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Lecture Outline

1. Testing CAPM: historical development

2. Statistical description of the asset pricing tests

3. Statistical discipline and philosophy

Relevant readings:

� Cochrane: chapters 7, 12, 14, 15, 16

� Huang and Litzenberger: chapter 10

� Campbell, Lo, and MacKinlay: chapters 6 and 7
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1. Testing CAPM: historical development
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Quick Review: The CAPM

� The Sharpe-Lintner-Mossin (SLM) version of the model assumes that the risk-free rate is avail-
able. For any asset i :

E (Ri) = Rf + �i
�
E (Rm)�Rf

�
(1)

where Rm is the total wealth (i.e., market) portfolio and

�i =
Cov (Ri; Rm)

V ar (Rm)
(2)

� The model states that the market return is mean-variance e�cient

� That is: the expected return on any asset can be spanned by the expected return on the market
and the risk free rate

� The Black (1972) version of the model is derived without assuming the existence of the risk-free
rate:

E (Ri) = E (R0) + �i (E (Rm)� E (R0)) (3)

where R0 is the return on a mean-variance e�cient portfolio with zero covariance with Rm. It
turns out that E (Rm)� E (R0) > 0
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Testable Predictions

� SLM version:

1. Consider the time-series regression

Rit �Rf = �i + �i
�
Rmt �Rf

�
+ "it: (4)

Take expectations of both sides. The model predicts

(a) �i = 0 8i = 1 : : : N

2. Consider the cross-sectional regression

ET (R
e
i ) = a+ �i�+ di + ui i = 1:::N (5)

ET
�
Rei

�
: time-series average excess return (it is an estimate of the expected excess return)

di : vector of stock characteristics di�erent from beta (e.g. size, dividend yield, volatility,

etc.):

(a) � = E (Rm)�Rf > 0

(b) �i � a+ ui = 0 8i (zero pricing errors)

(c)  = 0
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� Black version:

1. In the model

E (Ri) = �i + �iE (Rm)

it has to be the case that

�i = E (R0) (1� �i) 8i = 1 : : : N:

This is a non-linear restriction on the parameters
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Conceptual Issues in the Tests

1. The model predictions are stated in terms of ex ante expected returns and betas but tested on

sample moments

� The solution is to assume Rational Expectations: the realized returns are drawings from equi-

librium distributions. Because of rational expectations, the ex ante distributions correspond

to the equilibrium distributions. So, the sample moments converge to the ex-ante moments

2. CAPM holds period by period: it is a conditional model.

How to handle non-stationarity in the moments of the ex ante distribution?

� One solution is to assume that CAPM holds unconditionally too.

Implications of this assumption:

The conditional CAPM:

Et
�
Rei;t+1

�
= �itEt

�
Rem;t+1

�
�it =

Covt
�
Ri;t+1; Rm;t+1

�
V art

�
Rm;t+1

�
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Take unconditional expectations of both sides

E
�
Et
�
Rei;t+1

��
= E

�
�itEt

�
Rem;t+1

��
E
�
Rei;t+1

�
= Cov

�
�it; Et

�
Rem;t+1

��
+E (�it)E

�
Rem;t+1

�
For the model to hold unconditionally, one needs to assume that

Cov
�
�it; Et

�
Rem;t+1

��
= 0

E (�it) = �i =
Cov (Ri; Rm)

V ar (Rm)

This is not necessarily true. For example:

{ Beta can change along the business cycle

{ Beta can change along the �rm's life-cycle

� The other solution is to model the conditional moments. We will discuss this strategy later
on. For now, the focus is on unconditional tests
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3. Roll's (1977) critique: the total wealth portfolio includes non-marketable assets (e.g. human

capital, private businesses, etc.). Instead, the tests typically focus on a proxy of the market that

is traded (e.g. the S&P 500, the CRSP index, etc.)

