
Using Semantic Web Technologies and
Production Rules for Reasoning on
Obligations and Permissions ⋆,⋆⋆

Nicoletta Fornara(�)1, Alessia Chiappa2, Marco Colombetti2

1 Università della Svizzera italiana,
via G. Buffi 13, 6900 Lugano, Switzerland

nicoletta.fornara@usi.ch, ORCID ID: 0000-0003-1692-880X
2 Politecnico di Milano,

piazza Leonardo Da Vinci 32, Milano, Italy
alessia.chiappa@gmail.com,

marco.colombetti@polimi.it, ORCID ID: 0000-0003-2339-9678

Abstract. Nowadays the studies on the formalization, enforcement, and
monitoring of policies and norms is crucial in different fields of research
and in numerous applications. ODRL 2.2 (Open Digital Right Language)
is a W3C standard policy expression language formalized using semantic
web technologies. It is used to represent permitted and prohibited ac-
tions over a certain asset, and obligations required to be met by parties
involved in the exchange of a digital asset. In this paper, we propose to
extend the model of permission and obligation proposed by ODRL 2.2 in
two directions. Firstly, by inserting in the model the notion of activation
event or action and by expressing event and action as complex constructs
having types and application-independent properties. Secondly, by con-
sidering the temporal aspects of obligations and permissions (expiration
dates and deadlines) as part of their application independent model. The
operational semantics of the proposed model of obligations and permis-
sions is specified using Discrete State Machines and is computed using
a production rule system. The proposed approach has been tested by
developing a framework in Java able to get as input a set of policies for-
malized using Semantic Web languages, and to compute their evolution
in time based on the events and actions that happen in the interaction
among the parties involved in the policies.

1 Introduction

Nowadays the study of policies and norms is crucial in different fields of re-
search and applications. Policies may be used for regulating access to data and
digital assets in policy-based access control frameworks. They may be used to

⋆ Funded by the SNSF (Swiss National Science Foundation) grant no.
200021 175759/1.

⋆⋆ The final publication is available at Springer via https://doi.org/10.1007/978-3-030-
17294-7 4.

unambiguously specify licenses for software, images, video and data or to for-
malize contracts, agreements, and offers between different parties in e-commerce
applications. Privacy policy may also be used to express regulations on the man-
agement of personal and sensitive data.

In principle policies and norms can be specified using human-readable for-
mats; however, it is crucial to specify them with formal and machine-readable
languages in order to enable machine-to-machine interactions combined with a
number of useful services, like: (i) advanced search of resources based on the ac-
tions that it is possible to perform on them; (ii) aggregation of different resources
released under different policies by computing policies compatibility or conflicts;
(iii) checking the satisfaction or violation of the normative or legal relations that
an intensive exchange of digital assets creates in the chain of interactions among
data producers, data publishers, and data consumers.

In order to perform services of this type it is crucial not only to propose a
language for expressing policies, but also to unambiguously specify the meaning
of such policies. This with the goal of being able to automatically monitor the
fulfilment or violation of obligations and the correct use of permissions, and to
simulate what would happen if one of the parties, related by a set of policies,
performs certain actions.

ODRL 2.2 (Open Digital Right Language)3 is a W3C standard policy expres-
sion language, which is used to represent permitted and prohibited actions over
a certain asset, and obligations required to be met by the parties involved in the
exchange of a digital asset. Originally, in 2001, ODRL was an XML language
for expressing digital rights, that is, digital content usage terms and conditions.
In 2012 (version 2.0) and in 2015 (version 2.1) [12], ODRL evolved into a more
general policy language: it is no longer focused only on the formalization of
rights expressions, but also on the specification of privacy statements, like du-
ties, permissions, and prohibitions. ORDL started to be formalized in RDF with
an abstract model specified by an RDF Schema Ontology. In March 2016, a
W3C Working Group was created with the goal of bringing the specifications
through the W3C Process to “Recommendation” status. ODRL 2.2 became a
W3C Recommendation on 15th February 2018. In all the specifications of ODRL,
its semantics is described informally in English, and no formal specification is
provided. In [13] an OWL representation of ODRL 1.1 is presented, but the use
of OWL is limited to the representation of classes and properties, and no rep-
resentation is given of the dynamic semantics of policies, that is, of how they
evolve in time. In [19] the semantics of ODRL 2.1 policies used for access control
is investigated. When a request to perform an action on an asset is issued, the
system evaluates which rules (prohibition, permission, or duty rules) are trig-
gered (taking into account explicit and implicit dependencies among regulated
actions), then it checks whether these rules hold based on certain constraints
(i.e., activation conditions); however there is no hint on how the satisfaction of
constraints can be computed.

