,ar = 0.0, ¢ = 0.95, a, = 0.0, R?, = 0.8
AGGR(2016) AGGR(2016) CHEN (2012) WANG (2012)
HF data: HF data:
PCA first flow samp. first

Average number of estimated factors over 4000 MC sim.

Ny N, T | RCRRE | RS R ORE | RO R R | RO W
Estimated k; and k-
50 50 35 | 434 053 5541339 148 650|448 040 54111073 -586 -0.85
100 50 35 | 4.19 1.81 568 |3.15 285 6721494 106 493 | 1234 -635 -247
100 100 35 {249 351 170|174 426 245|418 181 0.01 ] 694 -094 -2.75
100 100 50 | 273 327 263|193 407 343|534 066 0.01 | 657 -0.57 -1.22
200 100 50 | 2.10 390 323|172 428 361|531 069 0.02| 670 -0.70 -1.36
200 200 50 | 1.64 436 329|129 471 3.64|493 107 0.00| 642 -042 -1.49
200 200 100 | 1.19 4.81 4.81|1.07 493 493|600 0.00 0.00| 6.00 -0.00 -0.00
500 500 100 | 0.99 5.01 501|098 5.02 5.02|6.00 000 0.00| 6.00 -0.00 -0.00
500 500 200|099 501 501|098 5.02 502|600 0.00 0.00| 6.00 0.00 0.00
500 500 3001|099 501 501|099 5.01 501|600 0.00 0.00| 6.00 0.00 0.00
800 800 500|099 501 501]099 501 501|600 000 0.00]| 600 000 0.00
1000 1000 600 | 1.00 5.00 5.00| 099 5.01 5.01|6.00 0.00 0.00| 6.00 0.00 0.00
True k; and k-
50 50 35 14.09 191 1091|273 327 327 453 147 147 | 798 -1.98 -1.98
100 50 35 | 333 2.67 267|249 351 3511430 170 1.70 | 8.47 -2.47 -247
100 100 35 {296 3.04 3.04 205 395 395|590 0.10 0.10| 875 -2.75 -2.75
100 100 50 | 286 3.14 3.14 203 397 397 (596 004 0.04 | 722 -1.22 -1.22
200 100 50 | 2.17 3.83 383|177 423 423|587 0.13 0.13| 7.36 -1.36 -1.36
200 200 50 | 1.76 424 424|136 464 464|600 000 0.00| 749 -149 -1.49
200 200 100 | 1.19 4.81 4.81|1.07 493 493 | 6.00 0.00 0.00| 6.00 -0.00 -0.00
500 500 100 | 0.99 5.01 501|098 5.02 5.02|6.00 000 0.00| 6.00 -0.00 -0.00
500 500 200|099 501 501|098 5.02 502|600 0.00 0.00| 600 0.00 0.00
500 500 300|099 501 501|099 5.01 501|600 0.00 0.00| 600 0.00 0.00
800 800 500|099 501 501]099 501 501|600 000 0.00]| 600 000 0.00
1000 1000 600 | 1.00 5.00 5.00| 099 5.01 5.01|6.00 0.00 0.00| 600 0.00 0.00

The numbers of pervasive factors k; and ks, in the first step of all the four estimation procedures
considered are estimated using the /C),3 information criteria of Bai and Ng (2002), with kmax = 8.
The same information criterion is used also in the second step of the Wang (2012) procedure for the
selection of the number of pervasive factors R in the stacked panel of HF (flow sampled) and LF data;
in this case kmaz = 16.
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E.7 Cross-sectional distribution of ?? and adjusted 12> for correctly specified
and misspecified number of common factors

In the empirical analysis of Section 7 we use adjusted R? as a measure to compare the fraction of variability
of the original data explained by the different estimated factors. One referee raised the important issue of
whether two highly correlated specific factors (as the ones considered in some of the previous simulation designs)
maybe better interpreted as a common factor when the sample sizes are as small as in our empirical application,
especially when adjusted R? is used. In fact, it is possible that interpreting two highly correlated specific factors
as one common factor will increase the adjusted adjusted R? even more due to the efficiency gain from a larger
combined sample.