� Consequence: measurement error in the market return.
Rejection of CAPM may depend on use of incorrect market portfolio

� Most tests ignore the unobservability and assume proxy is mean-variance e�cient

� Also: if the true market portfolio is su�ciently correlated with the proxy (above 70%), a
rejection of the proxy implies a rejection of the true portfolio (Stambaugh (1982), Kandal

and Stambaugh (1987), Shanken (1987))

� Some authors have tried to compute a broader proxy by including the return on human capital
(Jagannathan and Wang (1996))
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Econometric Issues in the Tests

1. The errors in equation (5) are likely to be heteroskedastic and correlated across assets

� OLS coe�cients are unbiased but ine�cient (OLS is not BLUE, GLS is)

� OLS standard errors are biased

� Possible Solutions (we will see them below in more detail):

(a) Use feasible GLS

(b) Use OLS to estimate the slopes and adjust the standard errors

(c) Fama and MacBeth (1973) procedure

� We will consider them in the next section
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2. The betas in equation (5) are measured with error because they are estimates of true betas

� Measurement error causes ̂ to be biased towards zero and CAPM rejected

True model:

ET (R
e
i ) = a+ �i + ui

But one observes:

�̂i = �i + wi

The Plim of the cross-sectional estimate is:

P lim ̂ =
Cov

�
ET

�
Rei

�
; �̂i

�
V ar

�
�̂i
�

=
Cov (a+ �i + ui; �i + wi)

V ar (�i + wi)

= 
V ar (�i)

V ar (�i) + V ar (wi)
< 
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� Solutions:

(a) Group the data into portfolios

(b) Use instrumental variables

(c) Adjust the estimates for the bias
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3. The betas in equation (4) are likely to change over time

� Betas change over the life-cycle in a non-stationary way

� Historical solution: form portfolios according to a stationary characteristic

� Does it work?
See Franzoni (2002): Where's beta going?

4. High volatility of individual stock returns

� For individual stocks, cannot reject hypothesis that average returns are all the same

� St. error of mean is �i
T 1=2

. If �i between 40% and 80% and T = 60 months, very large

con�dence intervals

� Solution: form portfolios

5. Non-synchronous trading

� Small stocks react slowly to information
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� Solution (Scholes and Williams, 1977, Dimson, 1979)

�̂ =
�̂
+
+ �̂ + �̂

�

1 + 2�

where �̂
+
; �̂
�
; and �̂ come from the simple regression of stock returns on leads, lags, and

the contemporaneous market return:

Reit = �+i + �
+
i Rm;t+1 + "

+
t

Reit = �i + �iRm;t + "t

Reit = ��i + �
�
i Rm;t�1 + "

�
t

� is the 1st order auto-correlation of the market return.

Note that if � = 1, it is as if you were running three times the same regression. Then, you

have to divide the sum of the betas by 1 + 2� = 3

If � = 0, each of the three regressions provides independent information on the reaction of

stock returns to market returns. Then, the sum of the three betas does not need to be

normalized.
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Portfolio Grouping Approach

� Consider forming G groups of L stocks

� The measured beta for group g is

�̂g =
1

L

LX
j=1

�̂j =
1

L

LX
j=1

�
�j + wj

�
= �g +

1

L

LX
j=1

wj

� So the variance of the measurement error for the portfolio beta is

V ar

0@1
L

LX
j=1

wj

1A = 1

L
�2w

as long as the measurement errors of the individual securities are uncorrelated

� As L!1 the measurement error goes to zero and the estimates are consistent

� The grouping procedure can induce correlation in within-group measurement error
E.g.: suppose grouping by estimated betas
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Grouping and E�ciency

� Grouping reduces dispersion in betas relative to ungrouped data:

V ar (�i)| {z }
Ungrouped V ariance

= V ar (E (�jG))| {z }
Between�Group V ariance

+

EG (V ar (�ijG))| {z }
Average Within�Group V ariance

� Hence, it reduces the e�ciency of the cross-sectional estimates

� Need grouping procedure that maximizes between-group variation in betas and minimizes corre-
lation with measurement error

� E.g.: group by non-contemporaneous estimates of betas from non-overlapping data

{ Measurement error is uncorrelated over time

{ Estimated betas are positively correlated with true betas over time
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Instrumental Variable Approach