3 https://www.w3.org/TR/odrl-model/

In this paper, we propose to extend the model of permission and obligation
proposed by ODRL 2.2 in two directions. Firstly, by inserting in the model the
notion of activation event/action and by expressing event and action as complex
constructs having types and application-independent properties. Secondly, by
considering the temporal aspects of obligations and permissions (their expiration
dates and the deadlines) as part of their application-independent model. The
operational semantics of the proposed model of obligations and permissions is
then specified using Discrete State Machines, which are used to unambiguously
specify the temporal evolution of the deontic state of obligations and permissions
while time passes and relevant events (e.g. the elapsing of a deadline) or actions
(e.g. downloading a music file) happen. Such an operational semantics can be
efficiently computed by a monitor component by using a production rule system.
The proposed approach has been tested by developing a framework in Java able
to get as input a set of policies formalized using Semantic Web languages, and
to compute their evolution in time based on the events and actions that take
place. Such a framework uses the forward chaining rule-based RETE engine of
the Apache Jena framework4 (which is compatible with semantic web languages)
for realizing the production system.

The paper is organized as follows. In Section 2, a semantic meta-model for
expressing temporal and conditional permissions and obligations is introduced.
In Section 3, the life cycles of those two deontic relations is formally speci-
fied. In Section 4, a production rule system is used for computing the deontic
state of obligations and permissions. In Section 5, a prototype for simulating
the evolution in time of deontic relations is described. Finally, in Section 6 other
approaches for expressing policies and norms are presented and discussed.

2 A Semantic Web Meta-model of Conditional
Obligations and Permissions

Following ODRL 2.2 Information Model, a policy must have at least one per-
mission, prohibition or obligation. In ODRL model, the regulated actions are
expressed by means of their textual name (e.g. print), and their semantics can
be narrowed by using constraints (i.e. expressions which compare two operands),
for example “print less than or equal to 1200 dpi resolution”. A permission may
be conditioned by a duty and its intuitive meaning is that the duty represents a
pre-condition that must be fulfilled to obtain a valid permission. From our per-
spective, it sounds quite unnatural to say that for acquiring a valid permission,
for example to listen to an audio file, I have the duty to do something, for exam-
ple to pay x euro. This because a duty is an action than an agent is obligated to
do, not an action that an agent can freely decide to perform. In ODRL model,
an obligation is a duty and it is fulfilled if all constraints are satisfied and if the
regulated action, with all constraints satisfied, has been exercised.

The ODRL model does not highlight two crucial application-independent
characteristics of the modelled deontic concepts. The first one is the important

4 https://jena.apache.org/documentation/inference/index.html

role played by the event/action that can activate an obligation or make a per-
mission valid. In ODRL, an activation condition is represented as a generic con-
straint, even if it is a crucial part of the deontic model. For example, only when
an agent enters a limited traffic area he becomes obligated to pay an amount
of money within a given interval of time; similarly, only after paying a fee an
agent gets a valid permission to play a music file in a party. It is also important
to model those actions and events using complex constructs having a type and
application-independent properties.

The second relevant application-independent characteristic of the modelled
deontic concepts is their relation with time. Usually an obligatory action has to
be performed before a specific deadline, and a permission can be used within a
certain interval of time (e.g., the obligation to pay 5 euro before the end of the
month, or the permission to play a music file within one week). A conditional
obligation/permission may also become expired if it is not activated or made
valid before a given expiration date. For example, as long as an agent is a bidder
in an auction, such an agent has the obligation to pay his bids if it becomes the
winner of the auction. When the auction is closed, the obligation expires and
cannot become active anymore.

In this paper, we propose to extend ODRL 2.2 information model with two
new types of deontic relations: conditional obligations and conditional permis-
sions, i.e. obligations and permissions that become activated/valid when a con-
dition is satisfied and having in their meta-model expiration dates and deadlines.
What we model is a notion of strong permission, i.e. the explicit permission to
do an otherwise prohibited action, which is different from the weak permission,
i.e. the absence of the prohibition to do an action [22].