We address this concern in a MC experiment where data are generated from a DGP with k¢ = 1 common
factor, and 1 HF-specific and 1 LF-specific factors (k¥ = k' = 1) which are highly correlated. We consider
two values of the correlation coefficient among the specific factors, namely ¢ = 0.7, and 0.9. Then, we estimate
on the simulated data both a correctly specified model with k¢ = kf = k* = 1, and a misspecified model with
k¢ =2 and k' = kL = 0. In both cases we compute the quantiles of the CS distributions for both the R?, and
the adjusted R2, of the regressions of the observed data on the different estimated factors, as in Table 1. That
is, for the correctly specified model we regress the simulated LF and HF data on (i) the common factor only, (ii)
the specific factor only, and (iii) both common and specific factors. For the misspecified model the regressors
include the two common factors only. Table E.5 (¢ = 0.7) and Table E.6 (¢ = 0.9) report the sample average
computed over 2000 MC simulations for each of the 10%, 25%, 50%, 75%, and 90% quantiles of both the RZs,
and the adjusted R?s. The results clearly show that the factors estimated from a correctly specified model, when
both the common and the specific factors are included in the regressions, produce both R? and adjusted R? for
the LF data which are consistently higher than those of a misspecified model. As expected, the cross-sectional
distribution of the regressions of the HF data on one common and one HF-specific factors produce exactly the
same R? and adjusted R? as the regressions on 2 common factors. This happens because the common and the
specific factors are estimated from a rotation of the same k; = 2 pervasive factors estimated by PCA in the
first step of our procedure, which are also used to estimate the two common factors in the misspecified model.
The results are qualitatively the same for both values of the correlation coefficients among the specific factors
¢ = 0.7, and 0.9. They suggest that even for prediction purposes distinguishing two highly correlated specific
factors from a single common factor is valuable.
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Table E.5: Sample averages over 2000 MC simulations of the quantiles of R* and adjusted R?* of
regressions on true and estimated factors, with bell = 0.8, Ny =100, N, = 50,T = 35, M = 4,
ap =0.0,8=0,a,=0.0,¢=0.7.

Panel A: Estimated with k€ = £k = kL = 1, as in DGP Panel B: Estimated with k€ = 2, kH = kL =0
R2: Quantile R2: Quantile
Factors 10% 25% 50% 75%  90% Factors 10% 25% 50% 75% 90%
Observables: LF variables Observables: LF variables
common 0.6 3.0 122 312 52.7 common 5.1 125 267 447 6l1.1
common, LF-spec. 7.0 17.2 369 60.5 77.0 common, LF-spec. - - - - -
LF-spec. 0.6 29 119 309 53.0 LF-spec. - - - - -
Observables: HF variables Observables: HF variables
common 0.4 2.5 10.7 295 52.4 common 5.8 150 343 585 762
common, HF-spec. 5.8 150 343 585 76.2 common, HF-spec. - - - - -
HF-spec. 0.4 2.5 106 290 517 HF-spec. - - - - -
Panel C: Estimated with k€ = k™ = kL = 1, as in DGP Panel D: Estimated with k€ = 2,k = kL =0
R2: Quantile R2: Quantile
Factors 10% 25% 50% 75% 90% Factors 10% 25% 50% 75% 90%
Observables: LF variables Observables: LF variables
common -2.4 0.1 9.6 29.2 51.2 common -0.9 7.1 222 413 587
common, LF-spec. 1.2 12.0 33.0 58.0 75.6 common, LF-spec. - - - - -
LF-spec. -2.4 0 9.2 28.8 516 LF-spec. - - - - -
Observables: HF variables Observables: HF variables
common -0.3 1.8 10.1 29.0 52.0 common 4.4 13.8 333 579 759
common, HF-spec. 4.4 138 333 579 759 common, HF-spec. - - - - -
HF-spec. -0.3 1.8 10.0 285 514 HF-spec. - - - - -