� Closely related to grouping approach

� Need to �nd instrument zi for �i such that

Cov (zi; wi) = 0 uncorrelated with measurement error

Cov (zi; ui) = 0 uncorrelated with regression error

Cov (zi; �i) 6= 0 correlated with true beta

� Then, use Instrumental Variable (IV) estimator

�̂IV =
Cov

�
ET

�
Rei

�
; zi
�

Cov
�
�̂i; zi

�
� Or one can use 2SLS if multiple instruments

� One can show that grouping is equivalent to IV on ungrouped data with zi equal to group rank,
if group membership is constant over-time
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Bias Adustment

� Remember the cross-sectional estimates with measurement error wi

P lim ̂ =
Cov

�
ET

�
Rei

�
; �̂i

�
V ar

�
�̂i
�

= 
V ar (�i)

V ar (�i) + V ar (wi)

These are cross-sectional population moments

� If one can �nd a consistent estimate of V ar (wi), then one can compute consistent bias-adjusted
estimate

̂adj =
Covs

�
ET

�
Rei

�
; �̂i

�
V ars

�
�̂i
�
� \V ar (wi)

where the superscript s denotes sample moments
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� \V ar (wi) is provided by the average of estimated variances of �̂i from time-series regressions of

Reit on R
e
mt

\V ar (wi) =
1

N

NX
j=1

\
V ar

�
�̂j
�

� To prove, use Law of Large Numbers for random variables with di�erent mean:

1

N

NX
j=1

Xi �!
N!1

1

N

NX
j=1

�i

where �i is mean of Xi

c 2020 by F. Franzoni Page 19 - 54



2. Statistical description of AP tests
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� General focus on multi-factor asset pricing models

E (Rei ) = �
0
i� (6)

where �i is a K-dimensional vector of multiple-regression slopes and � is K-vector of factor risk

premia

� For example: APT, ICAPM

� CAPM is the case with K = 1

� The methodology extends unambiguosly from the CAPM tests to tests of multifactor models

� Questions:

{ How to estimate parameters?

{ Standard errors?

{ How to test the model predictions?
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Time-Series Regressions

� You can apply this approach only if factors f1;:::;fK are returns

� Then, the model (6) applies to factors as well:

E (fk) = �k k = 1:::K (7)

� So, one can re-write the model in (6) as:

E (Rei ) = �
0
iE (f) (8)

where E (f) is the vector of expected excess returns on the k factors

� Assume K = 1 for simplicity, consider the time-series regression:

Reit = �i + �ift + "t (9)

� Take expectation of each side. Then, the implication of (8) is

�i = 0 i = 1:::N
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� You can estimate �i by running regression (9) for each asset

� Then, use t-tests to test �i = 0

� But you want to test the hypothesis that all alphas are jointly zero

� The "it are correlated across assets with variance-covariance matrix � = E
�
"t"

0
t
�

� The asymptotically valid test for

Ho : � = 0

is

�̂0
�
\V ar (�̂)

��1
�̂ � �2N

where � is a N -dimensional vector of pricing errors

� Intuition: reject the model if the weighted sum of the squared errors is far from zero
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� In the case K = 1, assuming no autocorrelation and stationarity, and noting that �̂i contains
the average "it, the test becomes

T

241 +  
ET (f)

�̂ (f)

!235�1 �̂0�̂�1�̂ � �2N
where ET (f) is the sample mean of the factor (an estimate of the risk premium) and �̂ is the
sample vcov matrix of the residuals from the N regressions

Proof. (Sketch): \V ar (�̂) is N �N matrix

\V ar (�̂) =

2666664
�̂2�̂1

�̂�̂1�̂2 � � � �̂�̂1�̂N
�̂�̂2�̂1 �̂2�̂2... . . .