Given that ODRL is a W3C standard, the ODRL 2.2 ontology5 is formalized
using RDF Schema6, a semantic web standard language for expressing data-
model vocabulary for RDF data. RDF Schema can be used for defining classes,
domain and range of properties and hierarchies of classes and of properties.
The provided ODRL specification is compatible with another standard semantic
web language for expressing ontologies, the OWL 2 Web Ontology Language,
which is a practical serialization of the SROIQ(D) Description Logic. Therefore,
given that we want to propose an extension of ODRL, we will formalize our
meta-model of temporal-conditional obligations and permissions using an OWL
ontology: the Normative Language Ontology (NL Ontology). This choice involves
also the advantage of being able to perform automatic reasoning on the OWL
formalization of the proposed deontic concepts.

In the definition of the Normative Language Ontology we exploit the possibil-
ity, given by the adoption of Semantic Web Languages, to connect our ontology
with other, quite well known, ontologies. We re-use the core model of temporal
entities specified in the OWL Time Ontology7 for being able to specify deadline
and expiration dates, and the time when real events or actions happen. We re-

5 https://www.w3.org/ns/odrl/2/
6 https://www.w3.org/TR/rdf-schema/
7 W3C Recommendation 19 October 2017 https://www.w3.org/TR/owl-time/

use the Schema.org ontology8 a well-known ontology that has been developed to
support web search engines. We re-use it for the specification of actions as com-
plex objects, contrary to their treatment in ODRL, where they are represented
by atomic symbols. We extend the ODRL 2.2 ontology in various ways, as will
be detailed in the sequel. Finally, we re-use the Event Ontology presented in [5]
for expressing events as a super-class of actions and for connecting events to time
instants and intervals. The import relationship among the various ontologies is
depicted in Figure 1

Fig. 1. The import relationship among the various ontologies

The Normative Language Ontology is depicted in Figure 2. It defines two new
types of deontic relations, as subclass of the ODRL Rule class: the nl:Obligation
and the nl:Permission classes.

Obligations and permissions have the following common characteristics. They
are deontic relations between two parties. They are characterized by two fun-
damental components: the activation condition and the content. The activation
condition describes an event or an action, the content describes an action. When
the activation event/action of an obligation actually happens, the obligation to
perform the action described in the content component becomes active. Differ-
ently, when the activation event/action of a permission actually happens, the
permission to perform the action described in the content component becomes
valid. A counter is used for managing obligations and permissions to perform an
action more than once. Obligations and permission have an expiration date and a
deadline. Expiration and deadline usually refer to different instants of time. The
expiration is the instant of time when the deontic relation ceases to exist. The
deadline is the instant of time before which it is obligatory to satisfy the content
of an active obligation or it permitted to exercise a valid permission. Deadlines
and expiration dates may be computed at run-time by using the specified interval
of time, in those cases their value depends on when the obligation/permission
is created or activated/made valid. Finally, obligation and permission have a
deontic state, it is used to compute their life cycle as discussed in next section.

An example of a conditional permission may be: when person:bob:01 pays 5
euros to organization:SOYN, he obtains a valid permission to listen to, at most

8 http://schema.org/docs/developers.html

Fig. 2. The OWL Normative Language Ontology and its connections with other on-
tologies

ten times, a music record by the Beatles within 48 hours from the payment;
this permission expires at the end of 2018. Its formalization using the proposed
ontology serialized using the Turtle language9 is as follows:
ex:policy:01 a odrl:Policy;

nl:permission ex:perm:policy:01:1.

ex:perm:policy:01:1 a nl:Permission;

odrl:assigner ex:org:SOYN;

odrl:assignee ex:person:bob:01;

nl:hasActCond ex:actCond:1;

nl:hasContent ex:content:1;

nl:hasDeadlineDelta [time:hasTemporalDuration "PT48H0M0S"^^xsd:duration];

nl:hasExpiration [time:inDateTime "2018-12-31T09:00:00Z"^^xsd:dateTime];

nl:counter 10^^xsd:integer.

ex:actCond:01:1 a schema:PayAction;

schema:agent ex:person:bob:01;

schema:recipient ex:org:SOYN;

schema:price 5.00;

schema:priceCurrency "euro".

9 https://www.w3.org/TR/2014/REC-turtle-20140225/. In Turtle every row is an
RDF triple statement (subject, predicate, object) terminated by ’.’; a ’;’ symbol
is used to repeat the subject of triples that vary only in the predicate and object
parts.

ex:content:01:1 a schema:ListenAction;

schema:agent ex:person:bob:01;

schema:object [a schema:MusicRecording;

schema:byArtist ex:Beatles].