In each line we report the sample averages, computed over 2000 MC simulations, of the quantiles of R? (Panels A and B)
and adj. R? (Panels C and D) of regressions on estimated factors. In all panels, the regressions in the first three lines involve
the growth rates of the 50 LF observables as dependent variables, while those in the last three lines involve the growth rates
of the 100 HF observables as dependent variables. In Panels A and C the explanatory variables are the factors estimated
assuming that k¢ = k¥ = k* = 1, as in the DGP. In Panels B and D the explanatory variables are the factors estimated
assuming that k¢ = 2 and k¥ = k¥ = 0, differently from the true number of factors in the DGP. The low-frequency
sample size 7' is set equal to 35, and the number of high-frequency subperiods is M = 4. All low frequency observables
are flow-sampled. For all the DGPs we set ap = 0.0, 8 = 0, a, = 0.0, ¢ = 0.7, and RZ” =0.8.
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Table E.6: Sample averages over 2000 MC simulations of the quantiles of R* and adjusted R?* of
regressions on true and estimated factors, with bell = 0.8, Ny =100, N, = 50,T = 35, M = 4,
ap =0.0,8=0,a,=0.0,¢=0.9.

Panel A: Estimated with k€ = k7 = kL = 1, as in DGP
R2: Quantile

Panel B: Estimated with k€ = 2, kH = kL =0
R2: Quantile

Factors 10% 25% 0% 75% 90% Factors 10% 25% 50% 75% 90%

Observables: LF variables Observables: LF variables

common 0.6 3.1 126 320 53.1

common, LF-spec. 6.8 172 368 602 76.9 common LF 61 152 327 336 690

LF-spec. 05 28 115 302 522 common, Lb-spec. - i i i i
LF-spec. - - - - -

Observables: HF variables Observables: HF variables

common 0.4 2.5 108 29.6 524
common, HF-spec. 5.6 149 341 586 762 common HE 6 149 341 386 762
HF-spec. 04 24 106 289 515 common, Hi-spee. - . . i i
HF-spec. - - - - -
Panel C: Estimated with k¢ = kH = kI = 1, as in DGP Panel D: Estimated with k¢ = 2,k = kI =0
R2: Quantile R2: Quantile
Factors 10% 25% 50% 75% 90% Factors 10% 25% 50% 75% 90%
Observables: LF variables Observables: LF variables
common 2.4 0.2 100 299 517 common 0.2 9.9 28.5 50.7 67.1
common, LF-spec. 1.0 120 329 578 754 common, LF-spec. - - - - -
LF-spec. -2.5 -0.2 8.9 28.1  50.8 LF-spec. - - - - -
Observables: HF variables Observables: HF variables
common -0.3 1.8 10.1  29.1  52.1 common 43 13.6  33.1 58.0 759
common, HF-spec. 4.3 13.6 33.1 580 759 common, HF-spec. - - - - -
HF-spec. -0.3 1.7 10.0 284 51.1 HF-spec. - - - - -

In each line we report the sample averages, computed over 2000 MC simulations, of the quantiles of R? (Panels A and B)
and adj. R? (Panels C and D) of regressions on estimated factors. In all panels, the regressions in the first three lines involve
the growth rates of the 50 LF observables as dependent variables, while those in the last three lines involve the growth rates
of the 100 HF observables as dependent variables. In Panels A and C the explanatory variables are the factors estimated
assuming that k¢ = kf = k¥ = 1, as in the DGP. In Panels B and D the explanatory variables are the factors estimated
assuming that k¢ = 2 and k7 = k% = 0, differently from the true number of factors in the DGP. The low-frequency
sample size 7T is set equal to 35, and the number of high-frequency subperiods is M = 4. All low frequency observables
are flow-sampled. For all the DGPs we set ap = 0.0, 3 =0, a. = 0.0, ¢ = 0.9, and Rill =0.8.
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