�̂�̂N �̂1 �̂2�̂N

3777775
Focus on:

�̂i = �Rei � �̂iET (f)
= �i + �iET (f) + �"i � �̂iET (f)
= �i +

�
�i � �̂i

�
ET (f) + �"i
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So:

V ar (�̂i) = V ar
�
�̂i
�
E2T (f) + V ar (�"i)

=
�2"i

�̂2 (f)T
E2T (f) +

1

T
�2"i

=
1

T
�2"i

241 +  
ET (f)

�̂ (f)

!235
Similarly:

Cov
�
�̂i; �̂j

�
=
1

T
�"i"j

241 +  
ET (f)

�̂ (f)

!235
Hence, it follows that:

V ar (�̂) =
1

T

241 +  
ET (f)

�̂ (f)

!235�
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So:

\V ar (�̂) =
1

T

241 +  
ET (f)

�̂ (f)

!235 �̂
Then:

�̂0
�
\V ar (�̂)

��1
�̂ = T

241 +  
ET (f)

�̂ (f)

!235�1 �̂0�̂�1�̂
You only need to prove that the distribution is a chi-squared. For that you can use standard theorems
on the limit distribution of squared residuals.

� Gibbons, Ross, and Shanken (GRS, 1989) provide a small sample test assuming joint normality
of the "it

T �N � 1
N

241 +  
ET (f)

�̂ (f)

!235�1 �̂0�̂�1�̂ � FN; T�N�1
� Using e�cient set algebra, one can prove that 

�q

�q

!2
=

 
ET (f)

�̂ (f)

!2
+ �̂0�̂�1�̂ (10)
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where
�q
�q
is the Sharpe ratio of the tangency portfolio and

ET (f)
�̂(f)

is the Sharpe ratio of the factor

� Then, the GRS statistic can be rewritten as

T �N � 1
N

�
�q=�q

�2 � (ET (f) =�̂ (f))2"
1 +

�
ET (f)
�̂(f)

�2#�1 � FN; T�N�1

� In this form, the interpretation is: Reject the null if the factor is far from the tangency portfolio

on the ex-post e�cient frontier

� In other words: reject CAPM if the market is far from the ex-post e�cient frontier

� In case of K > 1 factors, the GRS statistic is

T �N �K
N

�
�q
�q

�2
� ET (f)0 
̂�1ET (f)h

1 + ET (f)
0 
̂�1ET (f)

i�1 � FN;T�N�K
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where


̂ =
1

T

TX
i=1

[ft � ET (f)] [ft � ET (f)]0

is the sample vcov matrix of the factors and

ET (f)
0 
̂�1ET (f)

is the multifactor equivalent of the squared Sharpe ratio of the factor
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Proof of Equation (10)

� Let q be a portfolio on the mean variance e�cient frontier. Let � be the vector of expected
excess returns on the N +1 assets in the market (i.e. N test assets and 1 factor). Hence, q has

minimum variance for given expected return e

Min q0V q

s:t: q0� = e

� The Lagrangean for this problem is

L = q0V q + 2�
�
e� q0�

�
which gives �rst order conditions with respect to q and � (the Lagrange multiplier)

2V q � 2�� = 0

e� q0� = 0

� Hence, the frontier portfolio q has to satisfy

q = �V �1� (11)
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� Using Equation (11), the variance of q is therefore

�2q = q
0V q = �2�0V �1�

� The squared expected excess return of q is

�2q =
�
q0�

�2
= �2

�
�0V �1�

�2
� We can then compute the squared Sharpe ratio of q as

c 2020 by F. Franzoni Page 30 - 54



�2q

�2q
= �0V �1� (12)

� Now, let us remember that this market is composed of N +1 assets, where the �rst asset is the

factor f

� The vector of returns of the N assets can be written as

Rt = �+ �ft + "t;

where � and � are N-dimensional vectors capturing the alphas and betas of the N assets with

respect to the factor f . Also, " is the idiosyncratic component of returns, which has variance-

covariance matrix equal to �

� Hence, the vector � can be written as

� =

"
�f

�+ ��f

#
(13)

� For the same reason, the variance-covariance matrix V can be written as

V =

"
�2f �0�2f
��2f ��0�2f +�

#
(14)
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� Using the formula for the inverse of a partitioned matrix (see, e.g., Greene, Econometric Analysis),
we can obtain the inverse of V as

V �1 =

24 1
�2f
+ �0��1� ��0��1

���1� ��1

35 (15)

� Using Equations (13) and (15), after some tedious algebra, we can re-write Equation (12) as

�2q

�2q
=
�2f

�2f
+ �0��1�;

which completes the proof
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Cross-Sectional Regressions

� This is the only approach available when the factors are not returns

� Two-pass methodology:

1. Estimate �i from time-series regressions with multiple factors if K > 1

Reit = ai + �
0
ift + "it t = 1:::T (16)

Note that if the AP model in (6) is correct

ai = �
0
i (�� E (f)) (17)

2. Regress average returns on estimated �i

ET (R
e
it) = �

0
i�+ �i i = 1:::N (18)

where ET denotes a time-series average over the T observations in the sample.