This is an example of a policy instance, with all its properties filled with a
specific value. In a real system, it is desirable that digital assets are associated
with a policy schema that can be re-used in different circumstances, for example
the schema of a contract or of an agreement. Policy schemas contain variables
and are transformed into policy instances through a procedure of substitution of
variables with actual values, specified during an interaction with a specific user.

3 Life cycles of Obligation and Permission

Obligations and permissions are two fundamental deontic relations widely used
for regulating the actions that various individuals should or may perform. Ac-
tions, and more generally events (i.e. something that happens in a system, but
is not necessarily done by an actor) change the state of the interaction among
various parties, and their effects are strictly related to the instant of time when
they happen. In order to specify what it means for an agent to have an obli-
gation or a permission, it is fundamental to model their deontic state and to
formally specify its evolution in time based on actual events (e.g. the elapsing
of a deadline) and actions (e.g. downloading a music file).

In this section, we propose to formally describe such a temporal evolution
using two life cycles, one for the notion of obligation and one for the notion of
permission. They are the result of a deep analysis of the literature and of the
textual description of permissions and duties given in the ODRL Information
Model 2.2. Those life cycles are unambiguously specified using Discrete State
Machines. More precisely, we use two simple types of Discrete State Machines
(DSMs): pure Finite State Machines for modelling the conditional permission to
perform an action for an unlimited number of times, and Finite State Machines
augmented with a decreasing counter (with 0 lower bound), for modelling con-
ditional obligations and permissions to perform an action for a limited number
of times.

It is important to notice that the evolution of the deontic state of obligations
and permissions in turn depends on the satisfaction of their activation condition
and content. It is necessary to define a procedure for checking if actual events or
actions satisfy the description of events and actions that appear in obligations
and permissions. One possible approach for the realization of such a procedure
will be described and discussed in next section.

In order to represent in our model the satisfaction of the content or of the
activation condition of a deontic object, we introduce in the NL Ontology the fol-
lowing two properties. The hasState property is used to connect the content and
the activation condition of a deontic object with their state. Such a state is ini-
tially unsatisfied and becomes satisfied when the described event/action occurs.
The reason property is used to connect the content and the activation condition

of a deontic object with the real event or action that produced its satisfaction.
This property is necessary for comparing expiration dates and deadlines of the
deontic objects with the instant of time when events or actions actually happen.

The life cycle of conditional obligations is depicted in Figure 3. When a con-
ditional obligation is created, it is in the conditional state and its condition and
content are unsatisfied. When the activation condition becomes satisfied and the
current time is less than or equal to the expiration date of the deontic relation,
the transition from the conditional state to the activated state is fired. Differ-
ently if the expiration date is elapsed the transition leads from the conditional
to the expired state. Then, whenever the content becomes satisfied before the
deadline and its counter is greater than zero the conditional obligation remains
activated, the counter is decremented, and the content is set back to unsatisfied.
If the content becomes again satisfied before the deadline and the counter is
equal to zero the state becomes fulfilled. Differently if the state is still activated
and the deadline becomes elapsed, the state becomes violated.

Fig. 3. Life cycle of Conditional Obligation

The life cycle of a conditional permission is depicted in Figure 4. A condi-
tional permission becomes valid when its condition is satisfied. Then every time
it is exercised, a counter is decremented and when the counter is equal to zero
the state becomes exercised. If the expiration date of a conditional permission
is expired its state becomes expiredConditional, differently if the deadline of a
valid permission is expired the permission becomes expiredValid. The conditional
permission to perform an action for an unlimited number of times is represented
with a Finite State Machine and the main difference is the absence of the counter
and of the exercised state, in fact only when the deadline is elapsed the permis-
sion becomes expiredValid.

It is interesting to observe that the conditions that trigger the transitions
of the two life cycles are identical. The fundamental difference between the two
deontic relations, which is enlightened by the different name of the deontic states,
is that for obligations the fulfilled state is a final and desired state, contrary to the

violated final state which may bring about a sanction, differently, for permissions
the exercised final state has no positive or negative connotation.

Fig. 4. Life cycle of Conditional Permission

4 Operational Semantics of Obligation and Permission

In order to realize services able to automatically monitor or simulate the dynamic
evolution of the proposed deontic relations, it is necessary to define a procedure
for automatically computing their deontic state. Such a deontic state, in turn,
depends on the satisfaction of the state of the activation condition and content
of the relevant deontic objects.