Based on equations (16) and (17), under the null, the pricing errors �i's probability limit is
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(assume that �̂ ! � and �̂! �):

�i = ET (R
e
it)� �0i�

= ai + �
0
iET (ft) + ET ("it)� �0i�

= �0i (�� E (f)) + �0iET (ft) + ET ("it)� �0i�
= ET ("it) + �

0
i (ET (ft)� E (ft))

So, the vcov matrix of �, which is the N � 1 vector of residuals from regression (18), is

E
�
��0

�
=
1

T

�
�+ �
�0

�
where � is a N �K matrix of factor loadings for the N assets on the K factors, and 
 is

the vcov of the K factors

� �̂ is the vector of �tted residuals, which under the null, have zero expectation

� One can test the AP model with

�̂0 [V ar (�̂)]�1 �̂ � �2N�K
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� Using standard OLS results (V ar (û) = MV ar (u)M , where û are the �tted residuals and

M = I �X(X 0X)�1X 0 is the residual making matrix. In our case u = � and X = �), we can

compute the vcov of �̂ as

V ar (�̂) =
1

T

�
I � �

�
�0�

��1
�0
�
�
�
I � �

�
�0�

��1
�0
�

where �
�0 cancels out from the vcov matrix

� Notice that these formulas assume that � are known. See below for corrections that take into
account that � is estimated
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GLS Cross-Sectional Regressions

� Since the residuals �i are correlated, OLS is ine�cient

� The BLUE estimator is GLS

�̂ =
�
�0E

�
��0

��1
�

��1
�0E

�
��0

��1
ET (R

e)

�̂ = ET (R
e)� �̂�

� If you do Choleski decomposition

E
�
��0

��1
= CC0

you can think of GLS as OLS performed on rotated data set

�� = C0�

ET (R
e�) = ET

�
C0Re

�
which implies testing the model on a di�erent set of portfolios: C0Re

� Unfortunately, � is not known
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� Use an estimate �̂ to do feasible GLS

� However, feasible GLS can be largely ine�cient in small samples

� So, many authors prefer to do OLS and to report standard errors that account for correlation

�2
�
�̂ols

�
=

1

T

��
�0�

��1
�0��

�
�0�

��1
+


�
(19)

V ar (�̂ols) =
1

T

�
I � �

�
�0�

�0�1
�0
�0

�
�
I � �

�
�0�

�0�1
�0
�

� With GLS estimates, you can test the AP model using

T �̂0gls�̂
�1�̂gls � �2N�K

� To derive distribution, use Choleski decomposition and consider that asymptotically

T 1=2C0�̂ � N
�
0; I � �

�
�0�
��1

�0
�

where � = C0� and I � �
�
�0�
��1 �0 is idempotent matrix with rank N �K
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Shanken Correction

� In fact, �i are estimates, not the true parameters

� Hence, need to account for sampling error in �i, when computing standard errors

� Shanken's (1992) correction :

�2
�
�̂ols

�
=

1

T

��
�0�

��1
�0��

�
�0�

��1 �
1 + �0
�1�

��
+
1

T

 (20)

�2
�
�̂gls

�
=

1

T

��
�0��1�

��1 �
1 + �0
�1�

�
+


�
where 
 is the vcov of the factors

� You have a multiplicative
�
1 + �0
�1�

�
correction and an additive correction 1

T


� For the test on the pricing errors:

T
�
1 + �0
�1�

��1
�̂0gls�̂

�1�̂gls � �2N�K
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� Is the multiplicative correction important?

� Consider CAPM. In annual data: (�m=�m)2 = (0:08=0:16)2 = 0:25
The correction is important.

In monthly data (�m=�m)
2 = 0:25=12 � 0:02.

The multiplicative correction is not important

� The additive correction is likely to be important

� 1
T
 is the standard error of the mean of the factor, which is non-negligible in case f is, e.g., the
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market return,

Time-Series vs. Cross-Section

� How are two approaches di�erent?

1. TS can be applied only if factors are returns

� In CAPM, it �ts a line through the pricing errors by forcing a zero pricing error on Rm

� Test: �i = 0 for all i

2. CS only alternative when factors are not returns

� In CAPM, it minimizes all pricing errors, by allowing some error on Rm

� Historically CS has been used to test for characteristics in the cross-section of returns (espe-
cially using Fama-MacBeth approach)

c 2020 by F. Franzoni Page 40 - 54



Fama-MacBeth (1973) Methodology

� It is a three-pass procedure:

1. Obtain �it from time-series regressions, using data up to t� 1

2. At each date t, run a cross sectional regression

Reit = �
0
it�t + �it i = 1:::N

and obtain a time series of �̂t and �̂it t = 1:::T

3. Finally, obtain full-sample estimates as time series means

�̂ =
1

T

TX
�=1

�̂t

�̂i =
1

T

TX
�=1

�̂it

c 2020 by F. Franzoni Page 41 - 54



and use the standard error of the mean

�
�
�̂
�
=

1

T 1=2

0BBBBBB@
PT
t=1

�
�̂t � �̂

�2
T � 1| {z }
\V ar(�̂t)

1CCCCCCA

1=2

� (�̂i) =
1

T 1=2

0BBBBB@
PT
t=1 (�̂it � �̂i)

2

T � 1| {z }
\V ar(�̂it)

1CCCCCA
1=2

� There are two main advantages to this approach:

1. It allows for time-varying betas

2. It computes standard errors by getting around the problem of heteroskedastic and correlated

errors: exploit sample variation in �̂t and �̂it

� You may still want to do a Shanken correction because betas are estimated
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� If beta are estimated on overlapping data, you need to correct st. errors for time-series correlation
(use Newey-West with q=#overlapping observations)

� The method is often used to test for the cross-sectional explanatory power of characteristics zi

� You can test for zero pricing errors

�̂0 [V ar (�̂)]�1 �̂ � �2N�1
where you use sample vcov of the errors

V ar (�̂) =
1

T 2

TX
i=1

(�̂t � �̂) (�̂t � �̂)0

� If �it and zit are constant over time and the errors are uncorrelated over time, one can show
that Fama-MacBeth is equivalent to:

1. OLS cross-sectional regressions with st. errors corrected for correlation as in (19)

2. Pooled time-series and cross-sectional OLS regressions with st. errors corrected for correlation
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Maximum Likelihood

� ML provides justi�cation for tests seen above

� You need to make assumptions on distribution of errors (typically normality)

� The principle is to choose parameters � to maximize likelihood function L (fxtg ; �)

�̂ = argmax
�
L (fxtg ; �)

� ML estimators are asymptotically normal and asymptotically most e�cient

� But: properties hold only if economic and statistical models are correctly speci�ed

� Not robust to model misspeci�cation!

� One can show that:

1. If factors are returns, ML prescribes time-series regressions

2. If factors are not returns, ML prescribes GLS cross-sectional regressions (with Shanken cor-

rection for st. errors): iterative procedure
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3. Statistical Discipline and Philosophy
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ML is often ignored

� ML prescribes GLS instead of OLS

� The historical development saw OLS regregressions coming �rst

� ML was used later as a motivation of OLS in some contexts

� However, if ML prescriptions di�er from OLS, people continue to use OLS

� Why? Trade o�: E�ciency vs. Robustness

� ML is the most (asymptotically) e�cient if the model is correct (statistically and economically)

� In small samples, it can be way o� the target

� ML is constructed to price a linear combination of the original portfolios. It transforms the

original portfolios to something less `interpretable' (less liquid, implausible long-short positions,

etc.)
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� Consider a model that works a reasonably well on a `reasonable' set of assets

� OLS is more robust to model mispeci�cation: it is constructed to price the original set of assets

� If you use GLS, you are likely to reject the model, because the model is unlikely to price an
illiquid combination of the original set of assets (This is Cochrane's point of view. Nagel and

Singleton (2011, JF) disagree with this point of view)

� If you use OLS, you are less likely to reject a model

� An AP is bound to be imperfect. The question is: how well does it price a `reasonable' set of
portfolios (=feasible trading strategies)?