This procedure requires an application-dependent component, able to “sense”
the actual events or actions and represent them as individuals of the State On-
tology by using the vocabulary defined by the Event and Schema.org ontologies.
This procedure also requires two application-independent components: one for
computing the satisfaction of the state and one for computing the deontic state.

In this section we propose to realize those components using a production sys-
tem [1], i.e. a forward-chaining reasoning system that uses production rules. The
ongoing memory of assertions (stored in the working memory of the proposed
production system) is composed of: the State Ontology, a representation, in the
form of RDF triples, of the state of the interaction in terms of actual actions,
events, and current time; the Normative Ontology, a representation of the set of
policies containing obligations and permissions. While time flows, the ongoing
memory is continuously updated with new assertions representing actual events
or actions and the elapsing of time, and it is updated due to the execution of
production rules.

A production rule has two parts: a set of conditions, to be tested on the
ongoing memory, and a set of actions, whose execution has an effect on the
ongoing memory. The generic form of a production rule is:

IF conditions THEN actions

Production rules may be used to generate an event-based computation, which
can carry out an inference process or implement a discrete dynamic system. We
will exploit the latter use of production rules for proposing an operation model of
the life cycles of obligations and permissions introduced in the previous section.
A crucial advantage of production rules is the possibility to represent the logic
of the dynamic evolution of the proposed deontic relations using a declarative
paradigm, where rules can be easily modified, instead of embedding such a logic
in the code written in an imperative programming language.

In this section we will formalize our production rules using the Abstract Syn-
tax of the W3C Recommendation RIF Production Rule Dialect10 (RIF PRD).
Initially, we present the application independent productions rules for computing
the satisfaction of activation conditions and content. Subsequently, we present
the productions rules for computing the deontic state of obligations and permis-
sions.

The first type of production rules are used for matching the description of
events and actions with actual events or actions as soon as they are represented
in the system. In the meta-model of obligations and permissions proposed in this
paper, a description of an event or an action is characterized by the specification
of its class and of a list of values for significant properties. The matching can
be realized by a production rule used for checking the exact match between the
described values and the real values. Given that the list of properties used for
describing an event or an action can vary, we need to specify a production rule for
every monitored type of event or action (characterized by the list of properties
used for its description). In the future we plan to study a more flexible mechanism
for matching an actual event/action with an event/action description.

Due to space limitation we report only one production rule of this type. It
can be used for matching a real payment with the activation condition of the
permission presented in Section 2 and with all the activation conditions where
the same parameters are used11.

(* PayAction *)

Forall ?realAction ?component ?agent ?recipient ?price ?currency(

If And(rdf:type(?perm nl:Permission)

nl:hasDeonState(?perm nl:conditional)

nl:hasActCond(?perm ?activation)

nl:hasState(?activation nl:unSatisfied)

rdf:type(?activation schema:PayAction)

schema:agent(?activation ?agent)

schema:recipient(?activation ?recipient)

schema:price(?activation ?price)

schema:priceCurrency(?activation ?currency)

rdf:type(?realAction schema:PayAction)

schema:agent(?realAction ?agent)

10 https://www.w3.org/TR/rif-prd/,http://www.w3.org/TR/rif-primer/
11 We assume that it is impossible to insert in the State Ontology an event that will

happen in the future.

schema:recipient(?realAction ?recipient)

schema:price(?realAction ?price)

schema:priceCurrency(?realAction ?currency))

Then (Assert(nl:reason(?activation ?realAction))

Retract(nl:hasState(?activation nl:unSatisfied))

Assert(nl:hasState(?activation nl:satisfied))))

The production rules of the second type are used for computing the deontic
state of obligations and permissions. It is necessary to define one production
rule for every transition of the life cycles presented in Section 3. The conditions
of these production rules are used for testing the type of the deontic relation
(permission or obligation), the current deontic state, and the conditions that
appear on the transition of the life cycle. The action component of the rules is
used to retract the current deontic state, assert the new one and, if necessary,
decrement the counter.

Due to space limitation, we present only the production rule used for com-
puting the transition from conditional to valid of a permission.

(* validatePermission *)

Forall ?perm ?activation ?expiration ?expirationDateTime ?now (

If And(rdf:type(?perm nl:Permission)

nl:hasDeonState(?perm nl:conditional)

nl:hasActCond(?perm ?activation)

nl:hasState(?activation nl:satisfied)

nl:hasExpiration(?perm ?expiration)

time:inDateTime(?expiration ?expirationDateTime)

time:inDateTime(ex:currentTime ?now)

External(pred:numeric-less-than(?now ?expirationDateTime)))

Then (Retract(nl:hasDeonState(?perm nl:conditional))

Assert(nl:hasDeonState(?perm nl:valid))))

5 Implementation of a Prototype

For testing our proposal, we have developed a Java prototype, specifically a
system able to simulate the evolution of policies containing obligations and per-
missions. We use Apache Jena12, a free and open source Java framework for
building semantic web applications. For the implementation of the production
system, described in Section 4, we use the Jena general-purpose rule-based rea-
soner and a translation of the RIF PRD rules into Jena Rules13. This reasoner
supports rule-based inference over RDF graphs, and provides forward chaining
realized by means of an internal RETE-based forward chaining interpreter[4].
The main advantage of using the JENA interpreter with respect to other Java
compatible production rules interpreters, like for instance the Jess engine in-
spired by the open-source CLIPS project, is its direct compatibility with RDF
data [16].

12 https://jena.apache.org/
13 https://jena.apache.org/documentation/inference/\#rules

An interesting feature of the Jena forward chaining interpreter is that it
works incrementally, meaning that if the inference model is modified by adding
or removing statements, the reasoning process automatically resumes, poten-
tially producing the activation of new rules. The efficiency of the reasoning with
respect to these incremental changes is guaranteed by the use of the RETE al-
gorithm, through which matching tests are performed only for those rules whose
conditions include an updated fact in the previous iteration.

In our prototype, the RIF PRD external built-in operations of Retract() and
Assert() are realized by means of the default Jena built-in remove(n) and the
ad-hoc realized add(triple) built-in. The remove(n) Jena built-in has the side
effect of recursively retracting, from the inference model, the consequences of
the already fired rules, if their conditions matched with the removed statement.
In fact, coherently with its main goal of implementing logical reasoning in RDF
and OWL, the Jena interpreter is designed to have a monotonic behaviour. Given
that our productions rules are meant to implement Finite State Machines (and
not monotonic logical reasoning), we implemented the ad-hoc add(triple) built-
in, having the effect of inserting a new triple that will not be retracted as a side
effect of removing another statement.

A useful service is the monitoring of deontic relations for those applications
where it is crucial to check the fulfilment or violation of norms and the use of
valid permissions. Another relevant service is the simulation of the evolution of
deontic relations based on a set of hypothetical actions. In order to realize these
services it is important to take into account that a few relevant instants are truly
significant in the life cycle of a permission or obligation. Significant instants are
the instants when real actions and events happen and the elapsing of deadline
and expiration dates. Therefore in order to realize an efficient simulator14 it
is important that the comparison between the simulated current time and the
significant instants (stored in an ordered list) occurs only if strictly necessary,
i.e. when one of these relevant instants are reached. This is obtained by forcing
the current time to evolve to the nearest relevant instant of time. Each update
of the current time in the inference model leads to a new cycle of the interpreter,
during which the states of obligations and permissions eventually evolve.

6 Related Work

Studies on Normative Multiagent Systems (NorMAS) concern mainly the pro-
posals of formalisms for expressing norms or policies containing obligations, per-
missions, and prohibitions. Those studies also investigate the realization of fun-
damental functionalities for norm promulgation, monitoring, and enforcement, as
well as norm adoption and reasoning. In the NorMAS literature there are various
proposals for the formalization of norms and policies using different languages
[3, 5] and different frameworks [18, 2] for their management.

14 Taking into account that the monitoring service can be realized using the simulator
where time and events are real.

As we already discussed, the W3C standard for expressing policies is ODRL
2.2. Another interesting proposal, which is in the process of becoming an OASIS
standard in the legal domain, is the LegalRuleML language15.

Many approaches to the formalization of norms are based on different logics,
which are declarative in nature. The most well-known are the studies on Deontic
Logic [21], a family of logical systems where the essential features of obligations,
prohibitions and related concepts are captured. An interesting approach to the
specification of the semantics of obligations, permissions, and prohibitions is
given in [11], where the L4LOD vocabulary for expressing licenses for Linked
Open Data is presented. The semantics of the deontic component of licenses
is formalized using an extension of Defeasible Logic [10]. This extension is a
non-monotonic logic able to deal with permissions as defeaters of prohibitions
(understood as negative obligations). The actions that are regulated are those
typical of linked open data licences (e.g., ShareAlike, Attribution, etc.). Such
actions are represented as atomic symbols, and no treatment of time or relevant
action attributes is proposed. Another interesting approach, where time is taken
into account, is based on Linear Temporal Logic (LTL) [17]. This paper pro-
poses a life cycle for obligations where deadlines and expiration dates are not
modelled, and the content of the obligation is a maintenance condition, like for
example “do not cross on a red light”. Similarly to our proposal the transition
rules are computed using a production system. In [9], a normative language for
the specification of norms is presented. In such a normative language norms
have the form of preconditions → postconditions, and the execution of every
norm is implemented by means of an ad-hoc forward rule written for the Jess
interpreter16. Differently in this paper, we propose a production rule system for
computing the application-independent life cycle of policies containing deontic
relations.