� Then, OLS answers this question
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Statistical Discipline

� From e�cient set mathematics: Mean variance e�ciency of a factor implies a E(R) = �0E (Rq)
representation, where � are betas on the factor and E (Rq) is the mean return on the factor q,

where q is a portfolio on the mean-variance frontier constructed from the (sample or population)

moments of the N assets

Proof. Take a portfolio x of the N assets. You have that

�x;q =
x0V q
q0V q

(21)

where x is the vector of weights for the portfolio, q is the vector of weight for a mean-variance

e�cient portfolio, and V is the variance-covariance matrix of the N assets

To obtain a mean-variance e�cient portfolio, it has to be the case that q solves the problem

Min q0V q

s:t: : q0� = e
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where e is a �xed level of expected excess return and � is the vector of expected excess returns for

the N assets. The Lagrangean for the problem is

L = q0V q + 2�
�
e� q0�

�
and the �rst order conditions are

V q � �� = 0

q0� = e

from the �rst order conditions we obtain

V q = ��

which we can use in equation (21):

�x;q =
x0V q
q0V q

=
�x0�
�q0�

Rearranging and simplifying �:

x0� = �x;qq
0�
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or:

E (Rx) = �x;qE (Rq)

� This theorem holds whatever distribution one uses to compute moments: objective, subjective,

or ex-post (sample) distribution

� Hence: in the sample, there exists an E(R) = �0E (Rq) representation based on sample moments

� That is: there is an ex-post mean-variance e�cient portfolio that prices all assets

� Danger of "Fishing for Factors"! Finding the portfolio that in-sample works

� Limit to possibility of out-of-sample tests: international data dirty; need to wait for 30 years

� Discipline: a factor needs to be economically motivated
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� Modern Approach to AP: Stochastic Discount Factor

Et
�
mt+1R

e
i;t+1

�
= 0

where

mt+1 =
u0 (ct+1)
u0 (ct)

= 1� b0ft+1

� Di�erent AP models can be derived from di�erent speci�cations of SDF

� In any case, sensible factors must be related to consumption growth. E.g.: return on wealth
portfolio (CAPM), state variables of hedging concern (ICAPM)
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Data Snooping

� Related problem

� If you search the data for signi�cant relationships over and over again, you will �nd something
(with 5% chance)

� In principle, you should test model on di�erent data set

� Objectively di�cult

� Need to go to the data with economically founded models
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Statistical Philosophy

(Cochrane, ch. 16)

� The way knowledge has progressed di�ers from the pure prescriptions of econometric theory

� Historically, it took another model to beat a sensible model. A rejection of H0 : � = 0 is usually
not enough

� For example: CAPM was �nally rejected only when another model (based on size and B/M)

explained returns (Fama and French, 1992 and 1993)

� The most e�cient statistical procedure (ML) is not convincing, if it is not transparent

� There are more relevant questions in evaluating a theory than statistical signi�cance:

{ Is the underlying theory sensible?

{ Do the assumptions make sense?

{ Do the empirical variables reect the variables in the model?
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{ Robustness to: simplifying assumptions, measurement error, data snooping

� For example: Fama and French 3-factor model is statistically rejected by GRS test, but it is still
widely used as a benchmark

� Classical statistics requires that nobody ever looked at the data. But we all use the same data
sets (CRSP, Compustat)

� Bayesian statistics could incorporate prior results, but in practice people start with uninformative
priors

� Bottom line: what has convinced people historically is not necessarily what was mostly statically

sensible, but what looked more `reasonable'

� Epistemology should not be normative (Popper, Friedman), it should be positive (Kuhn, Mc-
Closkey)

� Focus on how ideas convinced people in the past rather than on how ideas should convince people
from a statistical point of view!
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