In this paper, we propose to formalize policies using Semantic Web Tech-
nologies; therefore here we will mainly discuss other approaches where those
technologies were adopted. In particular, an interesting literature review of var-
ious approaches to policies specification using Semantic Web Technologies is
given in [14]. [7, 5] presents a proposal to specify and reason on obligations using
OWL 2, SWRL rules, and OWL-API. These papers present an OWL ontology
of obligations whose content is a class of possible actions that have to be per-
formed within a given deadline. The monitoring of such obligations (checking if
they are fulfilled of violated on the basis of the actions performed by the agents)
is realized by means of a specific framework used for managing the elapsing
of time and for performing closed-world reasoning on certain classes. Unfortu-
nately, the scalability of this approach is not good enough to make it usable in
real applications.

An interesting approach that uses Semantic Web Technologies for policy for-
malization and management is the OWL-POLAR framework [18]. This frame-
work investigates the possibility of using OWL ontologies for representing the

15 https://www.oasis-open.org/committees/legalruleml/
16 http://www.jessrules.com/

state of the interaction among agents and SPARQL queries for reasoning on poli-
cies activation, for anticipating possible conflicts among policies, and for conflicts
avoidance and resolution. In the OWL-POLAR model, the activation condition
and the content of the policies are represented using conjunctive semantic formu-
las. Reasoning on a set of policies for deducing their state is realized by translat-
ing the activation condition and the content of a policy into the SPARQL query
language and then evaluating the resulting queries on the OWL ontology used
for representing the state of the world. In OWL-POLAR, there is no treatment
of time.

Another relevant proposal is the KAoS policy management framework [20,
2]. In KAoS Semantic Web technologies are used for policy specification and
management, in particular policy monitoring and enforcing is realized by a com-
ponent that compiles OWL policies into an efficient format. In [15] social com-
mitments [6] are used for modelling privacy requirements for social networks
formalized using OWL. Similarly to our approach, the antecedent of commit-
ments is a description of conditions that have to be matched with the content of
the ontology. However, the consequent of commitments is limited to permissions
or prohibitions to see a set of posts, and time is not modelled at all.

In [8] a proposal of expressing conditional obligations to perform one action,
as an extension of ODRL 2.1 having a life cycle computed using Jena Rules is
presented. In this paper we improved that work by proposing an extension of the
new version of ODRL (ODRL 2.2), by formalizing the life cycle of both condition
permissions and obligations which regulate the performance of an action for a
limited number of times, and by expressing the operational semantics of those
deontic concepts using a production system.

In our future work, we plan to investigate the dynamic connections between
obligations, permissions and prohibitions. We plan also to study how to effi-
ciently integrate OWL reasoning into the proposed production system, and to
further investigate the possibility to use the event of violation or fulfilment of
an obligation for applying rewards or sanctions.

References

1. R. Brachman and H. Levesque. Knowledge Representation and Reasoning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

2. J. M. Bradshaw, A. Uszok, M. Breedy, L. Bunch, T. C. Eskridge, P. J. Feltovich,
M. Johnson, J. Lott, and M. Vignati. The KAoS Policy Services Framework.
Eighth Cyber Security and Information Intelligence Research Workshop (CSIIRW
2013). Oak Ridge, TN: Oak Ridge National Labs, 2013.

3. K. da Silva Figueiredo, V. Torres da Silva, and C. de Oliveira Braga. Model-
ing Norms in Multi-agent Systems with NormML, pages 39–57. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011.

4. C. L. Forgy. On the Efficient Implementation of Production Systems. PhD thesis,
Pittsburgh, PA, USA, 1979. AAI7919143.

5. N. Fornara. Specifying and Monitoring Obligations in Open Multiagent Systems
using Semantic Web Technology. In Semantic Agent Systems: Foundations and

Applications, volume 344 of Studies in Computational Intelligence, chapter 2, pages
25–46. Springer-Verlag, 2011.

6. N. Fornara and M. Colombetti. Operational specification of a commitment-based
agent communication language. In Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems: Part 2, AAMAS ’02,
pages 536–542, New York, NY, USA, 2002. ACM.

7. N. Fornara and M. Colombetti. Representation and monitoring of commitments
and norms using OWL. AI Commun., 23(4):341–356, 2010.

8. N. Fornara and M. Colombetti. Operational semantics of an extension of ODRL
able to express obligations. In F. Belardinelli and E. Argente, editors, Multi-Agent
Systems and Agreement Technologies - 15th European Conference, EUMAS 2017,
and 5th International Conference, AT 2017, Évry, France, December 14-15, 2017,
Revised Selected Papers, volume 10767 of Lecture Notes in Computer Science, pages
172–186. Springer, 2017.

9. A. Garcia-Camino, P. Noriega, and J. A. Rodriguez-Aguilar. Implementing norms
in electronic institutions. In Proceedings of the Fourth International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, AAMAS ’05, pages 667–673,
New York, NY, USA, 2005. ACM.

10. G. Governatori and A. Rotolo. BIO logical agents: Norms, beliefs, intentions in
defeasible logic. Autonomous Agents and Multi-Agent Systems, 17(1):36–69, 2008.

11. G. Governatori, A. Rotolo, S. Villata, and F. Gandon. One license to compose
them all - A deontic logic approach to data licensing on the web of data. In
H. Alani and L. K. et al., editors, ISWC 2013, Sydney, Australia, October 21-25,
2013, Proceedings, Part I, volume 8218 of Lecture Notes in Computer Science,
pages 151–166. Springer, 2013.

12. R. Iannella, S. Guth, D. Paehler, and A. Kasten. ODRL Version 2.1 Core Model.
https://www.w3.org/community/odrl/model/2.1/ (accessed 15/09/2017), 2015.

13. A. Kasten and R. Grimm. Making the semantics of odrl and urm explicit using
web ontologies. In Virtual Goods, pages 77–91, 2010.

14. S. Kirrane, S. Villata, and M. d’Aquin. Privacy, security and policies: A review of
problems and solutions with semantic web technologies. Semantic Web, 9(2):153–
161, 2018.

15. N. Kokciyan and P. Yolum. Priguard: A semantic approach to detect privacy
violations in online social networks. IEEE Trans. on Knowl. and Data Eng.,
28(10):2724–2737, Oct. 2016.

16. J. Moskal and C. J. Matheus. Detection of Suspicious Activity Using Different Rule
Engines - Comparison of BaseVISor, Jena and Jess Rule Engines. In N.Bassiliades,
G. Governatori, and A. Paschke, editors, RuleML 2008, Orlando, FL, USA, Octo-
ber 30-31, 2008. Proceedings, volume 5321 of LNCS, pages 73–80. Springer, 2008.

17. S. Panagiotidi, S. Alvarez-Napagao, and J. Vázquez-Salceda. Towards the norm-
aware agent: Bridging the gap between deontic specifications and practical mech-
anisms for norm monitoring and norm-aware planning. In Revised Selected Papers
of the COIN 2013 - Volume 8386, pages 346–363, New York, NY, USA, 2014.
Springer-Verlag New York, Inc.

18. M. Sensoy, T. J. Norman, W. W. Vasconcelos, and K. P. Sycara. OWL-POLAR: A
framework for semantic policy representation and reasoning. J. Web Sem., 12:148–
160, 2012.

19. S. Steyskal and A. Polleres. Towards Formal Semantics for ODRL Policies. In
N. Bassiliades, G. Gottlob, F. Sadri, A. Paschke, and D. Roman, editors, RuleML
2015, Berlin, Germany, August 2-5, 2015, Proceedings, volume 9202 of Lecture
Notes in Computer Science, pages 360–375. Springer, 2015.

20. A. Uszok, J. M. Bradshaw, J. Lott, M. R. Breedy, L. Bunch, P. J. Feltovich,
M. Johnson, and H. Jung. New Developments in Ontology-Based Policy Manage-
ment: Increasing the Practicality and Comprehensiveness of KAoS. In POLICY
2008, 2-4 June 2008, Palisades, New York, USA, pages 145–152. IEEE Computer
Society, 2008.

21. G. H. von Wright. Deontic logic. Mind, New Series, 60(237):1–15, 1951.
22. G. H. von Wright. Norm and Action: A Logical Enquiry. Routledge and Kegan

Paul, 1963.

